Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/319341 
Erscheinungsjahr: 
2025
Quellenangabe: 
[Journal:] Econometrica [ISSN:] 1468-0262 [Volume:] 93 [Issue:] 2 [Publisher:] Wiley [Place:] Hoboken, NJ [Year:] 2025 [Pages:] 539-568
Verlag: 
Wiley, Hoboken, NJ
Zusammenfassung: 
We propose a double robust Bayesian inference procedure on the average treatment effect (ATE) under unconfoundedness. For our new Bayesian approach, we first adjust the prior distributions of the conditional mean functions, and then correct the posterior distribution of the resulting ATE. Both adjustments make use of pilot estimators motivated by the semiparametric influence function for ATE estimation. We prove asymptotic equivalence of our Bayesian procedure and efficient frequentist ATE estimators by establishing a new semiparametric Bernstein–von Mises theorem under double robustness; that is, the lack of smoothness of conditional mean functions can be compensated by high regularity of the propensity score and vice versa. Consequently, the resulting Bayesian credible sets form confidence intervals with asymptotically exact coverage probability. In simulations, our method provides precise point estimates of the ATE through the posterior mean and delivers credible intervals that closely align with the nominal coverage probability. Furthermore, our approach achieves a shorter interval length in comparison to existing methods. We illustrate our method in an application to the National Supported Work Demonstration following LaLonde (1986) and Dehejia and Wahba (1999).
Schlagwörter: 
Average treatment effects
unconfoundedness
double robustness
nonparametric Bayesian inference
Bernstein–von Mises theorem
Gaussian processes
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.