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DOUBLE ROBUST BAYESIAN INFERENCE ON AVERAGE TREATMENT
EFFECTS
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RUIXUAN LIU
CUHK Business School, Chinese University of Hong Kong

ZHENGFEI YU
Faculty of Humanities and Social Sciences, University of Tsukuba

We propose a double robust Bayesian inference procedure on the average treat-
ment effect (ATE) under unconfoundedness. For our new Bayesian approach, we first
adjust the prior distributions of the conditional mean functions, and then correct the
posterior distribution of the resulting ATE. Both adjustments make use of pilot esti-
mators motivated by the semiparametric influence function for ATE estimation. We
prove asymptotic equivalence of our Bayesian procedure and efficient frequentist ATE
estimators by establishing a new semiparametric Bernstein–von Mises theorem under
double robustness; that is, the lack of smoothness of conditional mean functions can be
compensated by high regularity of the propensity score and vice versa. Consequently,
the resulting Bayesian credible sets form confidence intervals with asymptotically exact
coverage probability. In simulations, our method provides precise point estimates of
the ATE through the posterior mean and delivers credible intervals that closely align
with the nominal coverage probability. Furthermore, our approach achieves a shorter
interval length in comparison to existing methods. We illustrate our method in an ap-
plication to the National Supported Work Demonstration following LaLonde (1986)
and Dehejia and Wahba (1999).

KEYWORDS: Average treatment effects, unconfoundedness, double robustness, non-
parametric Bayesian inference, Bernstein–von Mises theorem, Gaussian processes.

1. INTRODUCTION

THIS PAPER PROPOSES A DOUBLE ROBUST BAYESIAN APPROACH for estimating the aver-
age treatment effect (ATE) under unconfoundedness, given a set of pretreatment covari-
ates. Our new Bayesian procedure involves both prior and posterior adjustments. First,
following Ray and van der Vaart (2020), we adjust the prior distributions of the con-
ditional mean function using an estimator of the propensity score. Second, we use this
propensity score estimator together with a pilot estimator of the conditional mean to
correct the posterior distribution of the ATE. The adjustments in both steps are closely
related to the functional form of the semiparametric influence function for ATE esti-
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mation under unconfoundedness. They do not only shift the center but also change the
shape of the posterior distribution. For our robust Bayesian procedure, we derive a new
Bernstein–von Mises (BvM) theorem, which means that this posterior distribution, when
centered at any efficient estimator, is asymptotically normal with the efficient variance in
the semiparametric sense. The key innovation of our paper is that this result holds under
double robust smoothness assumptions within the Bayesian framework.

Despite the recent success of Bayesian methods, the literature on ATE estimation is
predominantly frequentist-based. For the missing data problem specifically, it was shown
that conventional Bayesian approaches (i.e., using uncorrected priors) can produce incon-
sistent estimates, unless some unnecessarily strong smoothness conditions on the under-
lying functions were imposed; see the results and discussion in Robins and Ritov (1997)
or Ritov, Bickel, Gamst, and Kleijn (2014). Once the prior distribution was adjusted us-
ing some preestimated propensity score, Ray and van der Vaart (2020) recently estab-
lished a novel semiparametric BvM theorem under weaker smoothness requirement for
the propensity score function.1 However, a minimum differentiability of order p/2 is still
required for the conditional mean function in the outcome equation, where p denotes the
dimensionality of covariates. In this paper, we are interested in Bayesian inference under
double robustness that allows for a trade-off between the required levels of smoothness
in the propensity score and the conditional mean functions.

Under double robust smoothness conditions, we show that Bayesian methods, which
use propensity score adjusted priors as in Ray and van der Vaart (2020), satisfy the BvM
theorem only up to a “bias term” depending on the unknown true conditional mean and
propensity score functions. In this paper, our robust Bayesian approach accounts for this
bias term in the BvM theorem by considering an explicit posterior correction. Both the
prior adjustment and the posterior correction are based on functional forms that are
closely related to the efficient influence function for the ATE in Hahn (1998). We show
that the corrected posterior satisfies the BvM theorem under double robust smoothness
assumptions. Our novel procedure combines the advantages of Bayesian methodology
with the robustness features that are the strengths of frequentist procedures. Our credible
intervals are Bayesianly justifiable in the sense of Rubin (1984), as the uncertainty quan-
tification is conducted conditionally on the observed data and can also be interpreted as
frequentist confidence intervals with asymptotically exact coverage probability. Our pro-
cedure is inspired by insights from the double machine learning (DML) literature, as well
as the bias-corrected matching approach of Abadie and Imbens (2011), since our robus-
tification of an initial procedure removes some nonnegligible bias and remains asymp-
totically valid under weaker regularity conditions. While the main part of our theoretical
analysis focuses on the ATE of binary outcomes, also considered by Ray and van der Vaart
(2020), we outline extensions of our methodology to continuous and multinomial cases,
as well as to other causal parameters.

In both simulations and an empirical illustration using the National Supported Work
Demonstration data, we provide evidence that our procedure performs well compared to
existing Bayesian and frequentist approaches. In our Monte Carlo simulations, we find
that our method results in improved empirical coverage probabilities, while maintaining
very competitive lengths for confidence intervals. This finite sample advantage is also ob-
served over Bayesian methods that rely solely on prior corrections. In particular, we note

1Strictly speaking, the main objective in Ray and van der Vaart (2020) concerns the mean response in a
missing data model, which is equivalent to observing one arm (either the treatment or control) of the causal
setup.
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that our approach leads to more accurate uncertainty quantification and is less sensitive
to estimated propensity scores being close to boundary values.

The BvM theorem for parametric Bayesian models is well established; see, for instance,
van der Vaart (1998). Its semiparametric version is still being studied very actively when
nonparametric priors are used (Castillo (2012), Castillo and Rousseau (2015), Ray and
van der Vaart (2020)). To the best of our knowledge, our new semiparametric BvM theo-
rem is the first one that possesses the double robustness property. Our paper is also con-
nected to another active research area concerning Bayesian inference for parameters in
econometric models, which is robust to partial or weak identification (Chen, Christensen,
and Tamer (2018), Giacomini and Kitagawa (2021), Andrews and Mikusheva (2022)).
The framework and the approach we take is different. Nonetheless, they share the same
scope of tailoring the Bayesian inference procedure to new challenges in contemporary
econometrics.

2. SETUP AND IMPLEMENTATION

This section provides the main setup of the average treatment effect (ATE). We moti-
vate the new Bayesian methodology and detail the practical implementation.

2.1. Setup

We consider a family of probability distributions {Pη : η ∈H} for some parameter space
H, where the (possibly infinite dimensional) parameter η characterizes the probability
model. Let η0 be the true value of the parameter and denote P0 = Pη0 , which corresponds
to the frequentist distribution generating the observed data.

For individual i, consider a treatment indicator Di ∈ {0�1}. The observed outcome Yi
is determined by Yi = DiYi(1) + (1 − Di)Yi(0) where (Yi(1)�Yi(0)) are the potential
outcomes of individual i associated withDi = 1 or 0. We now focus on the binary outcome
case where both Yi(1) and Yi(0) take values in {0�1}. An extension to multinomial or
continuous outcomes is provided in Section 6. The covariates for individual i are denoted
by Xi, a vector of dimension p, with the distribution F0 and the density f0.2 Let π0(x) =
P0(Di = 1|Xi = x) denote the propensity score and m0(d�x) = P0(Yi = 1|Di = d�Xi = x)
the conditional mean. Suppose that the researcher observes independent and identically
distributed (i.i.d.) observations of Zi = (Yi�Di�X

⊤
i )⊤ for i= 1� � � � � n. The joint density of

Zi is given by pπ0�m0�f0 where

pπ�m�f (z) = π(x)d
(
1 −π(x)

)1−d
m(d�x)y

(
1 −m(d�x)

)(1−y)
f (x)� (2.1)

The parameter of interest is the ATE given by τ0 = E0[Yi(1) − Yi(0)], where E0[·] de-
notes the expectation under P0. For its identification, we impose the following standard
assumption of unconfoundedness and overlap (Rosenbaum and Rubin (1984), Imbens
(2004), Imbens and Rubin (2015)).

ASSUMPTION 1: (i) (Yi(0)�Yi(1)) ⊥⊥ Di|Xi and (ii) there exists π̄ > 0 such that π̄ <
π0(x) < 1 − π̄ for all x in the support of F0.

2If Xi does not have a density, we can simply consider the conditional density of (Yi�Di) given Xi = x
instead of the joint density of (Yi�Di�X

⊤
i ).



542 C. BREUNIG, R. LIU, AND Z. YU

We introduce additional notation from the Bayesian perspective, following the similar
setup from Ray and van der Vaart (2020). For the purpose of assigning prior distributions
to (π�m) in the Bayesian procedure, it is convenient to transform them by a link function.
We make use of the Logistic function �(t) = 1/(1 + e−t) here. Specifically, we consider
the reparametrization of (π�m�f ) given by η = (ηπ�ηm�ηf ). We index the probability
model as Pη, in line with the notation introduced at the first paragraph of this section,
where

ηπ =�−1(π)� ηm =�−1(m)� ηf = log f� (2.2)

Below, we write mη =�(ηm), πη =�(ηπ), and fη = exp(ηf ) to make the dependence
on η explicit. Given any prior on the triplet (ηπ�ηm�ηf ), Bayesian inference on the ATE
is achieved by deriving the posterior distribution of

τη = Eη

[
mη(1�X) −mη(0�X)

]
� (2.3)

where Eη[·] denotes the expectation under Pη. Our aim is to examine the large-sample
behavior of the posterior of τη under the true probability distribution P0. In the same
vein, the true parameter of interest becomes τ0 = τη0 .

The construction of our double robust Bayesian procedure in Section 2.2 has funda-
mental connection to the efficient influence function. For any paramter η, the efficient
influence function (Hahn (1998), Hirano, Imbens, and Ridder (2003)) is

τ̃η(z) =mη(1�x) −mη(0�x) + γη(d�x)
(
y −mη(d�x)

) − τη (2.4)

for the Riesz representer γη, which is given by

γη(d�x) = d

πη(x)
− 1 − d

1 −πη(x)
� (2.5)

We write τ̃0 = τ̃η0 and γ0 = γη0 . Both the prior adjustment and posterior correction of our
approach require a pilot estimator for γ0. Under Assumption 1, the true Riesz representer
γ0 is well-defined.

2.2. Double Robust Bayesian Point Estimators and Credible Sets

We build upon the ATE expression in (2.3) to develop our doubly robust inference pro-
cedure. Our approach is based on nonparametric prior processes for ηm and ηf . For the
latter, we consider the Dirichlet process, which is a default prior on spaces of probabil-
ity measures. This choice is also convenient for posterior computation via the Bayesian
bootstrap; see Remark 2.1. For the former, we make use of Gaussian process priors, along
with an adjustment that involves a preliminary estimator of γ0. Gaussian process priors
are also closely related to spline smoothing, as discussed in Wahba (1990). Their poste-
rior contraction properties (see Ghosal and van der Vaart (2017)), together with excellent
finite sample behavior (see Rassmusen and Williams (2006)), make Gaussian process pri-
ors popular in the related literature. Since τη does not depend on ηπ , the specification of
a prior on the propensity score is not required.

We consider pilot estimators π̂ of the propensity score π0 and m̂ of the conditional
mean function m0, which both are based on an auxiliary sample. We consider a plug-in
estimator for the Riesz representer γ0 given by

γ̂(d�x) = d

π̂(x)
− 1 − d

1 − π̂(x)
� (2.6)
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Algorithm 1 Double Robust Bayesian Procedure.
Input: Data Zi = (Yi�Di�X

⊤
i )⊤ for i = 1� � � � � n, number of posterior draws S, initial

estimators γ̂ and m̂, and λ∼N(0�σ2
n) where σn = (logn)/(

√
n�n).

Prior Specification:
(a) Select a Gaussian process prior W m.
(b) Set an adjusted prior for mη(d�Xi) = �(ηm(d�Xi)), where ηm(d�Xi) =
W m(d�Xi) + λγ̂(d�Xi).
Posterior Computation:
for s = 1� � � � � S do

(a) Generate the sth draw of the posterior of (mη(d�Xi))ni=1 using the adjusted prior
and the data; denote it as (ms

η(d�Xi))ni=1.

(b) Draw Bayesian bootstrap weights Ms
ni = esi/

∑n

j=1 e
s
j where esi

iid∼ Exp(1), i =
1� � � � � n.
(c) Calculate the corrected posterior draw for the ATE:

τ̌sη = τsη − b̂sη� (2.7)

τsη =
n∑
i=1

Ms
ni

(
ms
η(1�Xi) −ms

η(0�Xi)
)

and b̂sη = 1
n

n∑
i=1

τ
[
ms
η − m̂]

(Zi)� (2.8)

where τ[m](z) :=m(1�x) −m(0�x) + γ̂(d�x)(y −m(d�x)).
end for
Output: {τ̌sη : s= 1� � � � � S}

Below, let �n denote the sample average of the absolute value of γ̂, which we use for scale
normalization in our prior adjustment (see Section 4.2 for details). The use of an auxiliary
data for pilot estimators simplifies the technical analysis related to the propensity score
adjusted priors; see Ray and van der Vaart (2020). Also, it provides an effective way to
control some negligible higher-order terms. See our Lemma C.2 in the Supplemental Ma-
terial (Breunig, Liu, and Yu (2025)) and the related discussion about the sample splitting
in the DML type methods on page C6 of Chernozhukov et al. (2018). In practice, we use
the full data twice and do not split the sample, as we have not observed any overfitting
or loss of coverage thereby. Algorithm 1 describes our double robust Bayesian inference
procedure.

Given the draws from the corrected posterior calculated in Algorithm 1, we obtain the
point estimate and credible set as follows. The Bayesian point estimator is τη = 1

S

∑S

s=1 τ̌
s
η.

The 100 · (1 − α)% credible set for the ATE parameter τ0 is given by

Cn(α) = {
τ : qn(α/2) ≤ τ ≤ qn(1 − α/2)

}
�

where qn(a) denotes the ath quantile of {τ̌sη : s = 1� � � � � S}.
For the implementation of our pilot estimator γ̂ given in (2.6), we recommend using

propensity scores estimated by the logistic Lasso. For the implementation of the pilot es-
timator m̂, we adopt the posterior mean of mη generated from a Gaussian process prior
without adjustment, as in Ghosal and Roy (2006). Section 4.2 provides more implemen-
tation details. To approximate the posterior distribution, we make use of the Laplace
approximation, but one can also resort to the Markov Chain Monte Carlo (MCMC) al-
gorithms. The parameter σn controls the weight placed on the prior adjustment relative
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to the standard unadjusted prior on ηm (e.g., a Gaussian prior with a squared exponential
covariance function). Regarding the tuning parameter σn, we emphasize that our finite
sample results are not sensitive to its choice, as shown in Supplemental Appendix H.

REMARK 2.1—Bayesian Bootstrap: Under unconfoundedness and the reparametriza-
tion in (2.2), the ATE can be written as τη = ∫

[�(ηm(1�x)) −�(ηm(0�x))] dFη(x). With
independent priors on ηm and Fη, their posteriors also become independent. It is thus
sufficient to consider the posterior for ηm and Fη separately. We place a Dirichlet process
prior for Fη with the base measure to be zero. Consequently, the posterior law of Fη coin-
cides with the Bayesian bootstrap introduced by Rubin (1981); also see Chamberlain and
Imbens (2003). One key advantage of the Bayesian bootstrap is that it allows us to incor-
porate a broad class of data generating processes, whose posterior can be easily sampled.
Replacing Fη by the standard empirical cumulative distribution function does not provide
sufficient randomization of Fη, as it yields an underestimation of the asymptotic variance;
see Ray and van der Vaart (2020, p. 3008). In principle, one could consider other types
of bootstrap weights; however, these generally do not correspond to the posterior of any
prior distribution.

3. MAIN THEORETICAL RESULTS

In this section, we derive the Bernstein–von Mises (BvM) theorem, which establishes
the asymptotic equivalance between our Bayesian procedure and the frequentist-type
semiparametric efficient one for the ATE. We consider an asymptotically efficient esti-
mator τ̂ with the following linear representation:

τ̂ = τ0 + 1
n

n∑
i=1

τ̃0(Zi) + oP0

(
n−1/2

)
� (3.1)

where τ̃0 = τ̃η0 is the efficient influence function given in (2.4). Below, we denote Z(n) =
(Z1� � � � �Zn). By virtue of the BvM theorem, two conditional distributions

√
n(τη− τ̂)|Z(n)

and
√
n(̂τ−τη)|η= η0 are asymptotically equivalent. Another important consequence of

the BvM theorem is about the asymptotic normality and efficiency of the Bayesian point
estimator. That is,

√
n(τη − τ0) is asymptotically normal with mean zero and variance

V0 = E0[̃τ2
0 (Zi)]. Thus, τη achieves the semiparametric efficiency bound of Hahn (1998).

3.1. Least Favorable Direction

Our prior correction through the Riesz representer γ0 is motivated by the least favor-
able direction of Bayesian submodels. We first provide such least favorable calculations,
which are closely linked to the semiparametric efficiency. Consider the one-dimensional
submodel t →⃓ ηt defined by the path

πt (·) =�(
ηπ + tp)(·)� mt (·) =�(

ηm + tm)
(·)� ft (·) = f (·)etf(·)∫

etf(x)f (x) dx
� (3.2)

for a given direction (p�m� f) with
∫
f(x)f (x) dx = 0. The difficulty of estimating the

parameter τηt for the submodels depends on the direction (p�m� f). Among them, let
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ξη = (ξπη�ξ
m
η �ξ

f
η) be the least favorable direction that is associated with the most difficult

submodel. It yields the largest asymptotic optimal variance for estimating τηt among all
submodels. Let pηt denote the joint density of Z depending on ηt := (πt�mt� ft). Taking
derivative of the logarithmic density logpηt (z) with respect to t and evaluating at t = 0
gives the score operator:

Bη(p�m� f)(z) = Bπηp(z) +Bmηm(z) +Bfηf(z)� (3.3)

where Bπηp(z) = (d − πη(x))p(x), Bmηm(z) = (y −mη(d�x))m(d�x), and Bfηf(z) = f(x).
The least favorable direction is defined as the solution ξη, which solves the equation
Bηξη = τ̃η; see Ghosal and van der Vaart (2017, page 370). We immediately obtain the
following.

LEMMA 3.1: Consider the submodel (3.2). Let Assumption 1 hold for Pη with any η under
consideration, then the least favorable direction for estimating the ATE parameter in (2.3) is:

ξη(d�x) = (
0�γη(d�x)�mη(1�x) −mη(0�x) − τη

)
� (3.4)

where the Riesz representer γη is given in (2.5).

Lemma 3.1 motivates the adjustment of the prior distribution as considered in our
Bayesian procedure in Section 2.2. Our prior correction, which takes the form of the
(estimated) least favorable direction, provides an exact invariance under a shift of non-
parametric components in this direction. It provides additional robustness against poste-
rior inaccuracy in the “most difficult direction,” that is, the one inducing the largest bias
in the ATE. We also note that Lemma 3.1 extends the result in Section 2.1 of Ray and van
der Vaart (2020) for the missing data problem, which is equivalent to observing only one
arm (either the treatment or control arm), to the context of ATE estimation that involves
both arms.

3.2. Assumptions for Inference

We now provide additional notation and assumptions. The posterior distribution plays
an important role in the following analysis and is given by

�
(
(π�m) ∈A�F ∈ B|Z(n)

) =
∫
B

∫
A

n∏
i=1

pπ�m(Yi�Di|Xi) d�(π�m)

∫ n∏
i=1

pπ�m(Yi�Di|Xi) d�(π�m)

d�
(
F|X (n)

)
�

where pπ�m denotes the conditional density of (Yi�Di)|Xi, obtained by dividing (2.1) by
the marginal density of Xi. We write L�(

√
n(τη − τ̂)|Z(n)) for the marginal posterior

distribution of
√
n(τη − τ̂). We focus on the case that ηπ has a prior that is independent

of the prior for (ηm�F). Because the likelihood function (2.1) factorizes into (ηm�ηπ�F)
separately, the posterior of ηπ is also independent of the posterior for (ηm�F). Due to
the fact that τη does not depend on ηπ , it is unnecessary to further discuss a prior or
posterior distribution on ηπ .

We first introduce high-level assumptions and discuss primitive conditions for those
in the next section. Below, we consider some measurable sets Hm

n of functions ηm such
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that �(ηm ∈ Hm
n|Z(n)) →P0 1. We also denote Hn = {η : ηm ∈ Hm

n } when we index the
conditional mean function mη by its subscript η. We introduce the notation ∥φ∥2�F0 :=(∫
φ2(x) dF0(x)

)1/2
for all φ ∈ L2(F0) := {φ : ∥φ∥2�F0 < ∞}, as well as the supremum

norm ∥ · ∥∞. For two sequences {an} and {bn} of positive numbers, we write an ≲ bn if
lim supn→∞(an/bn) <∞, and an ∼ bn if an ≲ bn and bn ≲ an.

ASSUMPTION 2—Rates of Convergence: The estimators π̂ and m̂, which are based on
an auxiliary sample independent of Z(n) , satisfy ∥π̂ −π0∥2�F0 =OP0 (rn) and for d ∈{0�1}:∥∥m̂(d� ·) −m0(d� ·)∥∥

2�F0
=OP0 (εn) and sup

η∈Hn

∥∥mη(d� ·) −m0(d� ·)∥∥
2�F0

≲ εn�

where max{εn� rn}→ 0 and
√
nεnrn → 0. Further, ∥γ̂∥∞ =OP0 (1).

We adopt the standard empirical process notation as follows. For a function h of
a random vector Zi that follows distribution P0, we let P0[h] = ∫

h(z) dP(z), Pn[h] =
n−1

∑n

i=1 h(Zi), and Gn[h] = √
n(Pn−P0)[h]. Below, we make use of the notation m̄η(·) =

mη(1� ·) −mη(0� ·) and m̄0(·) =m0(1� ·) −m0(0� ·).

ASSUMPTION 3—Complexity: For Gn = {m̄η(·) : η ∈ Hn} it holds supm̄η∈Gn |(Pn −
P0)m̄η| = oP0 (1) and

sup
η∈Hn

∣∣Gn

[
(γ̂− γ0)(mη −m0)

]∣∣ = oP0 (1)� (3.5)

Recall the propensity score-adjusted prior on m given by mη(·) = �(ηm(·)) where
ηm(·) =W m(·) + λγ̂(·). The restriction on λ is made through its hyperparameter σn > 0.

ASSUMPTION 4—Prior Stability: For d ∈ {0�1}, W m(d� ·) is a continuous stochastic pro-
cess independent of the normal random variable λ∼N(0�σ2

n), where σn ≲ 1, nσ2
n → ∞ and

that satisfies: (i) �(λ :|λ|≤ unσ2
n

√
n|Z(n)) →P0 1, for some deterministic sequence un → 0

and (ii) �((w�λ) :w+ (λ+ tn−1/2)γ̂ ∈Hm
n|Z(n)) →P0 1 for any t ∈R.

Discussion of Assumptions

Assumption 2 imposes sufficiently fast convergence rates for the pilot estimators for the
conditional mean function m0 and the propensity score π0. When considering frequentist
pilot estimators, these rate conditions can be justified by adopting the recent proposals of
Chernozhukov, Newey, and Singh (2022a,b). One can also use Bayesian point estimators
such as the posterior mean of the Gaussian process for m̂ and π̂. The posterior conver-
gence rate for the conditional mean mη can be derived in the same spirit of Ray and van
der Vaart (2020). The rate conditions in Assumption 2 also resemble conditions (i) and
(ii) of Theorem 1 of Farrell (2015) in the context of frequentist estimation. Remark 4.1
illustrates that under classical smoothness assumptions, this assumption is less restrictive
than the method of Ray and van der Vaart (2020) or other approaches for semiparamet-
ric estimation of ATEs as found in Chen, Hong, and Tarozzi (2008) or Farrell, Liang, and
Misra (2021). Assumption 4 incorporates Conditions (3.9) and (3.10) from Theorem 2 in
Ray and van der Vaart (2020), and it is imposed to check the invariance property of the
adjusted prior distribution. These restrictions are mild and extend beyond the Gaussian
processes that are considered in Section 4 for concreteness.
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Assumption 3 restricts the functional class Gn to form a P0-Glivenko–Cantelli class;
see Section 2.4 of van der Vaart and Wellner (1996). It also imposes a new stochastic
equicontinuity condition, as (3.5) restricts a product structure involving γ̂ and mη, which
further relaxes the corresponding condition from Ray and van der Vaart (2020), namely,
supη∈Hm

n
Gn[mη −m0] = oP0 (1). In the next section, we demonstrate that our formulation

allows for double robustness under Hölder classes (see Remark 4.1). Hence, the complex-
ity of the functional class (mη −m0) can be compensated by sufficient regularity of the
corresponding Riesz representer and vice versa. A condition similar to our Assumption 3
is also used in the frequentist literature; see Section 2 of Benkeser, Carone, van der Laan,
and Gilbert (2017). Nonetheless, the technical argument differs substantially from the
frequentist’s study, because we mainly need the condition (3.5) to control changes in the
likelihood under perturbations along the estimated and true least favorable directions.
This is unique to Bayesian analysis with nonparametric priors.

3.3. A Double Robust Bernstein–von Mises Theorem

We now present a new Bernstein–von Mises theorem, which establishes the asymptotic
normality of the posterior distribution, modulo a “bias term.” In a next step, we show
that posterior correction, as proposed in our procedure, eliminates this “bias term.” This
asymptotic equivalence result is established using the bounded Lipschitz distance. For two
probability measures P , Q defined on a metric space Z , we define the bounded Lipschitz
distance as

dBL(P�Q) = sup
f∈BL(1)

∣∣∣∣
∫
Z
f (dP − dQ)

∣∣∣∣� (3.6)

where

BL(1) =
{
f :Z →⃓ R� sup

z∈Z

∣∣f (z)
∣∣ + sup

z≠z′

∣∣f (z) − f (z′)∣∣∥∥z− z′∥∥
�2

≤ 1
}
�

Here, ∥ · ∥�2 denotes the vector �2 norm.
Below is our main statement about the asymptotic behavior of the posterior distribu-

tion of τη. As in the modern Bayesian paradigm, the exact posterior is rarely of closed
form, and one needs to rely on certain Monte Carlo simulations, such as the implemen-
tation procedure in Section 2.2, to approximate this posterior distribution, as well as the
resulting point estimator and credible set.

THEOREM 3.1: Let Assumptions 1–4 hold. Then we have

dBL

(
L�

(√
n(τη − τ̂− b0�η)|Z(n)

)
�N(0�V0)

) →P0 0�

where b0�η := Pn[γ0(m0 −mη) − (m̄0 − m̄η)].

We emphasize that the above BvM theorem is not feasible for applications, because it
depends on the “bias term” b0�η, which depends on the unknown conditional mean m0.
Nonetheless, it provides an important theoretical benchmark. One can follow the existing
literature on semiparametric BvM theorems to impose the so-called “no-bias” condition,
but this generally leads to strong smoothness restrictions and may not be satisfied when
the dimensionality of covariates is large relative to the smoothness properties of the un-
derlying functions; see the discussion on page 395 of van der Vaart (1998).
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This “bias term” in our context consists of two key components, with the first involving
unknown true functions and the second depending on the posterior of mη. We consider
pilot estimators for the unknown functional parameters in b0�η. The correction term b̂η,
as introduced in (2.8), results in a feasible Bayesian procedure that satisfies the BvM
theorem under double robustness, as demonstrated below.

THEOREM 3.2: Let Assumptions 1–4 hold. Then we have

dBL

(
L�

(√
n(τη − τ̂− b̂η)|Z(n)

)
�N(0�V0)

) →P0 0�

We now show how Theorem 3.2 can provide frequentist justification of Bayesian meth-
ods to construct the point estimator and the confidence sets. Recall that τη repre-
sents the posterior mean. Introduce a Bayesian credible set Cn(α) for τη, which satisfies
�(τη ∈ Cn(α)|Z(n)) = 1−α for a given nominal level α ∈ (0�1). The next result shows that
Cn(α) also forms a confidence interval in the frequentist sense for the ATE parameter,
whose coverage probability under P0 converges to 1 − α.

COROLLARY 3.1: Let Assumptions 1–4 hold. Then under P0, we have
√
n(τη − τ0) ⇒N(0�V0)� (3.7)

Also, for any α ∈ (0�1) we have P0(τ0 ∈ Cn(α)) → 1 − α.

To the best of our knowledge, this is the first BvM theorem that entails the double
robustness. We discuss the distinction from Theorem 2 in Ray and van der Vaart (2020).
Their work laid the theoretical foundation for Bayesian inference based on the propensity
score adjusted priors. Specifically, under this prior adjustment, they established a BvM
result under weak regularity conditions on the propensity score function, referring to this
property as single robustness. Our analysis differs from Ray and van der Vaart (2020) in
two crucial ways. First, we improve on their Lemma 3 by showing that it is possible to
verify the prior stability condition for propensity score-adjusted priors under the product
structure in Assumption 3, modulo the “bias term” b0�η. This separation is essential to
identify the source of the restrictive condition, such as the Donsker property onmη, which
is mainly used to eliminate b0�η. Second, our proposal introduces an explicit debiasing
step, borrowing key insights from recent developments in the DML literature.

REMARK 3.1—Connection with frequentist robust estimation: In our BvM theorem,
we do not restrict the centering estimator τ̂, as long as it admits the linear representation
as in (3.1). A popular frequentist estimator for the ATE that achieves double robustness
is

τ̂ = n−1
n∑
i=1

(
m̂(1�Xi) − m̂(0�Xi)

) + n−1
n∑
i=1

γ̂(Di�Xi)
(
Yi − m̂(Di�Xi)

)
(3.8)

based on frequentist-type pilot estimators m̂ of the conditional mean function m0 and γ̂
of the Riesz representer γ0; see Robins and Rotnitzky (1995) and more recently Cher-
nozhukov, Newey, and Singh (2022a,b). The double robust or double machine learning
estimator (3.8) recenters the plug-in type functional by an explicit correction factor that
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depends on the Riesz representer.3 Our main result establishes the asymptotic equiva-
lence of our estimator and (3.8). This not only offers frequentist validity to our Bayesian
procedure but also provides a Bayesian interpretation for doubly robust frequentist meth-
ods.

REMARK 3.2—Parametric Bayesian Methods: A couple of recent papers propose dou-
bly robust Bayesian recipes for ATE inference, under parametric model restrictions.
Saarela, Belzile, and Stephens (2016) considered a Bayesian procedure based on an ana-
log of the double robust frequentist estimator given in Equation (3.8), replacing the em-
pirical measure with the Bayesian bootstrap measure. However, there was no formal
BvM theorem presented therein. Another recent paper by Yiu, Goudie, and Tom (2020)
explored Bayesian exponentially tilted empirical likelihood with a set of moment con-
straints that are of a double-robust type. They proved a BvM theorem for the posterior
constructed from the resulting exponentially tilted empirical likelihood under parametric
specifications. Luo, Graham, and McCoy (2023) provided Bayesian results for ATE es-
timation in a partial linear model, which implies homogeneous treatment effects. They
also assign parametric priors to the propensity score. Their BvM theorem allows for mis-
specification only in a parametric nonlinear component of the outcome equation. It is not
clear how to extend their analysis to incorporate flexible nonparametric modeling strate-
gies.

4. ILLUSTRATION USING SQUARED EXPONENTIAL PROCESS PRIORS

We illustrate the general methodology by placing a particular Gaussian process prior
on ηm(d� ·) in relation to the conditional mean functions for d ∈ {0�1}. The Gaussian
process regression has been extensively used among the machine learning community,
and started to gain popularity among economists; see Kasy (2018). We provide primitive
conditions used in our main results in the previous section. In addition, we provide details
on the implementation using Gaussian process priors and discuss the data-driven choices
of tuning parameters.

4.1. Asymptotic Results Under Primitive Conditions

Let (W (t) : t ∈ R
p) be a generic centered and homogeneous Gaussian random field

with covariance function of the following form E[W (s)W (t)] = φ(s − t), for a given
continuous function φ : Rp →⃓ R. We consider W (t) as a Borel measurable map in the
space of continuous functions on [0�1]p, equipped with the supremum norm ∥ · ∥∞. The
Gaussian process is completely determined by the covariance function. For example,
the covariance function of the squared exponential process is given by E[W (s)W (t)] =
exp(−∥s− t∥2

�2
), as its name suggests. In this section, we focus on the squared exponential

process prior, which is one of the most commonly used priors in applications; see Rass-
musen and Williams (2006) and Murphy (2023). We also consider a rescaled Gaussian
process (W (ant) : t ∈ [0�1]p) for some an > 0. Intuitively speaking, a−1

n can be thought
as a bandwidth parameter. For a large an (or equivalently a small bandwidth), the prior
sample path t →⃓W (ant) is obtained by shrinking the long sample path t →⃓W (t). Thus,

3Another popular method in the statistics literature is the targeted learning approach (van der Laan and
Rose (2011), Benkeser et al. (2017)).
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it employs more randomness and becomes suitable as a prior model for less regular func-
tions; see van der Vaart and van Zanten (2008, 2009).

Below, Csm ([0�1]p) denotes a Hölder space with the smoothness index sm. Specifically,
we illustrate our theory with the case where m0(d� ·) ∈ Csm ([0�1]p) for d ∈ {0�1}. Given
such a Hölder-type smoothness condition, we choose

an ∼ n1/(2sm+p) (logn)−(1+p)/(2sm+p)� (4.1)

Under (4.1), a rescaled Gaussian process (W (ant) : t ∈ [0�1]p) induces the posterior
contraction rate for the conditional mean function mη(d� ·) to be εn = n−sm/(2sm+p) ×
(logn)sm(1+p)/(2sm+p); see Section 11.5 of Ghosal and van der Vaart (2017). The particu-
lar choice of an mimics the corresponding kernel bandwidth based on kernel smoothing
methods. Other choices of an will generally make the convergence rate slower. Nonethe-
less, as long as the propensity score is estimated with a sufficiently fast rate, our BvM
theorem still holds. The next proposition illustrates our general theory when we adopt
the rescaled squared exponential process prior for the conditional mean function. We use
the superscript m for the prior process W m to signify this relationship.

PROPOSITION 4.1: Let Assumption 1 hold. The estimator γ̂ satisfies ∥γ̂∥∞ = OP0 (1) and
∥γ̂ − γ0∥∞ = OP0 ((n/ logn)−sπ/(2sπ+p)) for some sπ > 0. Suppose m0(d� ·) ∈ Csm ([0�1]p)
for d ∈ {0�1} and some sm > 0 with

√
sπsm > p/2. Also, ∥m̂(d� ·) − m0(d� ·)∥2�F0 =

OP0 ((n/ logn)−sm/(2sm+p)). Consider the propensity score-dependent prior on m given by
m(d�x) = �(W m(d�x) + λγ̂(d�x)), where W m(d� ·) is the rescaled squared exponen-
tial process for d ∈ {0�1}, with its rescaling parameter an of the order in (4.1) and
(n/ logn)−sm/(2sm+p) ≲ unσn for some deterministic sequence un → 0, and σn ≲ 1. Then the
corrected posterior distribution for the ATE satisfies Theorem 3.1.

REMARK 4.1—Double Robust Hölder Smoothness: Proposition 4.1 requires
√
sπsm >

p/2, which represents a trade-off between the smoothness requirement for m0 and π0.
This encapsulates double robustness; that is, a lack of smoothness of the conditional mean
function m0 can be mitigated by exploiting the regularity of the propensity score and vice
versa. Referring to the Hölder class Csm ([0�1]p), its complexity measured by the bracket-
ing entropy of size ε is of order ε−2υ for υ= p/(2sm). One can show that the key stochastic
equicontinuity assumption in Ray and van der Vaart (2020), that is, their condition (3.5), is
violated by exploring the Sudkov lower bound in Han (2021) when υ> 1, or equivalently,
when sm < p/2. In contrast, our framework accommodates this non-Donsker regime as
long as

√
sπsm > p/2, which enables us to exploit the product structure and a fast con-

vergence rate for estimating the propensity score. Our methodology is not restricted to
the case where propensity score belongs to a Hölder class per se. For instance, under a
parametric restriction (such as in logistic regression) or an additive model with unknown
link function, the possible range of the posterior contraction rate εn for the conditional
mean function can be substantially enlarged. In the case sm > p/2, the bias term becomes
asymptotically negligible, that is, b0�η = oP0 (n−1/2). This allows for smoothness robustness
only with respect to the propensity score and is also known as single robustness. In this
case, no posterior correction is required; see Ray and van der Vaart (2020).

4.2. Implementation Details

We provide details on the Gaussian process prior placed on ηm(d�x) and its posterior
computation. Algorithm 1 sets the adjusted prior as ηm(d�x) =W m(d�x) + λγ̂(d�x). In
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our implementation, we choose the first component W m(d�x) to be a zero-mean Gaus-
sian process with the commonly used squared exponential covariance function; see Rass-
musen and Williams (2006, p. 83). That is, K((d�x)� (d′�x′)) := ν2 exp(−a2

0n(d− d′)2/2 −∑p

l=1 a
2
ln(xl − x′

l)
2/2) where the hyperparameter ν2 is the kernel variance and a0n� � � � � apn

are rescaling parameters that reflect the relevance of treatment and each covariate in
predicting ηm. They are selected by maximizing the marginal likelihood. Conditional
on the data used to obtain the propensity score estimator π̂, the prior for ηm has zero
mean and the covariance kernel Kc , which includes an additional term based on the
estimated Riesz representer γ̂. It is given by Kc((d�x)� (d′�x′)) = K((d�x)� (d′�x′)) +
σ2
n γ̂(d�x)γ̂(d′�x′), cf. related constructions from Ray and Szabó (2019) and Ray and van

der Vaart (2020). The parameter σn, representing the standard deviation of λ, controls
the weight of the prior adjustment relative to the standard Gaussian process. The choice
σn = (logn)/(

√
n�n), where �n = n−1

∑n

i=1 |γ̂(Di�Xi)|, as specified in Algorithm 1, satis-
fies the conditions σn ≲ 1 and nσ2

n → ∞ in Assumption 4, with probability approaching
one. It is similar to the choice suggested by Ray and Szabó (2019, page 6), where σn is
proportional to 1/(

√
n�n). The factor �n normalizes the second term (adjustment term)

of Kc to have the same scale as the unadjusted covariance K. Supplemental Appendix H
shows that the finite sample performance of the double robust Bayesian approaches re-
mains stable across different choices of σn.

Utilizing Gaussian process priors with zero mean and covariance function Kc , and in-
corporating the available data, we generate posterior draws of the vector [ηm(d�X1)� � � � �
ηm(d�Xn)]⊤ for d ∈ {0�1}. This can be achieved through the Laplace approximation
method detailed in Supplemental Appendix G.

For the implementation of the pilot estimator γ̂ given in (2.6), we recommend logistic
Lasso for the propensity scores, with the penalty parameter chosen by cross-validation,
following Friedman, Hastie, and Tibshirani (2010). As a pilot estimator m̂ in Algorithm 1
for posterior correction, we use the uncorrected posterior mean

∑S

s=1m
s
η/S, where ms

η is
calculated following Step (a) of posterior computation in Algorithm 1, but with a Gaus-
sian process prior without adjustment, that is, �(W m(d� ·)). When the rescaling parame-
ter an is as stated in Proposition 4.1, the convergence rate of m̂ isOP0 ((n/ logn)−sm/(2sm+p)).
This can be shown by combining Theorems 11.22, 11.55, and 8.8 from Ghosal and van der
Vaart (2017).

5. NUMERICAL RESULTS

In this section, we apply our method to one version of the Lalonde–Dehejia–Wahba
data that contains a treated sample of 185 men from the National Supported Work (NSW)
experiment and a control sample of 2490 men from the Panel Study of Income Dynamics
(PSID). The data has been used by LaLonde (1986), Dehejia and Wahba (1999), Abadie
and Imbens (2011), and Armstrong and Kolesár (2021), among others. We refer readers
to LaLonde (1986), and Dehejia and Wahba (1999) for reviews of the data.4

5.1. Simulations

In this section, we consider a simulation study where the observations are randomly
drawn from a large sample generated by applying the Wasserstein Generative Adversar-
ial Networks (WGAN) method to the Lalonde–Dehejia–Wahba data; see Athey, Imbens,

4The data is available on Dehejia’s website: http://users.nber.org/~rdehejia/nswdata2.html.

http://users.nber.org/~rdehejia/nswdata2.html
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Metzger, and Munro (2024). We view their simulated data as the population and repeat-
edly draw our simulation samples (each consisting of 185 treated observations and 2490
control observations) for each of the 1000 Monte Carlo replications. We slightly depart
from previous studies by focusing on a binary outcome Y : the employment indicator for
the year 1978, which is defined as an indicator for positive earnings. The treatment D is
the participation in the NSW program. We are interested in the average treatment ef-
fect of the NSW program on the employment status. For the set of covariates, we follow
Abadie and Imbens (2011) and include nine variables: age, education, black, Hispanic,
married, earnings in 1974, earnings in 1975, unemployed in 1974, and unemployed in
1975. We implement our double robust Bayesian method (DR Bayes) following Algo-
rithm 1, using S = 5000 posterior draws and the pilot estimator γ̂ and m̂, as detailed at
the end of Section 4.2. We compare DR Bayes to two other Bayesian procedures: First,
we consider the prior adjusted Bayesian method (PA Bayes) proposed by Ray and van
der Vaart (2020), which constructs the point estimate and credible interval based on τsη in
(2.8). Second, we examine an unadjusted Bayesian method (Bayes), which is also based
on τsη but generated using Gaussian process priors without adjustment.

We also compare our method to frequentist estimators. Match/Match BC corresponds
to the nearest neighbor matching estimator and its bias-corrected version by Abadie
and Imbens (2011), which adjusts for differences in covariate values through regression.
DR TMLE corresponds to the doubly robust targeted maximum likelihood estimator by
Benkeser et al. (2017). DML refers to the double/debiased machine learning estimator
from Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, and Newey (2017), where the
nuisance functions π0 and m0 are estimated using random forests (which outperformed
DML combined with other nuisance function estimators, such as Lasso, in our simulation
setup). Since the job-training data contains a sizable proportion of units with propensity
score estimates very close to 0 and 1, we follow Crump, Hotz, Imbens, and Mitnik (2009)
and discard observations with the estimated propensity score outside the range [t�1 − t],
with the trimming threshold t ∈{0�10�0�05�0�01}.5

Table I presents the finite sample performance of the Bayesian and frequentist meth-
ods mentioned above. We use the full data twice in computing the prior/posterior ad-
justments and the posterior distribution of the conditional mean function. Supplemental
Appendix H reports the performance of DR Bayes using sample splitting, which results
in similar coverage but a larger credible interval length due to the halved sample size.

Concerning the Bayesian methods for estimating the ATE, Table I reveals that unad-
justed Bayes yields highly inaccurate coverage except for the case with trimming constant
t = 0�01. If the prior is corrected using the propensity score adjustment, the results im-
prove significantly. Nevertheless, our DR Bayes method demonstrates two further im-
provements: First, DR Bayes leads to smaller average confidence lengths in each case
while simultaneously improving the coverage probability. This can be attributed to a re-
duction in bias and/or more accurate uncertainty quantification via our posterior cor-
rection. Second, when the trimming threshold is small (i.e., t = 0�01), propensity score
estimators can be less accurate, leading to reduced coverage probabilities of PA Bayes.
Our double robust Bayesian method, on the other hand, is still able to provide accurate

5Crump et al. (2009) suggested a simple rule of thumb with a threshold of t = 0�10, while Athey et al. (2024)
used t = 0�05. Applying the optimal trimming rule proposed by Crump et al. (2009) to our simulated samples
yields an average optimal trimming threshold 0�073.
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TABLE I

SIMULATION RESULTS USING WGAN-GENERATED DATA: TRIMMING IS BASED ON THE ESTIMATED
PROPENSITY SCORE WITHIN [t�1− t], n̄= THE AVERAGE SAMPLE SIZE AFTER TRIMMING, CP = COVERAGE

PROBABILITY OF 95% CREDIBLE/CONFIDENCE INTERVAL, CIL = AVERAGE LENGTH OF THE 95%
CREDIBLE/CONFIDENCE INTERVAL.

Bias CP CIL Bias CP CIL Bias CP CIL

Methods t = 0�10 (n̄= 240) t = 0�05 (n̄= 363) t = 0�01 (n̄= 664)

Bayes −0�040 0.683 0.147 −0�010 0.841 0.149 −0�006 0.911 0.120
PA Bayes −0�008 0.981 0.260 0�033 0.949 0.254 0�047 0.897 0.308
DR Bayes −0�024 0.983 0.223 0�014 0.970 0.221 0�023 0.952 0.258

Match 0�027 0.933 0.334 0�048 0.908 0.323 0�033 0.965 0.323
Match BC 0�040 0.880 0.347 0�065 0.816 0.334 0�083 0.804 0.339
DR TMLE 0�015 0.832 0.300 0�039 0.746 0.282 0�039 0.668 0.242
DML 0�045 0.927 0.524 0�052 0.870 0.393 0�054 0.918 0.522

coverage probabilities. In other words, DR Bayes exhibits more stable performance than
PA Bayes with respect to the trimming threshold.6

Our DR Bayes also exhibits encouraging performances when compared to frequentist
methods. It provides a more accurate coverage than bias-corrected matching, DR TMLE
and DML. Compared to the matching estimator without bias correction, which achieves
similarly good coverage, DR Bayes yields considerably shorter credible intervals.

5.2. An Empirical Illustration

We apply the Bayesian and frequentist methods considered above to the Lalonde-
Dehejia-Wahba data. Similar to the simulation exercise, we consider a varying choice of
the trimming threshold t ∈ {0�10�0�05�0�01}.7 The ATE point estimates and confidence
intervals are presented in Table II. As a benchmark, the experimental data that uses both
treated and control groups in NSW (n = 445) yields an ATE estimate (treated-control
mean difference) of 0�111 with a 95% confidence interval [0�026�0�196].

As we see from Table II, the unadjusted Bayesian method yields larger estimates. The
adjusted Bayesian methods (PA and DR Bayes), on the other hand, produce estimates
comparable to the experimental estimate. PA Bayes finds that the job training program
enhanced the employment by 9�0% to 17�0% across different trimming thresholds, and
DR Bayes estimates the effect from 12�1% to 18�4%. Among frequentist estimators, the
matching estimator and its bias-corrected version produce similar estimates as PA and
DR Bayes, but with wider confidence intervals. DR TMLE produces negative estimates
for t = 0�10 when all other estimates are positive. For t = 0�10 and 0�05, DML yields
similar point estimates as PA and DR Bayes, but with less estimation precision. In the case
t = 0�01, where the overlap condition is nearly violated, its point estimate and confidence
interval length become considerably larger than those of other methods.

6In additional simulations without trimming (t = 0), we find that all double robust methods, including DR
Bayes, substantially undercover and/or inflate the length of their confidence intervals. This is consistent with
Crump et al. (2009), who point out that propensity score estimates close to the boundaries tend to induce
substantial bias and large variances in estimating the ATE. We also note that unadjusted Bayes severely under-
covers in this case.

7Applying the optimal trimming rule proposed by Crump et al. (2009) yields an optimal threshold of 0�064.
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TABLE II

ESTIMATES OF ATE FOR THE LALONDE-DEHEJIA-WAHBA DATA: TRIMMING IS BASED ON THE ESTIMATED
PROPENSITY SCORE WITHIN [t�1− t], n̄= SAMPLE SIZE AFTER TRIMMING. ATE = POINT ESTIMATE, 95% CI =

95% CREDIBLE/CONFIDENCE INTERVAL, CIL = 95% CREDIBLE/CONFIDENCE INTERVAL LENGTH.

t = 0�10 (n̄= 245) t = 0�05 (n̄= 398) t = 0�01 (n̄= 740)

Methods ATE 95% CI CIL ATE 95% CI CIL ATE 95% CI CIL

Bayes 0�213 [0.120, 0.301] 0.181 0.214 [0.132, 0.292] 0.161 0.198 [0.140, 0.251] 0.112
PA Bayes 0�158 [0.019, 0.288] 0.270 0.170 [0.045, 0.281] 0.236 0.090 [−0.078, 0.233] 0.311
DR Bayes 0�178 [0.061, 0.293] 0.231 0.184 [0.064, 0.294] 0.230 0.121 [−0.031, 0.250] 0.281

Match 0�188 [0.022, 0.355] 0.333 0.140 [−0.029, 0.309] 0.338 0.079 [−0.111, 0.269] 0.380
Match BC 0�157 [−0.006, 0.321] 0.327 0.145 [−0.021, 0.310] 0.331 0.180 [−0.004, 0.365] 0.369
DR TMLE −0�023 [−0.171, 0.125] 0.296 0.073 [−0.074, 0.220] 0.294 0.071 [−0.146, 0.289] 0.435
DML 0�172 [0.018, 0.327] 0.308 0.150 [−0.010, 0.310] 0.320 0.258 [−0.183, 0.699] 0.882

6. EXTENSIONS

This section extends the binary variable Y to encompass general cases, including con-
tinuous, counting, and multinomial outcomes. First, we examine the class of single-
parameter exponential families, where the conditional density function is solely deter-
mined by the nonparmatric conditional mean function. This covers continuous outcomes
and counting variables. Second, we consider the “vector” case of exponential families for
multinomial outcomes. For both classes, we derive the novel correction to the Bayesian
procedure and delegate more technical discussions to Supplemental Appendices D and
F. Additionally, we outline extensions to other causal parameters of interest.

6.1. A Single-Parameter Exponential Family

In this part, we assume that the distribution of Yi conditional on Di and Xi belongs
to the “single-parameter” exponential family, where the unknown parameter is the non-
parametric conditional mean function m(d�x) = E[Yi|Di = d�Xi = x]. The conditional
density function is given by

fY|D�X (y|d�x) = c(y) exp
[
q
(
m(d�x)

)
ay −A(

m(d�x)
)]
� (6.1)

where A(m) = log
∫
c(y) exp[q(m)ay] dy , and the function q(·) links the mean to the

“natural parameter” of the exponential family. We also restrict the sufficient statistic to
be linear in y .

The family (6.1) not only encompasses the Bernoulli distribution (with q(m) =
log(m/(1 −m)), A(m) = − log(1 −m), and c(y) = a= 1), as considered in the previous
sections, but also allows for counting and continuous outcomes. For instance, when a= 1,
the Poisson distribution corresponds to the choices c(y) = 1/(y!), q(m) = logm, and
A(m) =m, while the exponential distribution is represented by c(y) = 1, q(m) = −1/m,
and A(m) = logm. Furthermore, the normal distribution with Var(Y|D�X) = σ2 for
some σ > 0, is captured by c(y) = exp(−y2/(2σ2))/

√
2πσ2, q(m) = m/σ , A(m) =

m2/(2σ2), and a= 1/σ . We emphasize that model (6.1) does not impose functional form
assumptions on the conditional mean function m. The joint density of (Yi�Di�Xi) can be
written as

pπ�m�f (y�d�x) = π(x)d
(
1 −π(x)

)1−d
c(y) exp

[
q
(
m(d�x)

)
ay −A(

m(d�x)
)]
f (x)� (6.2)
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We consider the same reparametrization of (π�m�f ) as in (2.2) except that now the sec-
ond component of η uses the general link function q satisfying ηm = q(m). We now state
the least favorable direction for the exponential family case, which serves as motivation
for the prior adjustment.

LEMMA 6.1: Let Assumption 1 hold for Pη with any η under consideration. Then, for the
joint distribution (6.2) and the submodel t →⃓ ηt defined by the path mt (d�x) = q−1(ηm +
tm)(d�x) with (πt� ft) as defined in (3.2), the least favorable direction for estimating the ATE
parameter in (2.3) is

ξη(d�x) =
(

0�
1
a
γη(d�x)�mη(1�x) −mη(0�x) − τη

)
� (6.3)

where the Riesz representer γη is given in (2.5).

For the outcome family with a = 1, which includes Bernoulli, Poisson, and exponen-
tial distributions, the least favorable direction for ATE estimation coincides with the one
as given in Lemma 3.1. To implement the double robust Bayesian procedure for general
outcomes, one can still follow Algorithm 1, with the logistic function� replaced by the in-
verse link function q−1. For the normal (homoscedastic) outcome where prior adjustment
λγ̂(d�x) in Algorithm 1 becomes λγ̂(d�x)/a, the hyperparameter a can be determined
together with other parameters of the Gaussian process by optimizing the marginal likeli-
hood as in Ray and Szabó (2019). Proposition F.1 in the Supplemental Material provides
primitive conditions for the BvM theorem to hold under double robust smoothness con-
ditions.

6.2. Multinomial Outcomes

We now assume that the dependent variable Yi takes values in a finite set, specif-
ically Yi ∈ {0�1� � � � � J}. The ATE can then be written as τη = ∑J

j=0 jEη[mη�j(1�X) −
mη�j(0�X)], where the choice probabilities are mη�j(d�x) =�j(ηm1� � � � �ηmJ )(d�x) with
the multinomial logit specification:

�0

(
ηm1� � � � �ηmJ

) = 1

1 +
J∑
l=1

exp
(
ηml

) and �j

(
ηm1� � � � �ηmJ

) = exp
(
ηmj

)
1 +

J∑
l=1

exp
(
ηml

) �

for j = 1� � � � � J. The multinomial logit specification implies mη�0(d�x) = 1 −∑J

j=1mη�j(d�x). We now provide the least favorable direction for multinomial outcomes
in the presence of multinomial outcomes and discuss its consequences for prior adjust-
ment below.

LEMMA 6.2: Consider the submodel t →⃓ ηt defined by the path mt�j(d�x) = �(ηmj +
tmj)(d�x), 1 ≤ j ≤ J, with (πt� ft) as defined in (3.2). Let Assumption 1 hold for Pη with any
η under consideration, then the least favorable direction for estimating the ATE parameter is

ξη(d�x) = (
0�γη(d�x)�2γη(d�x)� � � � � Jγη(d�x)�mη(1�x) −mη(0�x) − τη

)
�

where the Riesz representer γη is given in (2.5).
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We emphasize that the least favorable direction calculation is not a trivial extension of
Hahn (1998) or Ray and van der Vaart (2020). This is because there are J nonparametric
components involved in the conditional probability function of the multinomial outcomes
given covariates, and we need to consider the perturbation of those J components to-
gether. Nonetheless, we show that the efficient influence function is of the same generic
form as derived in Hahn (1998). In the proof of Lemma 6.2, we compute the derivative
of the parameter mapping along the path considered herein. We derive inner products
involving the least favorable direction for each nonparametric component consisting of
the conditional choice probabilities. The extension to the multinomial case had not been
considered in the literature to our knowledge, and it offers a result of independent inter-
est.

Lemma 6.2 motivates the following modification of our double robust Bayesian estima-
tor based on the propensity score-dependent prior on mη�j for 1 ≤ j ≤ J:

mη�j(d�x) =�j

(
ηm1� � � � �ηmJ

)
(d�x) and ηmj (d�x) =W mj (d�x) + λjγ̂(d�x)�

where W mj (d� ·) is a continuous stochastic process independent λ∼N(0�σ2
n) for σn > 0.

We may then follow the implementation as described in Section 2.2 using mη(d�x) =∑J

j=0 jmη�j(d�x).

6.3. Other Causal Parameters

We now extend our procedure to general linear functionals of the conditional mean
function. We do so only for binary outcomes, as the modification to other types of
outcomes follows as above. Recall that the observable data consists of i�i�d. observa-
tions of Z = (Y�D�X⊤)⊤. The causal parameter of interest is τ0 = E0[ψ(Z�m0)], where
the function ψ is linear with respect to the conditional mean function m0. We intro-
duce the Riesz representer γ0(d�x) satisfying E0[ψ(Z�m)] = E0[γ0(D�X)m(D�X)].
Let m̂ and γ̂ be pilot estimators for the conditional mean and Riesz representer, re-
spectively, computed over an auxiliary sample. Our double robust Bayesian procedure
can be extended by considering the corrected posterior distribution for τη as follows:
τ̌sη = ∑n

i=1M
s
niψ(Zi�ms

η) − n−1
∑n

i=1 τ[ms
η − m̂](Zi), s = 1� � � � � S, where here τ[m](z) :=

ψ(z�m) + γ̂(d�x)(y −m(d�x)). The derivations of the least favorable directions in the
following two examples are provided in Supplemental Appendix E.

EXAMPLE 6.1—Average Policy Effects: The policy effect from changing the distribu-
tion of X is τPη = ∫

mη(x) d(G1(x) −G0(x)), where the known distribution functions G1

andG0 have their supports contained in the support of the marginal covariate distribution
Fη. Following the general setup, ψ(z�mη) =ψ(mη) := ∫

mη(x) d(G1(x) −G0(x)) with its
Riesz representer γPη (x) = (g1(x) − g0(x))/fη(x), where g1 and g0 stand for the density
function of G1 and G0, respectively.

EXAMPLE 6.2—Average Derivative: For a continuous scalar (treatment) variable D,
the average derivative is given by τAD

η = Eη[∂dmη(D�X)], where ∂dm denotes the partial
derivatives of m with respect to the continuous treatment D. Thus, we have ψ(Z�mη) =
∂dmη(D�X) with its Riesz representer given by γAD

η (D�X) = ∂dπη(D�X)/πη(D�X),
where here πη denotes the conditional density function of D given X .
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APPENDIX A: PROOFS OF MAIN RESULTS

In the Appendix, C > 0 denotes a generic constant, whose value might change line by
line. We introduce additional subscripts when there are multiple constant terms in the
same display. In the following, we denote the log-likelihood based on Z(n) = (Zi)ni=1 as

�n(η) =
n∑
i=1

logpη(Zi) = �πn
(
ηπ

) + �mn
(
ηm

) + �fn
(
ηf

)
�

where each term is the logarithm of the factors involving only π or m or f . Recall the
definition of the measurable sets Hm

n of functions ηm such that �(ηm ∈ Hm
n|Z(n)) →P0 1.

We introduce the conditional prior �n(·) :=�(· ∩Hm
n )/�(Hm

n ). The following posterior
Laplace transform of

√
n(τη − τ̂− b0�η) given by

In(t) = E
�n

[
et

√
n(τη−τ̂−b0�η)|Z(n)

]
� ∀t ∈ R (A.1)

plays a crucial role in establishing the BvM theorem (Castillo (2012), Castillo and
Rousseau (2015), Ray and van der Vaart (2020)). To abuse the notation slightly, we de-
fine a perturbation of η = (ηπ�ηm) along the least favorable direction, restricted to the
components corresponding to π and m:

ηt (η) :=
(
ηπ�ηm − t√

n
ξm0

)
� (A.2)

We explicitly write the perturbation of ηm by ηmt := ηt (ηm) = ηm − tξm0 /
√
n. Recall that

ξm0 coincides with the Riesz representer γ0 by Lemma 3.1. In addition, we introduce the
following notation:

ρm(y�d�x) := y −m(d�x)� (A.3)

Also, recall the notation m̄η(·) = mη(1� ·) −mη(0� ·), which is used in the following. In
the proofs below, we make use of Lemmas C.1–C.9 which can be found in Supplemental
Appendix C.

PROOF OF THEOREM 3.1: Since the estimated least favorable direction γ̂ is based on
observations that are independent of Z(n) , we may apply Lemma 2 of Ray and van der
Vaart (2020). It suffices to handle the posterior distribution with γ̂ set equal to a deter-
ministic function γn. By Lemma 1 of Castillo and Rousseau (2015), it is sufficient to show
that the Laplace transform In(t) given in (A.1) satisfies

In(t) →P0 exp
(
t2V0/2

)
� (A.4)

for every t in a neighborhood of 0, where the limit at the right-hand side of (A.4) is the
Laplace transform of the N(0�V0) distribution. Note that we can write τη = ∫

m̄η dFη.
Further, let τ̂ = ∫

m̄0 dF0 + Pn[̃τ0], which satisfies (3.1).
The Laplace transform can thus be written as

In(t) =
∫ ∫

Hm
n

(
exp

(
t
√
n

(∫
m̄η dFη − m̄0 dF0 − b0�η

)
− tGn[̃τ0] + �mn

(
ηm

) − �mn
(
ηmt

))

× exp
(
�mn

(
ηmt

)))
d�

(
ηm

)
d�

(
Fη|Z(n)

)(∫
Hm
n

exp
(
�mn

(
ηm′)d�

(
ηm′))−1

�
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The expansion in Lemma B.1 gives the following identity for all t in a sufficiently small
neighborhood around zero and uniformly for ηm ∈Hm

n :

�mn
(
ηm

) − �mn
(
ηmt

) = tGn

[
γ0ρ

m0
] + tGn

[
γ0(m0 −mη)

] + t√n
∫

(m̄0 − m̄η) dF0

+ t2

2
P0

(
Bm0 ξ

m
0

)2 + oP0 (1)�

where we make use of the notation ρm(y�d�x) = y − m(d�x) and the score operator
Bm0 = Bmη0

defined through (3.3).
Next, we plug this into the exponential part in the definition of In(t), which then gives

In(t) =
∫ ∫

Hm
n

(
exp

(
t
√
n

(∫
(m̄η dFη − m̄0 dF0) +

∫
(m̄0 − m̄η) dF0 − b0�η

)

+ tGn

[
γ0(m0 −mη)

] + �mn
(
ηmt

)))
d�

(
ηm

)
d�

(
Fη|Z(n)

)

×
(∫

Hn

exp
(
�mn

(
ηm′))d�

(
ηm′))−1

× exp
(

−tGn[̃τ0] + tGn

[
γ0ρ

m0
] + t2

2
P0

(
Bm0 ξ

m
0

)2 + oP0 (1)
)

=
∫ ∫

Hm
n

(
exp

(
t
√
n

(∫
m̄η d(Fη − F0) − b0�η

)
+ tGn

[
γ0(m0 −mη)

])

× exp
(
�mn

(
ηmt

)))
d�

(
ηm

)
d�

(
Fη|Z(n)

)

×
(∫

Hn

exp
(
�mn

(
ηm′))d�

(
ηm′))−1

× exp
(

−tGn[̃τ0] + tGn

[
γ0ρ

m0
] + t2

2
P0

(
Bm0 ξ

m
0

)2 + oP0 (1)
)
�

By Fubini’s theorem, the double integral of the previous expression coincides with∫
Hm
n

exp
(
tGn

[
γ0(m0 −mη)

] − t√nb0�η + �mn
(
ηmt

))

×
∫

exp
(
t
√
n

∫
m̄η d(Fη − F0)

)
d�

(
Fη|Z(n)

)
d�

(
ηm

)
�

By the assumed P0-Glivenko–Cantelli property for Gn = {m̄η : η ∈ Hn} in Assump-
tion 3, that is, supm̄η∈Gn |(Pn − P0)m̄η| = oP0 (1), and the boundedness of m̄η, we ap-
ply Lemma C.4, which establishes the convergence of the Laplace transform for the
Dirichlet posterior process. Specifically, it implies the convergence in probability of∫
et

√
n

∫
m̄η d(Fη−F0) d�(Fη|Z(n)) to e

t
√
n

∫
m̄η d(Fn−F0)+ t2

2 ∥m̄0−F0m̄0∥2
2�F0 uniformly over {m̄η : η ∈

Hn}, using the notation F0m̄0 := ∫
m̄0(x) dF0(x) and Fnm̄0 := 1/n

∑n

i=1 m̄0(Xi). Further,
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we may apply the convergence of mη imposed in Assumption 2, so that the above display
becomes

eoP0(1)

∫
Hm
n

exp
(
tGn

[
γ0(m0 −mη)

] − t√nb0�η + �mn
(
ηmt

))

× exp
(
t
√
n

∫
m̄η d(Fn − F0) + t2

2
∥m̄0 − F0m̄0∥2

2�F0

)
d�

(
ηm

)

= eoP0(1) exp
(
t
√
n

∫
m̄0 d(Fn − F0) + t2

2
∥m̄0 − F0m̄0∥2

2�F0

)

×
∫
Hm
n

exp
(
tGn

[
γ0(m0 −mη) − (m̄0 − m̄η)

] − t√nb0�η + �mn
(
ηmt

))
d�

(
ηm

)
�

We now analyze the empirical process term in the integral and examine its relationship
with the bias term b0�η. To do so, we calculate

Gn

[
γ0(m0 −mη) − (m̄0 − m̄η)

]
=Gn

[(
d−π0(x)

)(
m0(1�x) −mη(1�x)

)
π0(x)

−
(
π0(x) − d)(m0(0�x) −mη(0�x)

)
1 −π0(x)

]

= √
nPn

[(
d−π0(x)

)(
m0(1�x) −mη(1�x)

)
π0(x)

−
(
π0(x) − d)(m0(0�x) −mη(0�x)

)
1 −π0(x)

]

= √
nb0�η�

where the last line follows from the definition of the bias term, that is, b0�η = Pn[γ0(m0 −
mη) − (m̄0 − m̄η)].

Further, observe that Gn[γ0ρ
m0 ] −Gn[τ̃0] = −Gn[m̄0] and Gn[m̄0] = √

n
∫
m̄0d(Fn − F0)

by the definition of the efficient influence function given in (2.4). As we insert these in
the previous expression for In(t), we obtain for all t in a sufficiently small neighborhood
around zero and uniformly for η ∈Hn:

In(t) = exp
(

−tGn[m̄0] + t√n
∫
m̄0 d(Fn − F0)︸ ︷︷ ︸

=0

+ t2

2
(
P0

(
Bm0 ξ

m
0

)2 +
=P0(Bf0 ξ

f
0 )2︷ ︸︸ ︷

∥m̄0 − F0m̄0∥2
2�F0︸ ︷︷ ︸

=P0(B0ξ0)2

) + oP0 (1)
)

×

∫
Hm
n

exp
(
�mn

(
ηmt

))
d�

(
ηm

)
∫
Hm
n

exp
(
�mn

(
ηm′))d�

(
ηm′) = exp

(
t2

2
P0(B0ξ0)2

)
+ oP0 (1)�

where the last equality follows from the prior invariance condition established in
Lemma B.2. This implies (A.4) using that P0(B0ξ0)2 = P0τ̃

2
0 = V0 by the Lemma 3.1.

Q.E.D.
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PROOF OF THEOREM 3.2: It is sufficient to show that supη∈Hn
|b0�η − b̂η| = oP0 (n−1/2),

where b0�η = Pn[γ0(m0 −mη) + m̄η − m̄0] and b̂η = Pn[γ̂(m̂−mη) + m̄η − ̂̄m]. We make
use of the decomposition

b0�η − b̂η = Pn

[
γ0(m0 −mη) − γ̂ρmη] − Pn

[
m̄0 − ̂̄m− γ̂ρm̂]

� (A.5)

Consider the first summand on the right-hand side of the previous equation. We have
uniformly for η ∈Hn:

Pn

[
γ0(m0 −mη) − γ̂ρmη] = − Pn

[
γ̂ρm0

] + Pn

[
(γ0 − γ̂)(m0 −mη)

]
= − Pn

[
γ̂ρm0

] + oP0

(
n−1/2

)
�

where the last equation follows from the following derivation:
√
n sup
η∈Hn

∣∣Pn[(γ0 − γ̂)(m0 −mη)
]∣∣

≤ sup
η∈Hn

∣∣Gn

[
(γ0 − γ̂)(m0 −mη)

]∣∣ + √
n sup
η∈Hn

∣∣P0

[
(γ0 − γ̂)(m0 −mη)

]∣∣
≤ oP0 (1) +OP0 (1) × √

n∥π0 − π̂∥2�F0 sup
η∈Hn

∥mη −m0∥2�F0 = oP0 (1)�

using the Cauchy–Schwarz inequality, Assumption 2, and Assumption 3. Consider the
second summand on the right-hand side of (A.5). From Lemma C.8, we infer

Pn

[̂̄m+ γ̂ρm̂ − m̄0

] = Pn

[
γ0ρ

m0
] + oP0

(
n−1/2

)
�

Consequently, decomposition (A.5) together with the asymptotic expansion of each sum-
mand yields

sup
η∈Hn

|b0�η − b̂η| ≤
∣∣Pn[(γ0 − γ̂)ρm0

]∣∣ + oP0

(
n−1/2

) = oP0

(
n−1/2

)
�

where the last equation is due to the equation (C.6) in Supplemental Appendix C. Q.E.D.

PROOF OF COROLLARY 3.1: The weak convergence of the Bayesian point estimator di-
rectly follows from our asymptotic characterization of the posterior and the argmax the-
orem; see the proof of Theorem 10.8 in van der Vaart (1998). The corrected Bayesian
credible set Cn(α) satisfies �(τ̌η ∈ Cn(α)|Z(n)) = 1 −α for any α ∈ (0�1). In particular, we
have

�
(√
n/V0(τη − τ̂− b̂η) ∈ √

n/V0

(
Cn(α) − τ̂)|Z(n)

) = 1 − α�
Now the definition of the estimator τ̂ given in (3.1) yields

√
nτ̂ = √

n(τ0 +Pnτ̃0) +oP0 (1).
For any set A, we write N(A) := ∫

A
e−u2/2/

√
2π du. Theorem 3.1 implies

N
(√
n/V0

(
Cn(α) − τ0 − Pnτ̃0

)) →P0 1 − α�
We may thus write Cn(α) = √

V0/nAn(α)+τ0 +Pnτ̃0 +oP0 (1) for some set An(α) satisfying
N(An(α)) →P0 1 − α. Therefore, the frequentist coverage of the Bayesian credible set
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is

P0

(
τ0 ∈ Cn(α)

) = P0

(
τ0 ∈ √

V0/nAn(α) + τ0 + Pnτ̃0

) = P0

(
−Gnτ̃0√

V0

∈An(α)
)

→ 1 − α�

noting that Gnτ̃0 is asymptotically normal with mean zero and variance V0 under
P0. Q.E.D.

PROOF OF PROPOSITION 4.1: Note that γ̂ is based on an auxiliary sample, and hence,
we can treat γ̂ below as a deterministic function denoted by γn satisfying the rate re-
strictions ∥γn∥∞ = O(1) and ∥γn − γ0∥∞ = O((n/ logn)−sπ/(2sπ+p)). Regarding the condi-
tional mean functions, we consider the set Hm

n�d := {wd + λγn : (wd�λ) ∈ Wn�d}, where for
d ∈{1�0} and some constant C > 0:

Wn�d := {
(wd�λ) :wd ∈ Bm

n � |λ| ≤ Cσn
√
nεn

}
∩ {

(wd�λ) : ∥∥�(
wd(·) + λγn

) −m0(d� ·)∥∥
2�F0

≤ Cεn
}
� (A.6)

where Bm
n in the first restriction for the Gaussian process W (d� ·) is a regularity class of

functions defined in the equation (C.7) in Supplemental Appendix C. We write Hm
n =

Hm
n�1 ×Hm

n�0.
We first verify Assumption 2 with εn = n−sm/(2sm+p) (logn)sm(p+1)/(2sm+p) . The posterior

contraction rate is shown in our Lemma C.3. Referring to the product rate condition,
that is,

√
nεnrn = o(1) for rn ∼ (n/ logn)−sπ/(2sπ+p) . This is satisfied if 2sm/(2sm + p) +

2sπ/(2sπ +p) > 1, which can be rewritten as
√
sπsm > p/2.

We now verify Assumption 3. It is sufficient to deal with the resulting empirical process
Gn. Note that the Cauchy–Schwarz inequality implies∣∣P0(mη −m0)

∣∣ = ∣∣E0

[
D

(
mη(1�X) −m0(1�X)

)] +E0

[
(1 −D)

(
mη(0�X) −m0(0�X)

)]∣∣
≤

√
E0

[(
mη(1�X) −m0(1�X)

)2] +
√
E0

[(
mη(0�X) −m0(0�X)

)2]
= ∥∥mη(1� ·) −m0(1� ·)∥∥

2�F0
+ ∥∥mη(0� ·) −m0(0� ·)∥∥

2�F0
�

Consequently, from Lemma C.5 we infer

E0 sup
η∈Hm

n

∣∣Gn

[
(γn − γ0)(mη −m0)

]∣∣
≤ 4∥γn − γ0∥∞E0 sup

η∈Hm
n

∣∣Gn[mη −m0]
∣∣

+ ∥γn − γ0∥2�F0 sup
η∈Hn

(∥∥mη(1� ·) −m0(1� ·)∥∥
2�F0

+ ∥∥mη(0� ·) −m0(0� ·)∥∥
2�F0

)
≲ (n/ logn)−sπ/(2sπ+p)

E0 sup
η∈Hm

n

∣∣Gn[mη −m0]
∣∣ + (n/ logn)−sπ/(2sπ+p)εn

= (n/ logn)−sπ/(2sπ+p)
E0 sup

η∈Hm
n

∣∣Gn[mη −m0]
∣∣ + o(1)�

Note that if sm > p/2, from Lemma C.9 we infer E0 supη∈Hm
n
Gn[mη −m0] = o(1). Thus it

remains to consider the case sm ≤ p/2. By the entropy bound presented in the proof of
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Lemma C.3, we have logN(εn�Hm
n �L

2(F0)) ≲ ε−2υ
n , with υ= p/(2sm) modulo some logn

term on the right-hand side of the bound. Because �(·) is monotone and Lipschitz, a set
of ε-covers in L2(F0) for ηm ∈Hm

n translates into a set of ε-covers formη. In this case, the
empirical process bound of Han (2021, p. 2644) yields

E0 sup
η∈Hm

n

∣∣Gn[mη −m0]
∣∣≲Lnn(υ−1)/(2υ) =O(

Lnn
1/2−sm/p)�

where Ln represents a term that diverges at certain polynomial order of logn. Conse-
quently, we obtain

(n/ logn)−sπ/(2sπ+p)
E0 sup

η∈Hm
n

∣∣Gn[mη −m0]
∣∣ = o(1)�

which is satisfied under the smoothness restriction −sπ/(2sπ + p) + 1/2 − sm/p < 0 or
equivalently 4sπsm + 2psm > p2. This condition automatically holds given

√
sπsm > p/2.

Finally, it remains to verify Assumption 4. By the univariate Gaussian tail bound, the
prior mass of the set �n := {λ : |λ|> unσ2

n

√
n} satisfies �(λ ∈ �n) ≤ 2 exp(−u2

nσ
2
nn/2).

Also, the Kullback–Leibler neighborhood around ηm0 has prior probability at least e−nε2
n .

We may thus apply Lemma 4 of Ray and van der Vaart (2020), which yields �(λ ∈
�n|Z(n)) →P0 0, as imposed in Assumption 4(i).

Regarding Assumption 4(ii), we need to show the posterior probability of the shifted
version of Hm

n is tending to one. Considering Hm
n itself, the first set in the intersection of

(A.6) that defines Wn�d is seen to have posterior probability tending to one by the result
in (II) of Lemma C.3, combined with the univariate Gaussian tail probability bound

�
(|λ| ≥Cσn√nεn) ≤ 2 exp

(−Cnε2
n/2

)
�

The second set in the intersection of (A.6) has posterior probability tending to one by
Lemma 17 of Ray and van der Vaart (2020). Hence, Hm

n has posterior probability going
to one. Next, we consider Hm

n + tγn/
√
n, for any t ∈ R. To slightly abuse the notation,

we write ηmd = wd + λγn for d ∈ {0�1} in the sequel. By the Lipschitz continuity of the
logistic link function, we have ∥�(ηmd ) − �(ηmd + tγn/

√
n)∥2�F0 ≤ |t|∥γn∥∞/

√
n for d ∈

{0�1}. Therefore, we get Hm
n�d + tγn/

√
n ⊃ �n�d�t with probability P0 approaching one,

where

�n�d�t :=
{
ηmd : ∥∥ηmd ∥∥

H
≤ √

nε̃n�
∥∥�(

ηmd
) −m0(d� ·)∥∥

2�F0
≤ ε̃n

}
with ε̃n := Cεn − |t|∥γn∥∞/

√
n and ∥ · ∥H denotes the norm of the Reproducing Kernel

Hilbert Space associated with the squared exponential process; see Supplemental Ap-
pendix C for a formal definition. Because

√
nεn → ∞ and ∥γn∥∞ = O(1), the posterior

probability of �n�d�t tends to one following similar arguments concerning the set Hm
n , af-

ter replacing εn with a multiple of itself for d ∈ {0�1}. Hence, the posterior probability of
Hm
n + tγn/√n is seen to tend to one, which completes the proof. Q.E.D.

APPENDIX B: KEY LEMMAS

We now present key lemmas used in the derivation of our BvM theorem. We introduce
ηu := (ηπ�ηmu ) where

ηmu = ηm − tuξm0 /
√
n� for u ∈ [0�1]� (B.1)
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This defines a path from ηu=0 = (ηπ�ηm) to ηu=1 = (ηπ�ηmt ). We also write g(u) :=
logpηmu , for u ∈ [0�1], so that logpηm − logpηmt = g(0) − g(1); cf. the proof of Theorem 1
in Ray and van der Vaart (2020).

LEMMA B.1: Let Assumptions 1 and 2 hold. Then we have uniformly for η ∈Hn:

�mn
(
ηm

) − �mn
(
ηmt

) = tGn

[
γ0ρ

m0
] + tGn

[
γ0(m0 −mη)

] + t√n
∫

(m̄0 − m̄η) dF0

+ t2

2
P0

(
Bm0 ξ

m
0

)2 + oP0 (1)�

PROOF: We start with the following decomposition:

�mn
(
ηm

) − �mn
(
ηmt

) = tGn

[
γ0ρ

m0
] + √

nGn

[
logpηm − logpηmt − t√

n
γ0ρ

m0

]
︸ ︷︷ ︸

Stochastic Equicontinuity

+ nP0[logpηm − logpηmt ]︸ ︷︷ ︸
Taylor Expansion

�

From the calculation in the proof of Lemma C.1, we have g′(0) = − t√
n
γ0ρ

m0 + t√
n
γ0(mη−

m0). Then we infer for the stochastic equicontinuity term that

√
nGn

[
logpηm − logpηmt − t√

n
γ0ρ

m0

]
+ tGn

[
γ0(mη −m0)

] = oP0 (1)�

uniformly in ηm ∈Hm
n . We can thus write uniformly in ηm ∈Hm

n :

�mn
(
ηm

) − �mn
(
ηmt

) = tGn

[
γ0ρ

m0
] + tGn

[
γ0(m0 −mη)

] + nP0[logpηm − logpηmt ] + oP0 (1)�

The rest of the proof involves a standard Taylor expansion for the third term on the right-
hand side of the above equation. By the equation (C.4) in the proof of Lemma C.1, we
get

−nP0g
′(0) = t√nP0

[
γ0ρ

m0
] + t√nP0

[
γ0(m0 −mη)

] = t√n
∫

(m̄0 − m̄η) dF0�

by the fact that P0[γ0ρ
m0 ] = 0 and the definition of the Riesz representer γ0 in (2.5).

Regarding the second-order term in the Taylor expansion in the equation (C.5) of the
proof of Lemma C.1, we get

g(2) (0) = − t
2

n
γ2

0m0(1 −m0) − t2

n
γ2

0

(
mη(1 −mη) −m0(1 −m0)

)
�

Considering the score operator Bm0 = Bmη0
defined in (3.3), we have

P0

(
Bm0 ξ

m
0

)2 = E0

[
γ2

0 (D�X)
(
Y −m0(D�X)

)2]
= E0

[
D

π2
0 (X)

(
Y (1) −m0(1�X)

)2
]

+E0

[
1 −D(

1 −π0(X)
)2

(
Y (0) −m0(0�X)

)2
]
�
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Consequently, by the unconfoundedness imposed in Assumption 1(i) and the binary na-
ture of Y , we have E0[Y (d)2|D = d�X = x] = E0[Y (d)|D = d�X = x] = m0(d�x). We
thus obtain

P0

(
Bm0 ξ

m
0

)2 = E0

[
D

π2
0 (X)

m0(1�X)
(
1 −m0(1�X)

)]

+E0

[
1 −D(

1 −π0(X)
)2m0(0�X)

(
1 −m0(0�X)

)]

= P0

[
γ2

0m0(1 −m0)
]
�

Then, by employing Assumption 1(ii), that is, π̄ < π0(x) < 1 − π̄ for all x, it yields uni-
formly for η ∈Hn:

− nP0g
(2)(0) − t2P0

(
Bm0 ξ

m
0

)2

= t2P0

[
γ2

0

(
mη(1 −mη) −m0(1 −m0)

)]
= t2P0

[
γ2

0 (mη −m0)(1 −m0)
] + t2P0

[
γ2

0mη(m0 −mη)
]

≤ 2t2E0

[
D

π2
0 (X)

∣∣mη(1�X) −m0(1�X)
∣∣]

+ 2t2E0

[
1 −D(

1 −π0(X)
)2

∣∣mη(0�X) −m0(0�X)
∣∣]

≤ 2t2

π̄2

(∥∥mη(1� ·) −m0(1� ·)∥∥
2�F0

+ ∥∥mη(0� ·) −m0(0� ·)∥∥
2�F0

) = oP0 (1)�

where the last equation is due to the posterior contraction rate of the conditional mean
function m(d� ·) imposed in Assumption 2. Consequently, we obtain, uniformly for η ∈
Hn,

nP0[logpηm − logpηmt ] = −n(P0g
′(0) + P0g

(2) (0)
) + oP0 (1)

= t2P0

(
Bm0 ξ

m
0

)2 + t√n
∫

(m̄0 − m̄η) dF0 + oP0 (1)�

which leads to the desired result. Q.E.D.

The next lemma verifies the prior stability condition under our double robust smooth-
ness conditions.

LEMMA B.2: Let Assumptions 1–4 hold. Then we have∫
Hm
n

exp
(
�mn

(
ηmt

))
d�

(
ηm

)
∫
Hm
n

exp
(
�mn

(
ηm′))d�

(
ηm′) →P0 1� (B.2)

for a sequence of measurable sets Hm
n such that �(ηm ∈Hm

n|Z(n)) →P0 1.
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PROOF: Since γ̂ is based on an auxiliary sample, it is sufficient to consider determin-
istic functions γn with the same rates of convergence as γ̂. Denote the corresponding
propensity score by πn. By Assumption 4, we have λ∼N(0�σ2

n) and∫
Hm
n

exp
(
�mn

(
ηmt

))
d�

(
ηm

)
∫
Hm
n

exp
(
�mn

(
ηm′))d�

(
ηm′) =

∫
�n

e�
m
n (w+λγn−tγ0/

√
n)φσn (λ) dλd�(w)∫

�n

e�
m
n (w+λγn)φσn (λ) dλd�(w)

+ oP0 (1)� (B.3)

where φσn denotes the probability density function of aN(0�σ2
n) random variable and the

set �n is defined by �n ={(w�λ) :w+ λγn ∈Hm
n �|λ|≤ 2unσ2

n

√
n} where un → 0 imposed

in Assumption 4 and unnσ2
n → ∞.

Considering the log likelihood ratio of two normal densities together with the constraint
|λ|≤ 2unσ2

n

√
n, it is shown on page 3015 of Ray and van der Vaart (2020) that∣∣∣∣log

φσn (λ)
φσn (λ− t/√n)

∣∣∣∣ ≤ |tλ|√
nσ2

n

+ t2

2nσ2
n

→ 0�

We show at the end of the proof that |�mn (w+λγn − tγ0/
√
n) − �mn (w+λγn − tγn/√n)| =

oP0 (1), uniformly for (w�λ) ∈ �n. Consequently, the numerator of this leading term in
(B.3) becomes∫
�n

e�
m
n (w+λγn−tγ0/

√
n)φσn (λ) dλd�(w) = eoP0 (1)

∫
�n

e�
m
n (w+γn(λ−t/√n))φσn (λ− t/√n) dλd�(w)�

By the change of variables λ− t/√n →⃓ λ′ on the numerator and using the notation�n�t =
{(w�λ) : (w�λ+ t/√n) ∈�n}, the prior invariance property becomes

eoP0 (1)

∫
�n�t

e�
m
n (w+λ′γn)φσn

(
λ′)dλ′ d�(w)∫

�n

e�
m
n (w+λγn)φσn (λ) dλd�(w)

= eoP0 (1)�
(
�n�t|Z(n)

)
�

(
�n|Z(n)

) �

The desired result would follow from �(�n|Z(n)) = 1 − oP0 (1) and �(�n�t|Z(n)) = 1 −
oP0 (1). The first convergence directly follows from Assumption 4. The set �n�t is the
intersection of these two conditions in Assumption 4, except that the restriction on λ
in �n�t is |λ + t/

√
n| ≤ 2un

√
nσ2

n instead of |λ| ≤ un
√
nσ2

n . By construction, we have
t/

√
n= o(un

√
nσ2

n), so that �(�n�t|Z(n)) = 1 − oP0 (1).
We complete the proof by establishing the following result:

sup
ηm∈Hm

n

∣∣�mn (
ηm − tγn/

√
n
) − �mn

(
ηm − tγ0/

√
n
)∣∣ = oP0 (1)� (B.4)

We denote ηmn�t = ηm − tγn/
√
n and ηmt = ηm − tγ0/

√
n. Consider the following decom-

position of the log-likelihood:

�mn
(
ηmn�t

) − �mn
(
ηmt

) = �mn
(
ηmn�t

) − �mn
(
ηm

) + �mn
(
ηm

) − �mn
(
ηmt

)
= nPn[logpηmn�t − logpηm] + nPn[logpηm − logpηmt ]�
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Next, we apply third-order Taylor expansions in Lemma C.1 separately to the two terms
in the brackets of the above display making use of the notation ρm(y�d�x) = y−m(d�x):

nPn[logpηmn�t − logpηm] = − t√nPn
[
γnρ

mη
] − t2

2
Pn

[
γ2
nmη(1 −mη)

]
− t3

6
√
n
Pn

[
γ3
n�

(2)
(
ηmu∗

)]
�

nPn[logpηm − logpηmt ] = t√nPn
[
γ0ρ

mη
] + t2

2
Pn

[
γ2

0mη(1 −mη)
] + t3

6
√
n
Pn

[
γ3

0�
(2)

(
ηmu∗∗

)]
�

for some intermediate points u∗�u∗∗ ∈ (0�1); cf. the equation (B.1). Combining the pre-
vious calculation yields

�mn (ηn�t) − �mn (ηt) = t
√
nPn

[
(γ0 − γn)ρmη

] − t2

2
Pn

[
dmη(1 −mη)

(
γ2
n − γ2

0

)]
+ t3

6
√
n
Pn

[(
γ3

0 − γ3
n

)(
�(2)

(
ηmu∗∗

) −�(2)
(
ηmu∗

))]
=: T1 + T2 + T3�

In order to control T1, we evaluate

T1 = tGn

[
(γ0 − γn)ρm0

] + tGn

[
(γ0 − γn)(m0 −mη)

] + t√nP0

[
(γ0 − γn)ρmη

]
�

Note that the first term is centered, so it becomes t
√
nPn[(γ0 − γn)ρm0 ]. We apply

Lemma C.2 to conclude that it is of smaller order. The middle term is negligible by our
Assumption 3. Referring to the last term, the Cauchy–Schwarz inequality yields

sup
η∈Hn

∣∣√nP0

[
(γn − γ0)(mη −m0)

]∣∣
≲

√
2n∥πn −π0∥2�F0 sup

η∈Hn

(∥∥mη(1� ·) −m0(1� ·)∥∥
2�F0

+ ∥∥mη(0� ·) −m0(0� ·)∥∥
2�F0

)
= oP0 (1)�

where the last equality is due to Assumption 2. We thus obtain T1 = oP0 (1) uniformly in
η ∈ Hm

n . Consider T2. We note that ∥mη(1 −mη)∥∞ ≤ 1 uniformly in η ∈ Hm
n . Hence, we

obtain

P0|T2| ≤ t2

2
P0

∣∣γ2
n − γ2

0

∣∣ = t2

2
P0

[
(γn − γ0)(γn + γ0)

]
≲ t2

2
∥πn −π0∥2�F0 → 0

as πn → π0 in L2(F0)-norm by Assumption 2. Thus, T2 = oP0 (1) uniformly in η ∈ Hn.
Finally, we control T3 by evaluating |T3|≲ t3n−1/2

Pn(∥γn∥3
∞ + ∥γ0∥3

∞) = oP0 (1) uniformly
in η ∈Hm

n , which shows (B.4). Q.E.D.
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