Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/97368
Authors: 
Kristensen, Dennis
Salanié, Bernard
Year of Publication: 
2013
Series/Report no.: 
cemmap working paper, Centre for Microdata Methods and Practice CWP45/13
Abstract: 
Many modern estimation methods in econometrics approximate an objective function, for instance, through simulation or discretization. These approximations typically affect both bias and variance of the resulting estimator. We provide a higher-order expansion of such 'approximate' estimators that takes into account the errors due to the use of approximations. This expansion allows us to establish general conditions under which the approximate estimator is first-order equivalent to the exact estimator. Moreover, we use the expansion to propose adjustments of the approximate estimator that remove its first-order bias and adjust its standard errors. These adjustments apply to a broad class of approximate estimators that includes all known simulation-based procedures. We also propose another approach to reduce the impact of approximations, based on a Newton-Raphson adjustment. A Monte Carlo simulation on the mixed logit model shows that our proposed adjustments can yield spectacular improvements at a low computational cost.
Persistent Identifier of the first edition: 
Document Type: 
Working Paper

Files in This Item:
File
Size
602.31 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.