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Abstract

Many modern estimation methods in econometrics approximate an objective function, 
for instance, through simulation or discretization. These approximations typically affect 
both bias and variance of the resulting estimator. We provide a higher-order expansion 
of such “approximate” estimators that takes into account the errors due to the use of 
approximations. This expansion allows us to establish general conditions under which 
the approximate estimator is first-order equivalent to the exact estimator. Moreover, we 
use the expansion to propose adjustments of the approximate estimator that remove its 
first-order bias and adjust its standard errors. These adjustments apply to a broad class 
of approximate estimators that includes all known simulation-based procedures. We also 
propose another approach to reduce the impact of approximations, based on a Newton-

Raphson adjustment. A Monte Carlo simulation on the mixed logit model shows that our 
proposed adjustments can yield spectacular improvements at a low computational cost.
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1 Introduction

The complexity of econometric models has grown steadily over the past three decades. The

increase in computer power contributed to this development in various ways, and in partic-

ular by allowing econometricians to estimate more complicated models using methods that

rely on approximations. A leading example is simulation-based inference, where a function

of observables and parameters is approximated using simulations. In this case, the func-

tion is an integral such as a moment, as in the simulated method of moments (McFadden

(1989), Duffie and Singleton (1993)) and in simulated pseudo-maximum likelihood (Laroque

and Salanié (1989, 1993, 1994)). It may also be an integrated density/cdf, as in simulated

maximum likelihood (Lee (1992, 1995)), Kolmogorov-Smirnov type statistics (Corradi and

Swanson (2007)), or an integrated value function (Rust (1997)).1 Then the approximation

technique often amounts to Monte Carlo integration. Other numerical integration techniques

may be preferred for low-dimensional integrals, e.g. Gaussian quadrature, or both techniques

can be mixed (see for example Lee (2001)). Within the class of simulation-based methods,

some nonparametric alternatives rely on kernel sums instead of integration (e.g. Fermanian

and Salanié (2004); Creel and Kristensen (2012); Kristensen and Shin (2012)), or on sieve

methods (Kristensen and Schjerning (2011); Norets (2012)). Other estimation methods in-

volve numerical approximations, such as discretization of continuous processes, using a finite

grid in the state space for dynamic programming models, and so on.

In all of these cases, we call the approximator the term that replaces the component of

the objective function that we cannot evaluate exactly. Then the exact estimator is the infea-

sible estimator that reduces the approximation error to zero. In simulation-based inference,

the exact estimator would be obtained with an infinite number of simulations; in dynamic

programming models it would rely on an infinitely fine grid. We call the estimator that relies

on a finite approximation an approximate estimator.

The use of approximations usually deteriorates the properties of the approximate esti-

mator relative to those of the corresponding exact estimator: the former may suffer from

additional biases and/or lose efficiency compared to the latter. When the approximation er-

ror is not stochastic, its main effect is to impart additional bias to the estimator. On the other

hand, stochastic approximations not only create bias: they also reduce inefficiency. These

are generic statements, of course. In some important special cases, such as the simulated

method of moments, using approximations does not create additional bias, although it does

reduce efficiency.

The effect of the approximation on the estimator can usually be reduced by choosing a

sufficiently fine approximation; but this comes at the cost of increased computation time. In

1Simulation-based inference is surveyed in Gouriéroux and Monfort (1996), van Dijk, Monfort and Brown
(1995) and Mariano, Schuerman and Weeks (2001) among others.
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many applications this may be a seriously limiting factor; increased computer power helps,

but it also motivates researchers to work on more complex models. It is therefore important to

quantify the additional estimation errors that approximators generate, and also to account for

these additional errors when drawing inference. As we will show, standard confidence intervals

on the estimated parameters can be quite misleading unless they are properly adjusted for

the errors induced by the approximation. As a first step in this direction, we analyze higher-

order properties of the approximate estimator relative to the exact one in a very general

setting. Moreover, we provide adjusted confidence intervals that correct for the leading bias

and variance terms in a large class of approximate estimators.

Our findings apply to generalized method of moment estimators as well as M-estimators,

both when the approximation is stochastic and when it is not. They encompass and extend

results in the literature on simulation-based estimators, such as Lee (1995, 1999), Gouriéroux

and Monfort (1996) and Laroque and Salanié (1989). Moreover, they can be used to analyze

the behavior of estimators that rely on numerical approximation. Many structural estimates

rely on such approximations, in asset pricing models (Tauchen and Hussey, 1991), DSGE

models (Fernández-Villaverde, Rubio-Ramirez and Santos, 2006), or dynamic discrete choice

models (Rust, 1997.) Our results also apply to many estimators used in empirical IO, which

combine simulation and numerical approximation. To the best of our knowledge, this is the

first paper to provide results for such a general class of models.

Our higher-order expansion can be used to adjust the approximate estimator to remove

the leading term of the approximation errors for many common stochastic approximators; we

call this “analytical adjustment”. We also describe two alternative methods. One adjusts the

estimator in a spirit similar to that of parametric bootstrap and jackknifing. The other is a

two-step method where an initial approximate estimator is updated through one or several

Newton-Raphson iterations based on the same objective function, but with a much finer

degree of approximation.

To test the practical performance of our proposed adjustment methods, we run a simu-

lation study on a mixed logit model. The mixed logit is one of the basic building blocks in

much work in demand analysis, for instance; and it is simple enough that we can compute the

true value of the biases and efficiency losses, as well as our estimated corrections. We show

that uncorrected SML has non-negligible bias, even for large sample sizes; and that standard

confidence intervals can be wildly off the mark. Our analytical adjustment removes most of

the bias at almost no additional computational cost; and it yields very reliable confidence

intervals. The Newton-Raphson correction also reduces the bias and improves confidence

intervals, but it does so less effectively than the analytical adjustment.

The paper is organized as follows: Section 2 presents our framework and informally

introduces the methods we propose to improve the properties of approximate estimators. In

Section 3, we derive a higher-order expansion of the approximate estimator relative to the
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exact one; this expansion allows us to identify the leading bias and variance terms. Then

in Section 4 we build on the expansion to propose adjusted standard errors and confidence

intervals. We describe our resampling and Newton-Raphson corrections in sections 5 and 6,

respectively. Section 7 presents the results of a Monte Carlo simulation study using the mixed

logit model as an example; and we discuss possible extensions of our results in section 8. All

proofs and lemmas are in appendices.

2 Framework

At the most general level, our framework can be described as follows. Given a sample

Zn = {z1, ..., zn} of n observations, the econometrician proposes to estimate a parameter

θ0 ∈ Θ ⊆ Rk through an estimating equation, Gn(θ, γ0) = Gn(Zn, θ, γ0(Zn, θ̂n)) that the

estimator θ̂n is set to solve, Gn(θ̂n, γ0) = 0. The estimating equation depends on the data

Zn both directly and, possibly, via a nuisance parameter γ0 that, possibly, is also a function

of the unknown parameter. The parameter γ0 could be finite-dimensional (e.g. it could be

an estimated variance), but in most situations it is a function and so is infinite-dimensional.

Our paper focuses on situations where the true function γ0 is not known in closed form to

the econometrician, and instead has to be approximated. In this case, a feasible estimator

is obtained by solving the analog estimating equation Gn(θ, γ̂S) = 0 w.r.t. θ, where γ̂S is

the chosen “approximator” that depends on some approximation scheme of order S (e.g. S

simulations, or a discretization on a grid of size S). The resulting estimator, denoted θ̂n,S ,

will be referred to as the “ approximate” estimator. The main goal of the paper is then to

analyze the (stochastic) differences between θ̂n,S and the “exact” estimator, θ̂n.

Note that the above estimation problem is similar to two-step semiparametric estimation,

where in the first step a nuisance parameter (γ0) is replaced by its estimator (the approximator

γ̂S), which in turn is used to obtain an estimator (θ̂n,S) of θ0. Some themes of that literature

(see e.g Andrews 1994) and Chen et al 2003) recur in our analysis.

2.1 Examples

We now present a few examples that fall within the above setting.

Example 1: Simulated maximum likelihood (SML). Suppose we want to estimate a pa-

rameterized conditional distribution p (y|x; θ). The natural choice is the maximum-likelihood

estimator, which maximizes Ln(θ, γ0) = 1
n

∑n
i=1 log p (yi|xi; θ). Sometimes the density p

cannot be written in closed form. For example, in models with unobserved heterogeneity,

p (y|x; θ) =
∫
w (y|x, ε; θ) f (ε) dε for some densities w and f . If the integral cannot be com-

puted analytically, a simulated version can be obtained by drawing εi,s, s = 1, ..., S, from the

distribution of f and obtain a simulated version by p̂S (z; θ) = S−1
∑S

s=1w (y|x, εs; θ). The re-
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sulting estimator is a SMLE. This fits in our framework, with z = (y, x), γ0 (z; θ) := p (y|x; θ),

and

Gn(θ, γ) =
1

n

n∑
i=1

∂ log γ

∂θ
(zi, θ).

More recently, Fermanian and Salanié (2004) proposed using kernel estimators as approx-

imators. Suppose that y = r(x, ε; θ0), with implied conditional density γ0 (z; θ) = p(y|x, θ).
Then generate samples, ys(x, θ) = r(x, εs; θ) for s = 1, . . . , S, and approximate the density

γ0 with a kernel density estimator based on the ys’s: γ̂S (z; θ) =
∑S

s=1Kh (y − ys(x, θ)) /S.

For a similar approach in time series models, see Altissimo and Mele (2009), Brownlees,

Kristensen and Shin (2011) and Kristensen and Shin (2012).

Example 2: Simulated pseudo-maximum likelihood (SPML). Suppose that we have

the following conditional moment restriction, E [y|x] = m (x; θ), where, for some function

w and some unobserved error ε, m (x; θ) = E [w (x, ε; θ) |x]. If the conditional expectation

m cannot be evaluated analytically, Laroque and Salanié (1989) proposed simulated pseudo-

maximum likelihood (SPML) estimators: Draw i.i.d. random variables εs, s = 1, ..., S, and

define m̂S (x; θ) = S−1
∑S

s=1w (x, εs; θ). Then an SNLS estimator is obtained by replacing

m with m̂S . The above idea can be extended to incorporate information regarding the

conditional variance of y. Again, this fits into our framework with γ0 (x; θ) = m (x; θ) and

Gn(θ, γ0) = ∂Ln(θ, γ0)/ (∂θ), where Ln(θ, γ0) = − 1
n

∑n
i=1 (yi − γ0 (xi; θ))

2.

Example 3: Simulated method of moments (SMM). The parameter of interest is

identified through a set of moment conditions E [m(z, θ0)] = 0. Given a weighting matrix

Wn, the GMM estimator would minimize Ln(θ, γ0) = Mn(θ)′WnMn(θ), where Mn(θ) =∑n
i=1m(zi, θ)/n. Here, γ0 is simply the function m, which may be hard to evaluate, as

in the multinomial probit example of McFadden (1989). Another example is the simulated

method of moments (SMM) proposed by Duffie and Singleton (1993) to estimate dynamic

models where a long string of simulations from the model, say {ys (θ) : s = 1, ..., S}, are

used to approximate unconditional moments of the model. The resulting estimator is of the

minimum-distance type. Creel and Kristensen (2012) generalize the approach of Duffie and

Singleton (1993) to the case where a set of conditional moments are used in the estimation;

they propose to approximate conditional expectations by combining simulations with kernel

regression techniques.

Example 4: Non-stochastic approximators. Evaluating the value function in dynamic

programming models most often requires numerical approximations that involve simulations,

interpolation or sieve methods (also referred to as parametric approximations); see Rust

(1997), and more recently Kristensen and Schjerning (2011) and Norets (2009, 2012.). Here

the approximated value function plays the role of γ0.
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Similarly, many models used in macroeconomics are so complex that estimation is based

on an approximate model, often by linearizing equations close to a steady state. The quality

of the model approximation can be improved at a larger computational cost by using a finer

grid or by using, for example, more iterations of perturbations or projection methods as

advocated by Judd, Kubler and Schmedders (2003). For a first-order theoretical analysis of

the impact on the resulting approximate MLE, see Fernández-Villaverde, Rubio-Ramirez and

Santos (2006) and Ackerberg, Geweke and Hahn (2009).

Another example includes numerical inversion of funtions. One example of this arises in

the estimation procedure proposed by Berry, Levinsohn and Pakes (1995) (BLP) to estimate

discrete choice models in industrial organization. Here, observed market shares (s) are mod-

elled as functions of unobserved (ξ) and observed (z) product characteristics, s = Q (ξ, z; θ)

for some choice proability function Q. The function Q is usually computed by Monte-Carlo in-

tegration over unobserved individual preference shocks—a stochastic approximation scheme.

The BLP estimation procedure requires the econometrician to compute the unobserved prod-

uct characteristics given observed market shares by inverting the market share function with

respect to its first argument, ξ (s, z; θ) = Q−1 (s, z; θ). Since Q−1 is not available in closed

form, this is done using a numerical fixed-point algorithm. It leads to an approximate solu-

tion, ξ̂S (s, z; θ), where S captures the number of iterations and/or the tolerance level used

in the algorithm. Judd and Su (2012) and Dubé, Fox and Su (2012) recently emphasized

that the quality of the estimates of θ is very sensitive to errors in the computation of the

fixed point. They propose using mathematical programming under equilibrium constraints

instead, with an augmented parameter vector (θ, ξ). This also fits into our framework, with

the Lagrange multipliers for the market share equations as γ0.

Their are many other examples of numerical approximators. For instance, the numerical

approximation of derivatives or integrals also impacts the statistical properties of estimators

(see e.g. Hong, Mahajan and Nekipelov 2010); and our methods apply there too.

* * *

In all of the examples above, approximations reduce the quality of the estimator. Start

with our first three examples, where stochastic approximations (i.e. simulations) are used

to evaluate a mathematical expectation. The mean of course is an unbiased estimator of

the expectation; but in many simulation-based estimation methods the objective function

depends nonlinearly on the simulated mean, so that the approximate estimator based on S

simulations has an additional bias, along with reduced efficiency. In many cases both are of

order 1/S; this holds for example when the approximator simulates an expectation through a

simple average. The efficiency loss may not be a concern in large samples; but the additional
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bias persists asymptotically. When using nonparametric techniques such as kernel smoothers

or sieve methods in the approximation, the approximator itself is biased, and the objective

function will be biased even if the approximator enters linearly.

The simulated method of moments (Example 3) is a special case. This approximate

estimator has nicer properties since the objective function is linear in the simulated mean;

while the asymptotic efficiency loss still is of order 1/S, the simulations do not impart bias to

the estimator, except when kernel smoothers are employed as in Creel and Kristensen (2012).

Non-stochastic approximations also lead to deteriorations of the properties of the resulting

estimators. Take the problem of computing the density p (y|x; θ) in Example 1 for instance.

If the dimensionality of the integration variable (ε) is small, then instead of simulations the

numerical integration may be done by an S point Gaussian quadrature, as in Lee (2001).

Because this is a non-stochastic approximation method, the resulting approximate estimator

will suffer from additional biases, but its variance will not increase.

As this informal discussion illustrates, the approximate estimator θ̂n,S often is consistent

only if S goes to infinity as n goes to infinity; and
√
n-consistency requires that S diverges

fast enough. In other words (Section 3 will give more precise statements and regularity

conditions), ‖θ̂n,S − θ̂n‖ = oP (1/
√
n) as n→∞ for some sequence S = S (n)→∞, in which

case there is no first-order difference between the exact and approximate estimator. For finite

S and n, our higher-order expansion allows the researcher to better evaluate the properties

of the approximate estimator.

To derive the higher-order expansion of the approximate estimator, we need to impose

regularity conditions both on the estimating equation and on the approximators. We present

these conditions in the next two subsections.

2.2 Estimating Equation

We restrict our attention to the class of exact estimators θ̂n that (asymptotically) satisfy a

first order condition of the form

Gn(θ̂n, γ0) = oP
(
1/
√
n
)
, (1)

for some random functionalGn(θ, γ). The corresponding approximate estimator θ̂n,S similarly

satisfies

Gn(θ̂n,S , γ̂S) = oP
(
1/
√
n
)
. (2)

Furthermore, we assume that Gn (θ, γ) takes the form of a sample average,

Gn (θ, γ) =
1

n

n∑
i=1

g (zi; θ, γ) . (3)
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The above framework includes M-estimators and GMM-estimators, including all of the exam-

ples described in Section 2.1. In the case of M-estimators, θ̂n,S = arg maxθ∈Θ
∑n

i=1 q (zi; θ, γ̂S) /n

and we choose g (z; θ, γ) = ∂q (z; θ, γ) / (∂θ). In the case of GMM estimators, θ̂n,S =

arg maxθ∈ΘMn(θ, γ̂S)WnMn(θ, γ̂S) withWn
P→W andMn(θ, γ) =

∑n
i=1m (zi; θ, γ) /n. Defin-

ing g (zi; θ, γ) = H0Wm (zi; θ, γ), where H0 = E [∂m (zi; θ, γ) /∂θ], θ̂n,S solving (2) is (asymp-

totically) first-order equivalent to the original GMM estimator.

We assume that the function of interest γ0 : Z × Θ 7→ Rp belongs to a linear function

space Γ equipped with a norm ‖·‖. In most cases, the norm will be the Lq-norm induced by

the probability measure associated with the data generating process, ‖γ‖ = E [‖γ(z)‖q]1/q

for some q ≥ 1. We introduce the first-order derivative of Gn (θ, γ) w.r.t. θ,

Hn (θ, γ) =
1

n

n∑
i=1

h (zi; θ, γ) , with h (zi; θ, γ) =
∂g (zi; θ, γ)

∂θ
, (4)

and the corresponding population versions,

G (θ, γ) = E [g (zi; θ, γ)] , H (θ, γ) = E

[
∂g (zi; θ, γ)

∂θ

]
.

We first impose conditions to ensure that the exact, but infeasible estimator is well-behaved:

A.1 (i) θ̂n
P→ θ0 which lies in the interior of the parameter space Θ; (ii) {zi} is stationary

and geometrically α-mixing; (iii) E
[
‖g (zi; θ0, γ0)‖2+δ

]
< ∞ for some δ > 0; (iv)

G (θ0, γ0) = 0.

A.2 For all γ in a neighbourhood N of γ0, h (z; θ, γ) satisfies: (i) H0 := H (θ0, γ0) is positive

definite; (ii) for some δ > 0, E[sup‖θ−θ0‖<δ ‖h (zi; θ, γ0)‖] <∞; (iii) for some δ, λ, H̄ > 0,

and for all γ ∈ N ,

E

[
sup

‖θ−θ0‖<δ
‖h (zi; θ, γ)− h (zi; θ, γ0)‖

]
≤ H̄ ‖γ − γ0‖

λ .

Assumption A.1(i) requires that the infeasible estimator be consistent; Lemma 1 below

provides a set of sufficient conditions. A.1(ii) rules out strongly persistent data, thereby

allowing us to obtain standard rates of convergence for the resulting estimators. In particular,

A1(ii) and A.1(iii) together imply that a central limit theorem (CLT) applies to Gn (θ0, γ0).

The geometric mixing condition could be weakened, but this would lead to more complicated

results; we refer the reader to Kristensen and Shin (2012) for some results on approximate

estimators based on strongly persistent and/or non-stationary data (and thereby estimators

with non-standard rates) in the context of SMLE.
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Assumption A.2 imposes differentiability of θ 7→ g (z; θ, γ). In particular, when γ depends

on θ (as is the case for all of our examples), it requires the approximator to be a smooth

function of θ. Therefore A.2 rules out discontinuous and non-differentiable approximators,

such as the simulated method of moment estimators for discrete choice models proposed in

McFadden (1989) and Pakes and Pollard (1989) which involve indicator functions. These

cases can be handled by introducing a smoothed version of the approximators as discussed

in McFadden (1989); see also Fermanian and Salanié (2004). Alternatively, one could extend

our results by resorting to empirical process theory, as done in the work by Armstrong et al

(2012) on simulation-based estimators. The Lipschitz condition imposed on h (z; θ, γ) is used

to ensure that Hn (θ, γ̂S)
P→ H (θ, γ) uniformly in θ as γ̂S

P→ γ.

Since our focus is on higher-order properties of the approximate estimator, we also assume

that it is consistent, so that we can conduct our analysis locally around θ0:

A.3 θ̂n,S
P→ θ0 as n, S →∞.

A set of sufficient conditions (similar to those in Newey and McFadden, 1994 for consis-

tency of two-step semiparametric estimators) for Assumptions A.1 (i) and A.3 to hold are

provided in the following lemma:

Lemma 1 Suppose that θ̂n,S = arg maxθ∈ΘQn (θ, γ̂S) where: (i) Θ is compact; (ii) γ̂S
P→ γ0;

(ii) either supθ∈Θ,‖γ−γ0‖<δ |Qn (θ, γ)−Q (θ, γ)| P→ 0 or |Qn (θ, γ1)−Qn (θ, γ2)| ≤ Bn ‖γ1 − γ2‖
for all γ1, γ2 in a neighbourhood of γ0 where Bn = OP (1) and supθ∈Θ |Qn (θ, γ0)−Q (θ, γ0)| P→
0; (iv) θ 7→ Q (θ, γ0) is continuous and has a unique maximum at θ0. Then A.1(i) and A.3

hold.

As a first step in our higher-order analysis, we prove in appendix B (Lemma 6) that

θ̂n,S − θ̂n = −H−1
0 {Gn(θ0, γ̂S)−Gn(θ0, γ0)}+ oP

(
1/
√
n
)
. (5)

If γ was a finite-dimensional pameter, we could use a Taylor expansion of Gn(θ0, γ̂S) −
Gn(θ0, γ0) to analyze the additional estimation errors due to the approximator γ̂S . However,

γ may be a function; for such a functional expansion to be well-defined and for the individ-

ual terms in the expansion to be well-behaved, we need to impose some further regularity

conditions on g (zi; θ0, γ) as a functional of γ. In all of the following, dγ ∈ Γ denotes a small

change around γ0.
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A.4(m) There exist functionals ∇kg (z; θ0) [dγ1, ..., dγk], k = 1, ...,m, which are linear in

each component dγi ∈ Γ, i = 1, ..., k, and constants δ > 0 and Ḡi > 0, i = 0, 1, 2, such

that:

E

[∥∥∥∥∥g (z; θ0, γ0 + dγ)− g (z; θ0, γ0)−
m∑
k=1

1

k!
∇kg (z; θ0) [dγ, ..., dγ]

∥∥∥∥∥
]
≤ Ḡ0 ‖dγ‖m+1 ,

(6)

where, for k = 2, ...,m and for some ν > 0,

E
[
‖∇g (z; θ) [dγ]‖2

]
≤ Ḡ1 ‖dγ‖2 , (7)

E

[∥∥∥∇kg (z; θ0) [dγ1, ..., dγk]
∥∥∥2+ν

]
≤ Ḡk (‖dγ1‖ · · · ‖dγk‖)

2+ν . (8)

Assumption A.4(m) restricts g (z; θ0, γ) to be m times pathwise differentiable w.r.t. γ

with differentials ∇kg (z; θ0) [dγ1, ..., dγk], k = 1, ...,m. These differentials are required to be

Lipschitz in dγ1, ..., dγk. For a given choice of m, this allows us to use an mth order expansion

of Gn (θ, γ) w.r.t. γ to evaluate the impact of γ̂S . In particular, the difference between the

approximate and the exact objective functions can be written as

Gn(θ0, γ̂S)−Gn(θ0, γ0) =

m∑
k=1

1

k!
∇kGn(θ0)[γ̂S − γ0, ..., γ̂S − γ0] +Rn,S , (9)

where Rn,S = OP (‖γ̂S − γ0‖
m+1) is the remainder term, and

∇kGn(θ0) [dγ1, ..., dγm] =
1

n

n∑
i=1

∇kg (zi; θ0) [dγ1, ..., dγk] . (10)

To evaluate the higher-order errors due to the approximation, we will study the mean and

variance of each of the terms in the sum on the right hand side of Eq. (9).

For a wide range of objective functions, such as the ones of SPML and SMM, Assumption

A.4 is satisfied. However, in some cases minor modifications of the estimating equations such

as trimming will be required; here is an example.

Example 1: SML (continued). Sometimes g is pathwise differentiable but the bound

in equation (6) does not apply. Take SML, where g (z; θ, γ) = γ̇ (z; θ) /γ (z; θ), γ̇ (z; θ) =

∂γ (z; θ) / (∂θ), is the score of the log-likelihood and we approximate the density γ (z; θ).

Then, suppressing dependence on (z; θ),

∇g [dγ] =
1

γ0

dγ̇ − γ̇0

γ2
0

dγ, ∇2g [dγ, dγ] = − 2

γ2
0

dγdγ̇ +
2γ̇0

γ3
0

dγ2, etc,

10



so that Ḡ0 in A.4 involves higher-order moments of 1/γ. If the density γ (z; θ0) → 0 as

‖z‖ → ∞, these moments may not be finite. One way out is to introduce trimming, replacing

the simple simulator γ̂S (z; θ) described above with γ̂a,S (z; θ) = γ̂S (z; θ) τa (γ̂S (z; θ)) where

τa (w) is a smooth trimming function that satisfies τa (w) = 1 for w ≥ 2a and τa (w) = 0 for

w ≤ a. Then Ḡa,0 = O
(
a−(m+1)

)
is finite for any a > 0, and the remainder term satisfies

Rn,S = OP (a−(m+1)
∥∥γ̂a,S − γ0

∥∥m+1
). By letting a = aS → 0 at a suitable rate as S → ∞,

it is now possible to control the remainder term while the expansion remains valid; see Creel

and Kristensen (2012) and Kristensen and Shin (2012) for more details in the context of

SMM and SMLE, respectively.

2.3 Approximators

To analyze the impact of approximations, we need to further specify how the approximator

behaves. Let us first introduce two alternative ways of implementing the approximation:

Either one common approximator is used across all observations, or a new approximator

is used for each observation. To differentiate between the two approximation schemes, we

will refer to the approximate estimator based on the first scheme as an estimator based on

common approximators (ECA) and to the second one as an estimator based on individual

approximators (EIA). In the first case, the approximate sample moment takes the form

ECA : Gn (θ, γ̂S) =
1

n

n∑
i=1

g (zi; θ, γ̂S) , (11)

with one single approximator, γ̂S , being used in the computation of the moment conditions.

In the second case,

EIA : Gn (θ, γ̂S) =
1

n

n∑
i=1

g
(
zi; θ, γ̂i,S

)
, (12)

and n approximators, γ̂1,S , ....γ̂n,S , are used in the computation. We stress that the ECA

and EIA are both targeting the same infeasible estimator; the only difference lies in how the

approximators are used in the computation of the objective function.

Take simulation-based estimation for instance. Earlier papers (e.g. Laroque and Salanié

1989, McFadden 1989) used EIAs, and most papers on cross-sectional or panel data still do.

ECAs were proposed by Lee (1992) for cross-sectional discrete choice models, but they have

been more useful in dynamic models where one long trajectory of the model is simulated and

used to compute simulated moments (see Example 3) or densities (see Example 1).

When the number of approximators remains fixed, as in ECAs, the resulting approximate

estimator is similar to semiparametric two-step estimators where in the first step a function

is nonparametrically estimated, see e.g. Andrews (1994) and Chen et al (2003). In contrast,

EIAs employ n approximators—one for each observation. Thus, the dimension of γ̂S =

11



(
γ̂1,S , . . . , γ̂n,S

)
increases with sample size, and EIAs give rise to an incidental parameters

problem. Some of our results for this situation are similar to those found in the literature on

higher-order properties and bias-correction of estimators in an incidental parameters setting,

see e.g. Hahn and Newey (2004) and Arellano and Hahn (2007).

To provide a streamlined set of regularity conditions that apply to both of these approxi-

mation schemes, we let J ≥ 1 denote the number of approximators used in the computation

of θ̂n,S . For ECAs and EIAs, J = 1 and J = n, respectively. In what follows, it is crucial to

separate assumptions on the bias of the approximator

bS (z; θ) := E[γ̂j,S (z; θ) |x]− γ0 (z; θ) (13)

from assumptions on its stochastic component (which is by definition zero for non-stochastic

approximators):

ψj,S (z; θ) := γ̂j,S (z; θ)− E
[
γ̂j,S (z; θ) |z

]
. (14)

A.5(p) The approximator(s) lies in Γ and satisfies:

(i) for any fixed value z, the J (= 1 or = n) random functions γ̂1,S (z; θ) , ...., γ̂J,S (z; θ)

are identically distributed, mutually independent and independent of Zn.

(ii) The bias bS is of order β > 0:

bS (z; θ) = S−β b̄ (z; θ) + o(S−β).

(iii) For 2 ≤ q ≤ p, the stochastic component of the approximator satisfies:

E
[∥∥ψj,S (z; θ)

∥∥q] = S−αqvq (z; θ) + o(S−αq),

for some constant αq > 0.

Note that the o (·) terms in (ii)-(iii) are w.r.t. the function norm on Γ. Assumption

A.5 is sufficiently general to cover all of the examples in Section 2 under suitable regularity

conditions. First consider A.5(iii). It requires that the approximator have p moments and

that each of these vanish at a given rate as S → ∞. We will choose p in conjunction with

the order of the expansion m of Assumption A.4, since we wish to evaluate the mean and

variance of each of the higher-order terms. For example, in order to ensure that the variance

of ∇kGn (θ0) [γ̂S , ..., γ̂S ] exists and to evaluate its rate of convergence, we will require A.5(p)

to hold with p = 2k.

12



2.3.1 Non-stochastic approximators

First, consider an approximation that does not involve any randomness, as with numerical

integration, discretization, or numerical inversion of a function. A.5(i) clearly has no bite

when non-stochastic approximators are used. Then by construction the conditional variance

of the approximator is zero, so that αp = +∞ for all p ≥ 2. Non-stochastic approximation

imparts a bias, which in leading cases obeys assumption A.5(ii) for some β > 0. As we will

see, our general theory also applies in this case. However, with numerical approximators the

bias bS is often hard to correct for using analytical adjustments. This is one reason why we

propose alternative approaches in sections 5 and 6.

2.3.2 Stochastic approximators

Next, let us examine stochastic approximation schemes, which encompass simulation-based

inference methods. Most simulation-based estimators in a dynamic setting use the ECA

scheme: only one approximator is used for all observations, c.f. the discussion in Example 3,

and so A.5(i) is automatically satisfied. The typical EIA scheme draws S independent batches

of size n; this again satisfies A.5(i). Our assumptions do not rule out dependence between the

simulated values within each simulated sample: in time series models for instance, we only

neeed to draw from the assumed distribution of the innovations. Note that A.5(i) is stated for

some fixed value of z; the requirement that the simulations be independent of data is satisfied

by most standard simulation schemes2. For parametric approximators in simulation-based

inference, the bias bS is typically zero and A.5(ii) holds with β =∞.
Monte Carlo schemes are of course the most prominent example of stochastic appro-

ximators; and they have specific properties that allow for a more precise analysis of the

approximation error appearing in the resulting estimator. We will therefore specialize some

of our results to the following class of Monte Carlo approximators:

A.6(p) The approximator γ̂j,S (z; θ) takes the form

γ̂j,S (z; θ) =
1

S

S∑
s=1

wS (z, εj,s; θ) , (15)

and that for each j = 1, ..., J ,

2There is one situation where the independence assumption is violated: sequential approximation schemes
used in dynamic latent variable models such as particle filters, see e.g. Brownlees, Kristensen and Shin (2011)
and Olsson and Rydén (2008). Then the approximator of the conditional density of the current observation
depends on that used for the previous observation.
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• {εjs}Ss=1 is stationary and geometrically β-mixing3

• {εjs}Ss=1 and {εks}Ss=1 are independent for j 6= k, and they are all independent of

the sample.

The function wS (z, εjs; θ) satisfies

w̄S (z; θ) := E [wS (z, εjs; θ) |x] = γ0 (z; θ) + S−β b̄ (z; θ) + o
(
S−β

)
and

E [‖wS (z, εjs; θ)− w̄S (z; θ) ‖p] = O(Sµp) for some µp < p/2.

To our knowledge, the class of approximators that satisfies A.6 includes all simulation-

based approximators proposed in the literature. The bias and variance of approximators that

obey (15) follow directly from those of the simulators wS : it is easy to see that Assumption

A.6 implies A.5 with the same rate β for the bias term and with αp = p/2−µp > 0 in A.5(iii).

In parametric simulation-based estimation, the simulating function wS ≡ w in Assump-

tion A.6 is typically independent of the number of simulations, and the approximator has no

bias: bS ≡ 0 and so β =∞. Moreover, Assumption A.6(iii) typically holds with µp = 0, and

A.5(iii) with αp = p/2.

The class of approximators in Assumption A.6 allows for nonparametric techniques such

as the methods proposed in Fermanian and Salanié (2004), Creel and Kristensen (2012),

Kristensen and Scherning (2012) and Norets (2009, 2012.) These also have a bias component,

but A.5 still applies. As an example, consider the NPSML estimator: wS (y, x, εs; θ) =

Kh (ys (x, θ)− y) where the bandwidth h = h (S) → 0 as S → ∞. Let d = dim (y) and

suppose that we use a kernel of order r. The bias component satisfies

w̄S (y, x; θ) = p (y|x; θ) + hr
∂rp (y|x; θ)

∂yr
+ o (hr) ,

Furthermore, it is easily checked that E [|Kh (ys (x, θ)− x) |p|x] = O
(
−hd(p−1)

)
for all p ≥ 2

under suitable regularity conditions. Thus, with a bandwidth of order h ∝ S−δ for some

δ > 0, A.5 holds with β = rδ and µp = δd (p− 1) for p ≥ 2.

As is well-known, the asymptotic mean integrated squared error is smallest when the

bias and variance component are balanced. This occurs when δ∗ = 1/ (2r + d), leading to

β = r/ (2r + d). We recover of course the standard nonparametric rate4.

3This is only used in the proof of Theorem 4. It could be weakened to “strongly mixing” elsewhere, but
we maintain the assumption of β-mixing throughout to streamline the assumptions.

4While the standard nonparametric rate is optimal for the approximation of the individual densities that
make up the likelihood, this rate does not yield the best NPSML estimators. This is akin to results for semi-
parametric two-step estimators where undersmoothing of the first-step nonparametric estimator is normally
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3 Effects of Approximations

We are now ready to derive the leading bias and variance terms of the estimator due to

approximation errors. In the following, when we discuss biases and variances and, for example,

write E[θ̂n,S ], we refer to the means and variances of the leading terms of a valid stochastic

expansion of the estimators. This is a standard approach in the higher-order analysis of

estimators; see, for example, Rothenberg (1984) and Newey and Smith (2004, section 3).

3.1 Higher-order Expansion

To state the asymptotic expansion in a compact manner, we introduce some additional no-

tation and moments which will make up the leading bias and variance terms. Let gi :=

g(zi; θ0, γ0), ∇gi[dγ] := ∇g (zi; θ0, γ0) [dγ] and ∇2gi[dγ, dγ] := ∇2g (zi; θ0, γ0) [dγ, dγ] for any

function dγ. As we will see, the leading terms in the bias of the approximate estimator are

BS,1 = −H−1
0 E [∇gi[bS ]] and BS,2 = −1

2
H−1

0 E
[
∇2gi[ψS , ψS ]

]
, (16)

where bS and ψS are defined in eqs. (13)-(14). The first bias term BS,1 is zero for unbiased

approximators, as in parametric simulation-based inference. The second one, BS,2, is zero

for non-stochastic approximators of the type found in numerical approximation schemes.

The leading variance term due to the presence of approximations is ∇Gn(θ0)[γ̂S − γ]. It

can be decomposed into two terms. The first one is

Dn,S =
1

n

n∑
i=1

di,S , with di,S = ∇gi[bS ]− E [∇gi[bS ]] ,

which is common to the two approximation schemes. The form of the second variance com-

ponent, En,S , on the other hand, depends on whether EIA or ECA is implemented. In both

cases, En,S is a sample average:

En,S =
1

n

n∑
i=1

ei,S ;

but ei,S := ∇gi[ψi,S ] for EIA, while ei,S := ∇gi[ψS ] for ECA.

The variance components ψi,S vary across observations for EIAs; as a consequence, one

can directly apply a CLT to En,S to obtain that, for any fixed S ≥ 1 as n→∞,
√
nEn,S →d

N
(
0,ΩE

S

)
where ΩE

S = Var(ei,S).

On the other hand, ECAs only have one ψS , which is common across observations; and

required for the parametric estimator to be
√
n-consistent; see Kristensen-Salanié (2010) for details. For exam-

ple, the optimal rate for NPSML estimation turns out to be δ∗∗ = 1/(r+d+2). This involves undersmoothing,
except when standard second-order kernels are employed (r = 2). Then the rate that minimizes the AMISE
of the kernel estimator is also optimal for the MSE of θ̂n,S : δ∗ = δ∗∗ = 1/(4 + d).
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getting a CLT takes more work and additional assumptions. We start by rewriting En,S as

En,S =
1

n

n∑
i=1

{ei,S −∇G [ψS ]}+∇G [ψS ] , with ∇G [ψS ] := E [∇gi[ψS ]|ψS ] .

The first term is OP
(
S−α2/2/

√
n
)
, while the second term ∇G [ψS ] = OP

(
S−α2/2

)
dominates

it. In general, the large-sample distribution of ∇G [ψS ] is not known in closed-form. However,

if we strengthen Assumption A.5 to A.6, we can write

∇G [ψS ] =
1

S

S∑
s=1

∇G[w̄s,S ], with w̄s,S := E [wS (zi, εs; θ0) |εs]− E [wS (zi, εs; θ0)] , (17)

and a CLT can be applied as S →∞.

The above terms make up the first-order expansion of the effects of approximations on

the estimators:

Theorem 2 Assume A.1-A.3, A.4(2), and A.5(4). Also assume that
√
nS−3β → 0 and

√
nS−α3 → 0. Then:

θ̂n,S − θ0 = BS,1 +BS,2 +H−1
0 {Gn +Dn,S + En,S}+ oP

(
1/
√
n
)
, (18)

where we abbreviate Gn = Gn (θ0, γ0). The two sequences (Gn, Dn,S) and En,S are asymp-

totically mutually independent. Moreover, the following limit results hold:

• For both EIA and ECA approximators, for any fixed S ≥ 1 and as n→∞,

√
n{Gn +Dn,S}

d→ N
(

0,ΩG+D
S

)
, with ΩG+D

S =

∞∑
i=−∞

Cov (g0 + d0,S , gi + di,S) ;

As S → ∞, the bias terms have orders BS,1 = O(S−β) and BS,2 = O(S−α2); and

ΩG+D
S = ΩG +O(S−2β), where ΩG =

∑∞
i=−∞Cov (g0, gi).

• For EIA approximators, for any fixed S ≥ 1 and as n→∞,

√
nEn,S

d→ N
(
0,ΩE

S

)
, with ΩE

S = Var(ei,S) = O
(
S−α2

)
.

• For ECA approximators, as S → ∞, Var(En,S) = OP (S−α2). If in addition Assump-

tion A.6(4) holds with a wS ≡ w that does not depend on S, then α2 = 1 and

√
SEn,S

d→ N
(
0,ΩE

)
, with ΩE = Var(∇G[w̄s]),

where w̄s = w̄s,S is defined in eq. (17).
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The above expansion allows us to analyze the effects due to approximation errors. In

particular, both EIA’s and ECA’s are normally distributed in large samples with leading bias

and variance terms due to approximations given by:

E[θ̂n,S − θ0] ' BS,1 +BS,2 = O(S−β) +O(S−α2),

nVar(θ̂n,S − θ0)−H−1
0 ΩGH−1

0 ' H−1
0

{
O(S−2β) + nVar(En,S)

}
H−1

0 ,

where nVar(En,S) = O (S−α2) for EIAs and nVar(En,S) = O (nS−α2) for ECAs.

The bias and the variance of the approximator enter the two leading bias terms separately:

the bias bS drives BS,1, and the stochastic component ψS drives BS,2. When the approximator

is a simple unbiased simulated average, BS,1 = 0 and the leading bias term BS,2 = O (1/S);

this is a well-known result for specific simulation-based estimators in cross-sectional settings,

see e.g. Gouriéroux-Monfort (1996). Our theorem shows that this result holds more generally

under weak regularity conditions.

EIA’s and ECA’s differ regarding the second variance term En,S . In the computation of

the ECA, one common approximator is used across all observations; this introduces additional

correlations across observations. In contrast, for EIA, ψi,S and ψk,S are independent for

i 6= k. As a consequence, we expect the variance due to simulations to be larger for ECA’s;

and in leading simulation-based inference cases with β = ∞ and α2 = 1, we need S to go

to infinity faster than n to keep the varinace from exploding. This suggests that one should

prefer EIA to ECA; but it may be necessary to sacrifice statistical efficiency for the sake of

computational efficiency. This is, for example, the case for SMM with dependent data where

γ̂S is a single simulated moment that can be used across all observations. Similarly, when γ̂S

is computationally costly to implement, such as the sieve approximator of a value function

employed in Kristensen and Scherning (2012), it is convenient to use the same approximator

across all observations.

3.2 Sharpness

The sharpness of the rates in Theorem 2 depends on the type of approximator being used

and how it enters into the objective function; that is, the precise nature of the mapping

γ 7→ g (z, θ, γ).

Theorem 3 Under the assumptions of Theorem 2, if the rates in Assumption 5 are sharp

then

• For non-stochastic approximators, all rates listed in the Theorem are sharp.

• For EIA’s with ∇2gi[γ, γ] 6= 0, the rates of BS,1 and BS,2 and Dn,S and En,S are sharp.

If additionally Assumption A.(4)6 holds with wS ≡ w, the same is true for ECA’s.
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The proof of Theorem 3 follows from the arguments in the proof of Theorem 2 together

with rate results for sample averages. Note that it does not cover nonparametric simulators,

for which wS depends on S through the bandwidth. For example, when γ̂S is a kernel

estimator, one can show that ΩE
S = O(S−1), which is sharper than the rate stated in the

theorem; see Creel and Kristensen (2012) and Kristensen and Shin (2012).

In some special cases, a term in the expansion is zero. In SMM for instance, the function

g is linear in the approximator γ. Then ∇2gi[dγ, dγ] = 0, so that BS,2 = 0; and our rates are

obviously not sharp.

3.3 First-order efficiency

Our results allow us to provide rates on the degree of approximation under which the approx-

imate estimator is asymptotically first-order equivalent to the exact estimator; that is, which

choices of the sequence S = Sn guarantee ‖θ̂n,Sn − θ̂n‖ = oP
(
n−1/2

)
. In general, asymptotic

equivalence for ECAs obtain if n/Smin(α2,2β) → 0; for EIA’s we have a weaker condition,

replacing α2 with 2α2.

For parametric simulation-based estimators (β = 0, α2 = 1), this gives the standard result

that n/Sn should go to zero for ECA’s (Duffie and Singleton, 1993; Lee, 1995, Theorem 1),

while
√
n/Sn should go to zero for EIA’s (Laroque and Salanié, 1989; Lee, 1995, Theorem 4).

As a more complicated example, consider the case where nonparametric kernel methods

are used. Using standard arguments from the literature on semiparametric estimation, one

can show in great generality that ΩE
S = O(S−1) in the case of ECA (see Kristensen and Shin,

2012 for further details). Given this result, it easily follows from Theorem 2 that for the

NPSMLE based on ECA’s to be equivalent to the MLE, we need
√
nhr → 0, n/S → 0 and

√
n/
(
Shd

)2 → 0.

4 Analytical Adjustments

The expansion derived in the previous section naturally suggests corrections of the approx-

imate estimators and standard errors to take into account the biases and variances due to

approximations. The corrections are obtained by constructing consistent estimators of the

first terms in the relevant formulæ of Theorem 2. It turns out that some cases are easier to

deal with than others; we examine bias and variance in turn.

4.1 Bias Adjustment

The leading bias terms are BS,1 and BS,2. We here focus on the case where β > α2 (this

includes parametric simulation-based estimation methods) so that BS,1 is of lower order and

the leading bias component is BS,2 = −1
2H
−1
0 E

[
∇2g(zi; θ0)[ψS , ψS ]

]
. We then wish to adjust
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the approximate estimator to remove this bias component. The two main approaches to bias

adjustment in the literature are “corrective” and “preventive”; see Arellano and Hahn (2007)

for a further discussion of these in a panel data setting. We discuss their uses in our setting

in the following.

The corrective method first computes the unadjusted estimator, θ̂n,S , obtains a consistent

estimator of the bias, say B̂S,2, and then combines the two to obtain a new, bias-adjusted

(BA) estimator

θ̃
BA
n,S = θ̂n,S − B̂S,2.

One example of this approach for can be found in Lee (1995) for the special case of SMLE

and SNLS in limited dependent variable models. A natural estimator of B̂S,2 would be

B̂S,2 = −1
2Ĥ
−1
n ∇2Ĝn(θ̂n,S) for some consistent estimator ∇2Ĝn (θ) of E

[
∇2g(zi; θ)[ψS , ψS ]

]
.

We propose two different estimators, depending on whether EIA’s or ECA’s are used in the

implementation of the approximate estimator: First, when EIAs are used, we can use

∇2Ĝn (θ) =
1

n

n∑
i=1

∇2g(zi; θ, γ̂S)[ψ̂S,i, ψ̂S,i], ψ̂S,i (z; θ) := γ̂S,i (z; θ)− 1

n

n∑
i=1

γ̂S,i (z; θ) (19)

If ECA’s are employed, the above choice for ψ̂S is not possible. However, assuming that A.6

also holds, the following alternative estimator is available, which can be employed for both

ECA’s and EIA’s:

∇2Ĝn (θ) =
1

nS (S − 1)

n∑
i=1

S∑
s=1

∇2g(zi; θ)[wi,s − γ̂i,S , wi,s − γ̂i,S ]. (20)

In the case of ECA, wi,s = ws and γ̂i,S = γ̂S do not change across observations.

Instead of adjusting the estimator, we can do preventive correction where we adjust

the estimating equation Gn (θ, γ̂S) to remove the component leading to the bias BS,2. By

inspection of the proof of Theorem 2, it is easily seen that the relevant adjustment ofGn (θ, γ̂S)

is E
[
∇2g(zi; θ)[ψS , ψS ]

]
/2 leading to the following bias-adjusted estimator θ̂

BA

n,S defined as

the solution to

Gn(θ̂
BA

n,S , γ̂S)− 1

2
∇2Ĝn(θ̂

BA

n,S) = oP (1/
√
n), (21)

where ∇2Ĝn(θ) is chosen either as in eq. (19) or (20). This approach was pursued in the

context of SNLLS (see Example 2) by Laffont et al (1995).

After either preventive or corrective adjustment, the bias component BS,2 should change

to

B̃S,2 := −1

2
H−1

0 E
(
∇2Gn(θ0)[ψS , ψS ]−∇2Ĝ(θ0)

)
. (22)

The following theorem analyzes the properties of the bias adjusted estimator based on
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∇2Ĝn (θ) given in eq. (20). We expect similar results to hold for any bias adjusted EIA

estimator that uses eq. (19).

Theorem 4 Assume that A.1-A.3, A.4(3), and A.6(8) hold together with∥∥∇2g(z; θ0)[eis, eit]
∥∥ ≤ b(z) ‖eis(z)‖ ‖eit(z)‖ ,

where E
[
b8(z)

]
< ∞. Then any corrected estimator θ̂

BA

n,S solving eq. (21) with ∇2Ĝn(θ)

defined in (20) has reduced bias:

E[θ̂
BA

n,S − θ̂n] = BS,1 + B̃S,2

where the new bias term given in eq. (22) satisfies B̃S,2 = O(S−2+µ2) and the rate of BS,1 is

O(S−β) as in Theorem 2.

The theorem shows that under slightly stronger conditions5 than in Theorem 2, B̃S,2

has a faster rate of convergence than BS,2, while the rate of the other leading terms is un-

changed. More precisely, when comparing with Theorem 2, the bias term BS,2 = O (S−α2) =

O
(
S−1+µ2

)
has been replaced by B̃S,2 = O(S−2+µ2).

With unbiased simulators, we have µ2 = 0 and β = ∞, and by Theorem 2 the leading

bias term of the unadjusted estimator is of order O
(
S−1

)
. Theorem 4 shows that for the

adjusted estimator the leading term of the bias is of order O
(
S−2

)
. The improvement is by

a factor S and may be quite large.

More generally, the proposed adjustment will remove the largest bias component as long

as α2 < β. Otherwise the bias term OP
(
S−β

)
is of a larger order than OP (S−α2) and

the proposed bias adjustment does not remove the leading term anymore. In particular,

when non-stochastic approximations are employed the above adjustment does not help. If

we could estimate bS , then BS,1 could be taken care of easily by adjusting either estimator

or estimating equation using ∇Ĝn(θ) :=
∑n

i=1∇gi(θ, γ̂S)[b̂S ]/n. However, estimating bS can

be a difficult task.

As an illustration, we now return to the SNLS example introduced in Section 2 to derive

the bias adjustment. Section 7 shows the formulæ for the mixed logit example we use in our

Monte Carlo study.

Example 2: SNLS (continued). Recall that for nonlinear least squares,

Gn(θ, γ) =
1

n

n∑
i=1

gi(θ, γ), gi(θ, γ) = −2(yi − γi(θ))γ̇i(θ),

5The higher order on A.6 is required to ensure that in the asymptotic expansion, the remainder term, Rn,S
is still dominated.
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where γ̇i(θ) = ∂γi(θ)/ (∂θ). Its first and second-order pathwise differentials are easily found

to be

∇gi[dγ] = 2γ̇idγ − 2(yi − γi)dγ̇, ∇2gi[dγ, dγ] = −4ḋγdγ.

Therefore, denoting r (xi, εi,s; θ) := wS (xi, εi,s; θ)− γ̂S (xi; θ), the adjustment term ∇2Ĝn(θ)

takes the form

∇2Ĝn(θ) = − 2

S (S − 1)

n∑
i=1

S∑
s=1

r (xi, εi,s; θ) ṙ (xi, εi,s; θ) .

Note that instead of adjustingGn(θ, γ̂S), we could have corrected the nonlinear sum of squares

instead and minimized
1

n

n∑
i=1

(
yi − γ̂i,S(θ)

)2 −∇2Q̂n(θ),

with the obvious definition

∇2Q̂n(θ) =
1

nS (S − 1)

n∑
i=1

S∑
s=1

r2 (xi, εs; θ) .

This is exactly the correction proposed in Laffont et al. (1995); and as ∇3gi ≡ 0 in SNLS,

all approximation biases are removed.

4.2 Adjusting Standard Errors

If the approximator is stochastic, the approximate estimator will not only be biased; it will

also contain additional variance terms. For a given sample size n and number of simulations

S, we should adjust inferential tools (such as standard errors and t-statistics) to account for

these additional variances. This turns out to be quite straightforward in many cases. We

focus here on parametric simulation-based inference; and we assume that A.6(4) holds with

unbiased simulators that do not directly depend on S, so that β =∞ and α2 = 1.

First note that, as part of Theorem 2, the overall variance of the approximate estimator

is

EIA : Var(θ̂n,S) ≈ 1

n
H−1

0

{
ΩG+D
S + ΩE

S

}
H−1

0 , ECA : Var(θ̂n,S) ≈ H−1
0

{
1

n
ΩG+D
S +

1

S
ΩE

}
H−1

0 ,

where ΩG+D
S , ΩE

S and ΩE are defined in the theorem. Implicitly, these depend on θ0 and γ0. In

standard estimation procedures, one would usually estimate the above variance components

by simply replacing θ0 and γ0 by θ̂n,S and γ̂S , respectively, in the expressions of the Ω

matrices, and by replacing any population means by their sample counterparts. However, as
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explained in the previous section, replacing γ0 by γ̂S will generate biases. Similarly, if θ̂n,S

has not been bias adjusted, replacing θ0 by θ̂n,S will add biases to the variance estimator.

We therefore propose to use a bias-adjusted variance estimator to improve on the basic

variance estimators. We assume in the following that θ̂n,S has already been bias adjusted

so that we only need to adjust any biases due to γ̂S . Furthermore, for notational simplicity

we here assume that the data is i.i.d.6. First, consider ΩG = E
[
g (z; θ0, γ0) g (z; θ0, γ0)′

]
.

A naive estimator would be Ω̂G = 1
n

∑n
i=1 ĝiĝ

′
i, where ĝi = g(zi; θ̂n,S , γ̂S). However, this

variance estimator will suffer from a bias of the same order as ΩE
S , and so will lead to

imprecise standard errors. We therefore propose to bias adjust this estimator in the same

way that we bias-adjusted Gn (θ, γ̂S):

Ω̂G =
1

n

n∑
i=1

ĝiĝ
′
i − ∆̂Ω

n,S

where, with ψ̂i,S := γ̂i,S − γ̄S ,

∆̂Ω
n,S =

1

n

n∑
i=1

{
∇2ĝi[ψ̂i,S , ψ̂i,S ]ĝ′i + 2∇ĝi[ψ̂i,S ]∇ĝi[ψ̂i,S ]′ + ĝi∇2ĝi[ψ̂i,S , ψ̂i,S ]′

}
,

or, when Assumption A.6 is satisfied,

∆̂Ω
n,S =

1

nS (S − 1)

n∑
i=1

S∑
s=1

{
∇2ĝi[ês,i, ês,i]ĝ

′
i + 2∇ĝi[ês,i]∇ĝi[ês,i]′ + ĝi∇2ĝi[ês,i, ês,i]

′} ,
where ês,i = ws,i − γ̂i,S . The analysis of this estimator proceeds as in the proof of Theorem

4.

Next, consider ΩE
S . Since this term is already of order 1/S, we do not need to bias adjust

it; we can simply use the naive estimator given by

Ω̂E
S =

1

nS2

n∑
i=1

S∑
s=1

∇ĝi[ψ̂i,s]∇ĝi[ψ̂i,s]′.

Finally, the naive estimator of H0 takes the form

Ĥ =
1

n

n∑
i=1

∂ĝi
∂θ

.

One could bias-adjust this estimator as we did for Ω̂G. However, note that the approximate

6Otherwise long-run variance estimators have to be used.
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estimator satisfies:

0 =
1

n

n∑
i=1

g(zi; θ0, γ̂i,S) +

{
1

n

n∑
i=1

∂g(zi; θ̄n,S , γ̂i,S)

∂θ

}
(θ̂n,S − θ0).

So in order to get a precise approximation of the distribution of θ̂n,S − θ0, we want to use an

estimator that mimics the behaviour of 1
n

∑n
i=1 ∂g(zi; θ̄n,S , γ̂i,S)/ (∂θ). This is exactly what

Ĥ does; and we can still use it as an estimator of H0.

Variance estimation for ECA estimators proceeds in a similar manner. The only difference

is the term ΩE . Under the additional assumption A.6, ΩE = limS→∞
∑S

s=−S Cov (ẽ0, ẽs) /S

where ẽs = ∇G (θ0, γ0) [w̄s]. First, observe that ∇Ĝ[γ] = 1
n

∑n
i=1∇g(zi, θ̂n,S , γ̂S)[γ] is a

consistent estimator of ∇G (θ0, γ0) [γ] for any given γ. If the simulations are independent, a

natural estimator of ΩE is then

ECA : Ω̂E
S =

1

S2

S∑
s=1

∇Ĝ[ws − γ̂S ]∇Ĝ[ws − γ̂S ]′.

This estimator is similar to the one proposed in Newey (1994) for semiparametric two-step

estimators. If the simulations are dependent, as is often the case in time series models, a

HAC estimator has to be employed.

5 Bias Adjustment by Resampling

As an alternative to analytical bias corrections, resampling methods could be used7. They

will in general handle the biases due to both the stochastic and the non-stochastic component

of the approximator; and the researcher is not required to derive an expression of the bias. On

the other hand, they are computationally more demanding than the analytical bias correction

proposed in the previous section, and may lead to an increase in finite-sample variance.

To motivate the bias adjustment, recall from Theorem 2 that E[θ̂n,S − θ̂n] ' b1S
−β +

b2S
−α2 . As before, the goal is to obtain an estimator of (parts of) the leading bias terms

and use this for bias correction. We here propose to do this by resampling methods: First,

compute two approximators of order S∗ which we denote γ̂
[1]
S∗ and γ̂

[2]
S∗ . Let θ̂

[m]

n,S∗ be the

estimator based on the same data sample Zn but using the mth approximator γ̂
[m]
S∗ , m = 1, 2.

We then propose the following jackknife (JK) type estimator:

θ̂
JK

n,S := 2θ̂n,S −
1

2

(
θ̂

[1]

n,S∗ + θ̂
[2]

n,S∗

)
, (23)

7See Hahn and Newey (2004) and Dhaene and Jochmans (2012) for bias correction using Jackknife in the
context of panel models, while we refer to Phillips and Yu (2005) for a time series application.
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and we easily see that

E
[
θ̂

JK

n,S − θ̂n
]

= 2E
[
θ̂n,S − θ̂n

]
− 1

2

(
E
[
θ̂

[1]

n,S∗ − θ̂n
]

+ E
[
θ̂

[2]

n,S∗ − θ̂n
])

' b1

[
2S−β − (S∗)−β

]
+ b2

[
2S−α − (S∗)−α2

]
,

where higher-order terms have been ignored. We would now ideally choose S∗ such that

both of the above bias terms cancel out. However, we can only remove either of the two: By

choosing either

S∗ =
S

21/β
or S∗ =

S

21/α2
, (24)

we will remove the first or the second term respectively. Obviously, S∗ should be chosen so

as to remove the bias component that dominates in the expansion.

One can generalize the above and compute M approximators, γ̂
[m]
Sm

, m = 1, ...,M , of order

Sm < S, and for each of those the corresponding approximate estimator, θ̂
[m]

n,Sm . For a given

set of weights pm, m = 1, ...,M , we then define the adjusted estimator as

θ̂
JK

n,S = Mθ̂n,S −
M∑
m=1

pmθ̂
[m]

n,Sm . (25)

Dhaene and Jochmans (2012, Corollary 1) demonstrate in a panel data context that the

optimal procedure to remove the leading bias term is to choose M = 2 and pm = 1/2. We

expect that a similar result extends to parametric simulation-based estimators in our setting.

On the other hand, the generalized adjustment as given in (25) can be used to remove further

higher-order bias components by appropriate choice of weights and appproximation orders,

c.f. Dhaene and Jochmans’s section 3. While we do not pursue this here, we conjecture that

the generalized adjustment would enable us to remove both B1 and B2.

One way to reduce the computational cost is to jackknife the objective function directly,

thereby avoiding having to compute two separate estimators, θ̂
[1]

n,S∗ and θ̂
[2]

n,S∗ ; the jackknifed

objective function is constructed along the same lines as in the discussion of analytical bias

correction.

6 Newton-Raphson Adjustment

The previous sections developed two bias adjustment methods. We here propose a simple

method that can reduce both bias and variance of the approximate estimator in a simple

manner. The proposed method works with non-stochastic approximations as well as with

stochastic approximations by extending the well-known idea that a consistent estimator can

be made asymptotically efficient by applying one Newton-Raphson (NR) step of the log-

likelihood function to it. E.g. if θ̂n is a
√
n-consistent estimator of θ0 in a model with
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log-likelihood Ln(θ), then a single NR-step yields a consistent and asymptotically efficient es-

timator. We apply this idea to our setting by starting from some initial approximate estimator

based on a small degree of approximation S, say θ̄n,S . We then define the corrected estima-

tor through one or possibly several Newton-Raphson iterations of an approximate objective

function that uses a much finer approximation, S∗ � S. With Hn (θ, γ) = ∂Gn (θ, γ) /(∂θ),

define

θ̂
(k+1)

n,S = θ̂
(k)

n,S −H−1
n (θ̂

(k)

n,S , γ̂S∗)Gn(θ̂
(k)

n,S , γ̂S∗), k = 1, 2, 3, ... (26)

where θ̂
(1)

n,S = θ̄n,S is some initial estimator and we use the S∗th order approximator, γ̂S∗ , in

the iterations.

Note that the cost of computing this new estimator from the first one is (very) roughly

S∗/S times the cost of one iteration in the minimization of Qn(θ, γ̂S∗). Since the minimization

easily can require a hundred iterations or so, we can therefore take S∗ ten or twenty times

larger than S without adding much to the cost of the estimation procedure.8 Also, one

iteration is enough if S∗ goes to infinity at least as fast as S. Our final proposal will also work

for general approximation-based estimators. We show that starting from either θ̄n,S = θ̂
AB

n,S ,

θ̂
JK

n,S or even the initial, unadjusted estimator, θ̂n,S , one or more Newton-Raphson iterations

based on the approximate objective function with a finer approximation S∗ > S produce an

estimator that has the presumably higher precision of θ̂n,S∗ . The resulting estimator based

on k iterations, θ̂
(k+1)

n,S , is defined in (26).

To evaluate the performance of θ̂
(k+1)

n,S relative to θ̄n,S∗ , we first note that

‖θ̂(k+1)

n,S − θ̂n‖ ≤ ‖θ̂
(k+1)

n,S − θ̄n,S∗‖+ ‖θ̄n,S∗ − θ̂n‖.

Combining this with Robinson (1988, Theorem 2), we obtain the following theorem:

Theorem 5 Assume that A.1-A.3, A.4(3) and A.5(6) hold. Let the initial estimate θ̄n,S be

chosen as either θ̂n,S, θ̂
AB

n,S, or θ̂
JK

n,S. Then the NR-estimator θ̂
(k+1)

n,S defined in (26) satisfies:

‖θ̂(k+1)

n,S − θ̂n‖ = OP

(
‖θ̄n,S − θ̂n‖2

k
)

+OP

(
‖θ̄n,S∗ − θ̂n‖

)
(27)

as n, S and S∗ go to infinity with S∗ > S.

The above result formalizes the intuition that a (large enough) number of NR-steps with

the score and Hessian evaluated at γS∗ yields an estimator that is equivalent to the extremum

estimator obtained from full optimization of the objective function based on γS∗ . This holds

irrespective of the convergence rate of the initial estimator. However, the number of NR

8In many cases, a large part of the dimensionality of θ only comes into play within some linear indexes
θ′x; then the trade off is even more favourable since the computation of the second derivative Hn is much
simplified.
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iterations, k, needed to obtain this result does depend on the precision of the initial estimator.

For unadjusted parametric simulation-based estimators in the EIA scheme for instance, we

know from Theorem 2 that ‖θ̄n,S−θ̂n‖ = OP (1/S). Then the first term on the right-hand side

of the inequality in Theorem 5 is asymptotically dominated by the second term if S∗ = o(S2k).

Taking k = 1 and having S∗/S converge to some positive number would be enough in this

case.

The above iterative estimator requires computation of the Hessian, Hn (θ, γ̂S). If this is

not feasible or computationally burdensome, an approximation can be employed, e.g. numer-

ical derivatives. This however will slow down the convergence rate and the result of Theorem

5 has to be adjusted, cf. Robinson (1988, Theorem 5). In particular, more iterations are

required to obtain a given level of precision.

7 Simulation Study

To explore the performance of our proposed approaches, we set up a small Monte Carlo

study of a mixed logit model: the econometrician observes i.i.d. draws of zi = (xi, yi) for

i = 1, . . . , n, with xi a centered normal of variance τ2 and

yi = 11(b+ (a+ sui)xi + ei > 0)

where ei is standardized type I extreme value and ui is a centered normal with unit variance,

independent of ei.

We take the true model to have parameters a = 1, s = 1, b = 0. In this specification, the

mean probability of y = 1 is one-half. For τ = 1 (resp. τ = 2) the generalized R2 is 0.11

(resp. 0.21); in the corresponding simple logit model, which has s = 0, the R2 would be 0.17

(resp. 0.39.)

The mixed logit, in its multinomial form, has become a workhorse in studies of consumer

demand (see e.g. the book by Train (2009)); it also figures prominently on the demand side

of models of empirical industrial organization. It is usually estimated by simulation-based

methods. In empirical IO, the simulated method of moments is commonly used because of

endogeneity concerns; since they are absent here, we focus on SML instead.

This is still a very simple model; thus we can use Gaussian quadrature to compute the

integral

Pr(y = 1|x) =

∫
φ(u)

1 + exp (−(b+ (a+ su)x))
du. (28)

Since Gaussian quadrature achieves almost correct numerical integration in such a regular,

one-dimensional case, we can rely on it to do (almost) exact maximum likelihood estimation.

By the same token, it is easy to compute the asymptotic variance of the exact ML estimator
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θ̂n, and the leading term BS,2 of the bias of the SML estimator. Simple calculations9 give

the numbers in Table 1.

τ
√
nσ̂ S times bias

a s b a s b

1 7.2 17.1 2.4 −9.0 −23.2 −0.0
2 6.7 10.8 2.8 −8.2 −13.3 −0.0

Table 1: Rescaled asymptotic standard errors and simulation biases

The columns labeled
√
nσ̂ give the square roots of the diagonal terms of the inverse of

the Fisher information matrix. As can be seen from the values of
√
nσ̂, it takes a large

number of observations to estimate this model reliably. To take an example, assume that

the econometrician would be happy with a modestly precise 95% confidence interval of half-

diameter 0.2 for the mean slope a. With τ = 1 it would take about (7.2 ∗ 1.96/0.2)2 ' 5, 200

observations; and still about 4, 500 for τ = 2, even though the generalized R2 almost doubles.

With such sample sizes, the estimate of the size of the heterogeneity s would still be very

noisy: its 95% confidence intervals would have half-diameters 0.48 and 0.32, respectively for

τ = 1 and τ = 2. We also found that the correlation between the estimators of a and of s is

always large and positive—of the order of 0.8. Thus the confidence region for the pair (a, s)

is in fact a rather elongated ellipsoid. On the other hand, the estimates of b are reasonably

precise, which is not very surprising as b shifts the mean probability of y = 1 strongly.

The figures in the columns labeled “ S times bias” refer to the expansions of θ̂nS − θ̂n
in our theorems. We will be using SML under the EIA scheme (independent draws across

observations). Then we know that the leading term of the bias due to the simulations is

BS,2 and is of order 1/S. The figures give our numerical evaluation of SBS,2, using our

formulæ and Gaussian quadrature again. As appears clearly from Table 1, once again the

heterogeneity coefficient s is the harder to estimate, followed by a, while there is hardly any

bias on b. With S = 100 simulations and τ = 1 for instance, the bias on a is −0.09, and the

bias on s is −0.23.

We ran experiments for several sets of parameter values, sample sizes n, explanatory power

(through τ), and numbers of draws S. Since the results are similar, we only present here those

we obtained for a sample of 10, 000 observations when the true model has a = 1, s = 1, b = 0,

and the covariate has standard error τ = 1 or τ = 2.

We present below the results for S = 50, 100, and 200 simulations. We ran 5,000 simula-

tions in each case, starting from initial values of the parameters drawn randomly from uniform

distributions: a ∼ U [0.5, 1.5], b ∼ U [−0.5, 0.5], and s ∼ U [0.5, 1.5]. For each simulated sam-

ple, we estimated the model using (i) uncorrected SML, (ii) SML with Newton-Raphson

9We used adaptive Gaussian quadrature.
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(NR), and (iii) SML with analytic adjustment (AA) for both bias and variance10. The AA

was done on the objective function. For the NR correction, we use only k = 1 step, with

S∗ = 10× S draws.

For each method, we also used several ways of computing the standard errors of the

estimates: from the most popular one, which consists of inverting the outer product if the

scores without correcting for the simulations, to the better-grounded sandwidch formula

which we introduced in Section 6.

We faced very few numerical difficulties. The optimization algorithm sometimes stopped

very close to the bounds we had imposed for the heterogeneity parameter, 0.1 ≤ s ≤ 5.

In some cases it failed to find an optimum, especially for uncorrected SML with 50 draws.

Finally, the second derivative of the simulated log-likelihood was sometimes not invertible

in one of our sandwich formulæ. Altogether, we had to discard 1% to 1.5% of the 5,000

samples, depending on the run. The tables and graphs below only refer to the remaining

samples. We focus on a and s since there is little to correct for in the SML estimates of b.

We report (Huber) robust means, standard errors and RMSEs. “AA” refers to our analytical

bias adjustment.

Tables 2 and 3 report our results for the mean error of our various SML methods. Each

row corresponds to a value of the number of simulations S. All numbers in the last three

columns of these tables were computed by averaging the “ error terms” (θ̂n,S − θ0) over the

5,000 samples (minus the small number that were eliminated due to numerical issues). The

standard error of these averages is about 0.001, so that several of the biases from the corrected

estimates are close to insignificant.

τ S SML SML+Newton SML+AA

50 −0.133 −0.089 0.004
1 100 −0.078 −0.039 0.000

200 −0.041 −0.014 0.000

50 −0.133 −0.051 0.010
2 100 −0.069 −0.016 0.007

200 −0.033 0.003 0.006

Table 2: Mean error on a

The “SML” columns in the tables report the biases of the uncorrected SML estimator.

The leading term appears to be a good approximation to the actual size of the bias in these

simulations, and the measured bias is close to proportional to 1/S. This suggests that our

analytical bias adjustment, which focuses on correcting for the leading term of the bias,

should work very well. As the last columns show, AA in fact does eliminate most of the bias.

10In a previous version we also reported results for the resampling method of section 5. Since they were
dominated by the other methods, we drop them from the tables here.
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τ S SML SML+Newton SML+AA

50 −0.364 −0.217 0.011
1 100 −0.206 −0.093 0.000

200 −0.109 −0.033 0.001

50 −0.214 −0.064 0.021
2 100 −0.110 −0.018 0.015

200 −0.051 0.010 0.013

Table 3: Mean error on s

The Newton step with ten times more simulations reduces the bias, as expected; but it does

not do it as effectively as our analytical bias adjustment.

The discussion above only bears on bias, but one may legitimately be concerned about

the possibility that our adjustment procedures introduce more noise into the estimates and

perhaps even increase their mean square errors. Tables 4 and 5 show that this concern is

unfounded. Correcting the estimates using analytical adjustment or a Newton step reduces

the RMSE in all cases. Most often, the reduction in bias dominates and AA works better than

Newton. However, for larger number of simulations when τ = 2, bias reduction matters less;

and since the Newton method is more effective at reducing dispersion, its RMSE becomes

smaller than that of the AA method. This suggests that combining AA and a Newton step

could yield an even larger reduction in the RMSE.

τ S SML SML+Newton SML+AA

50 0.139 0.095 0.041
1 100 0.083 0.043 0.028

200 0.046 0.019 0.020

50 0.136 0.053 0.032
2 100 0.072 0.020 0.022

200 0.036 0.010 0.016

Table 4: RMSE on a

τ S SML SML+Newton SML+AA

50 0.378 0.234 0.107
1 100 0.219 0.103 0.074

200 0.121 0.044 0.053

50 0.219 0.068 0.056
2 100 0.115 0.025 0.039

200 0.056 0.019 0.029

Table 5: RMSE on s
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Both the bias and the increased variance imparted by the simulations affect the properties

of standard tests. Figures 1 and 2 document this for t-tests that a and s, respectively, equal

their true values. For such a large sample, we would expect the distributions of the t-statistics

to be very close to a standard centered normal—the dashed curve in each panel; and 95%

of the mass should lie between the two dashed vertical lines. What we observe for the

uncorrected SML estimator (“SML”) is quite different: the bias in the estimate skews the

distribution to the left, spectacularly so for small number of simulations; and the increased

variance flattens the distribution.

Resorting to one Newton-Raphson step (the “SML+Newton” curves) corrects part of the

bias and reduces the variance; but except for large number of simulations, the distribution of

the resulting t-statistics is still markedly different from N(0, 1). Using the AA bias-correction

and using the proper formula for the variance-covariance matrix (the “SML+AA” curves),

on the other hand, produces distributions that are essentially undistinguishable from N(0, 1).

Tables 6 and 7 give the actual coverage probabilities implied by figures 1 and 2. When

using uncorrected SML, the nominally 95% confidence intervals undercover very badly, so

that the null hypothesis is rejected up to three-quarters of the time when it is in fact true.

Our corrections, on the other hand, yield tests that have close to exact coverage.

τ S SML SML+Newton SML corrected

50 0.295 0.631 0.961
1 100 0.687 0.867 0.952

200 0.860 0.926 0.949

50 0.253 0.842 0.949
2 100 0.697 0.935 0.954

200 0.872 0.954 0.956

Table 6: Actual coverage probabilities for a

τ S SML SML+Newton SML corrected

50 0.232 0.637 0.967
1 100 0.660 0.879 0.961

200 0.866 0.933 0.956

50 0.236 0.879 0.951
2 100 0.690 0.940 0.953

200 0.873 0.951 0.952

Table 7: Actual coverage probabilities for s

Two other considerations are worth mentioning:

• Ease of implementation: the analytical bias adjustment wins on that count, since it
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Figure 1: Distributions of the t statistics for a = 1
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Figure 2: Distributions of the t statistics for s = 1
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is usually easy to get a formula for the ∆ term and to program it. The Newton

method may be more troublesome in models with more than a few parameters, as it

requires a reasonably accurate evaluation of the matrix of second derivatives. In our

experiment, we relied on the fact that the minimization algorithm itself proceeds by

Newton-Raphson steps; after multiplying by ten the number of simulations, we let the

algorithm do exactly one iteration of its line search. This appears to work very well,

and is very easy to implement.

• Computer time: The analytical bias adjustment wins this comparison hands down. For

SML for instance, the evaluation of the corrected objective function requires computing

the variance of the simulated choice probabilities in addition to their mean, as well as

their derivatives—a very small computational cost. Newton adjustment was about five

times more costly in our example; it may be more or less time-consuming in other ap-

plications, depending on the structure of the model and the care needed to approximate

the Hessian.

Like any Monte Carlo study, ours can only be illustrative; yet our results are very encour-

aging. Our analytical corrections for both bias and variance spectacularly improve inference.

Using one Newton step, while less effective, can also be a good way to reduce errors.

8 Conclusion

We developed in this paper a unifying framework for the analysis of approximate estimators.

We derived a higher-order expansion and we used it to propose methods for reducing the bias

and the efficiency loss that result from the approximation. Simulations on the mixed logit

model confirm that the proposed methods work well in finite samples.

We restricted ourselves to estimators where objective function and approximator (as func-

tions of θ) were both smooth. In principle, one could import the arguments of Chen et al

(2003) to handle non-smooth cases as is done in Armstrong et al (2013). Another approach

would be to employ a slight generalization of Robinson (1988, Theorem 1) which in our

setting would yield

||θ̂n,S − θ̃n|| = OP

(
sup

‖θ−θ0‖≤δ
‖Gn (θ, γ̂S)−Gn (θ, γ)‖

)
+ oP

(
1/
√
n
)
,

for some δ > 0. If one could then strengthen the pointwise bias and variance results derived

here to hold uniformly over ‖θ − θ0‖ ≤ δ, all our results would remain valid.

Also, we require the approximators to be mutually independent, which rules out certain

recursive approximation schemes such as particle filtering. Establishing results for this more
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complicated case would be highly useful. One could here try to use the results of Chen and

White (2002) who analyze random dynamic function systems.

We only allowed for one source of approximation in γ. More general situations could have

several such terms, possibly with quite different properties. As an example, we could have

evaluated a quantity γ1 using simulations, and another term γ2 by discretizing over a grid

and interpolating. We could still write a Taylor expansion, and evaluate the corresponding

terms. While we have not formally explored this extension, we feel that we can venture

some conjectures. The Newton method would still work, using here both a larger number

of simulations and a more precise grid in computing the Newton correction. The analytical

bias-adjustment method would only work if all sources of approximations were “stochastic”

(unlike γ2 in our example); and then one would focus on the approximation whose size goes

to zero most slowly.

Finally, one could interpret an approximate estimator as the exact estimator of a mis-

specified model. Suppose for instance that we use maximum likelihood to estimate a model

with pdf f(z, θ); and that we suspect that the data may have been generated by a model

whose pdf f∗(z, θ0) is close to the set of pdfs (f(·, θ)). We can transport all of our results to

this problem, with f as γS and f∗ as γ. In practice we do not know f∗ of course; but our

methods can be used to explore the likely consequences of any type of (local) misspecification

of concern.
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A Proofs of the Main Results

Proof of Theorem 2. By Lemma 6,

θ̂n,S − θ̂n = −H−1
0 {Gn(θ0, γ̂S)−Gn(θ0, γ0)}+ oP

(
1/
√
n
)
.

We now use the expansion given in (9) with m = 2; this yields∥∥∥θ̂n,S − θ̂n∥∥∥ = OP

(∥∥∥∥∇Gn(θ0) [∆γ̂S ] +
1

2
∇2Gn(θ0) [∆γ̂S ,∆γ̂S ] +Rn,S

∥∥∥∥)+ oP
(
1/
√
n
)
,

(29)

where ∆γ̂i,S = γ̂i,S − γ0.

We first derive the rate of the remainder term Rn,S :

E [‖Rn,S‖] = E

∥∥∥∥Gn(θ0, γ̂S)−Gn(θ0, γ0)−∇Gn(θ0) [∆γ̂S ]− 1

2
∇2Gn(θ0) [∆γ̂S ,∆γ̂S ]

∥∥∥∥
≤ 1

n

n∑
i=1

E

∥∥∥∥gi(θ0, γ̂i,S)− gi(θ0, γ0)−∇gi(θ0)
[
∆γ̂i,S

]
− 1

2
∇2gi(θ0)

[
∆γ̂i,S ,∆γ̂i,S

]∥∥∥∥
≤ Ḡ0

n

n∑
i=1

E
[∥∥∆γ̂i,S

∥∥3
]
,
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where we have used A.4(2). Applying first Minkowski’s inequality and then the inequality

(a+ b)p ≤ 2p−1ap + 2p−1bp (which holds for all a, b > 0 and p ≥ 1), we obtain—dropping the

i index:

E
[
‖∆γ̂S‖

3
]

= E
[
‖ψS + bS‖3

]
≤ (E [‖ψS‖] + E [‖bS‖])3

≤ 4E
[
‖ψS‖

3
]

+ 4E
[
‖bS‖3

]
= O

(
S−α3

)
+O

(
S−3β

)
.

The rates of the first and second order functional differentials of Gn(θ0, γ) are given in

Lemmas 9 and 10 depending on whether the ECA approximator of (11) or the EIA approxima-

tor of (12) is used. These rates together with the rate of Rn,S and (29) yield the higher-order

stochastic expansion of the EIA and ECA in equation (18).

The weak convergence of Dn and En follows by the CLT for stationary and mixing se-

quences. Finally, the rates of the leading bias and variance terms as S →∞ also follow from

Lemmas 9 and 10.

Proof of Theorem 4. We only give a proof for the case of EIA’s; the proof for ECA’s

follows along the same lines. One can easily show that supθ∈Θ ||∇2Ĝn (θ) || = oP (1) as

n, S →∞, and it now follows by the same arguments as in the proof of Theorem 2 that θ̂
BA

n,S

is consistent.

Next, we take a Taylor expansion:

oP

(
n−1/2

)
=

{
Gn(θ0, γ̂S)− 1

2
∇2Ĝn (θ0)

}
+

{
Hn(θ̄n,S , γ̂S)− 1

2
∇2Ĥn

(
θ̄n,S

)}
(θ̂

AB

n,S − θ0),

where ∇2Ĥn (θ) = ∂∇2Ĝn (θ) / (∂θ). From the proof of Theorem 2, Hn(θ̄n,S , γ̂S) = H0 +

oP (1), while it is easily shown that ∇2Ĥn

(
θ̄n,S

)
= oP (1) as n, S → 0, so that, by the same

arguments as in the proof of Theorem 2,

θ̂
AB

n,S − θ̂n = H−1
0

{
Gn(θ0, γ̂S)− 1

2
∇2Ĝn(θ0)−Gn(θ0, γ)

}
+ oP

(
1/
√
n
)
.

Suppressing any dependence on θ0, use (9) to write

Gn (γ̂S)− 1

2
∇2Ĝn −Gn (γ) =

1

2

{
∇2Gn[ψn,S , ψn,S ]−∇2Ĝn

}
+∇Gn[γ̂S − γ] (30)

+
1

2

{
∇2Gn[γ̂S − γ, γ̂S − γ]−∇2Gn[ψn,S , ψn,S ]

}
+Rn,S .

The rates of the second and third terms of (30) are derived in Lemma 10. To ensure that

Rn,S is negligible, we build on Lemma 11, which uses A.6 to deliver a better rate than that

used the proof of Theorem 2.
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The crucial term is the first term of (30). Now, recall that γ̂i = S−1
∑S

s=1wis, and

the definition of ∇2Ĝn in eq. (20). Using the bilinearity of (dγ, dγ′) 7→ ∇2gi [dγ, dγ′], and

denoting w̄i = E [wi,s] and eis = wis − w̄i, the first term of (30) can be rewritten as

∇2Gn[ψn,S , ψn,S ]−∇2Ĝn

=
1

nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

1

nS2

n∑
i=1

S∑
s=1

∇2gi[eis, eis]−
1

nS2

n∑
i=1

S∑
s=1

∇gi[wis − γ̂i, wis − γ̂i]

=
1

nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

1

nS2

n∑
i=1

S∑
s=1

{
∇2gi[eis, eis]−∇gi[wis − γ̂i, wis − γ̂i]

}
=

1

nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

1

nS2

n∑
i=1

S∑
s=1

{
∇2gi[γ̂i − w̄i, eis] +∇2gi[eis, γ̂i − w̄i]

}
=

1

nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit] +

2

nS

n∑
i=1

∇2gi[γ̂i − w̄i, γ̂i − w̄i],

where the last equality uses the fact that S−1
∑S

s=1 eis = γ̂i − w̄i.
Start with the first term, and note that E

[
∇2gi[eis, eit]

]
= 0 when s 6= t. Then apply

Lemma 7 with r = 1 to Wi,S := S−2
∑

s 6=t∇
2gi[eis, eit], getting

Var

 1

2nS2

n∑
i=1

∑
s 6=t
∇2gi[eis, eit]

 ≤ C

n
E
[
‖Wi,S‖2+δ

]2/(2+δ)
.

Now Wi,S is a degenerate U -statistic since

E
[
∇2g(zi)[eis, eit]|zi, eit

]
= E

[
∇2g(zi)[eis, eit]|zi, eis

]
= 0.

Given the conditions imposed on {ei,s : 1 ≤ s ≤ S} in (A.6), we can employ U -statistic re-

sults for absolutely regular sequences: Yoshihara (1976, Lemma 3) states that E
[
‖Wi,S‖4 |zi

]
=

O
(
S−4

)
. By inspection of the proof of Yoshihara (1976, Lemma 3), it is easily checked that

in fact, for some constant C > 0 we have E
[
‖Wi,S‖4 |zi

]
≤ CS−4MS (zi), where

MS (zi) := sup
s<t

E
[∥∥∇2g(zi)[eis, eit]

∥∥4+ε |zi
]4/(4+ε)

, for some ε > 0.
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Thus, with δ = 2 and using the Lipschitz condition on ∇2g, we obtain

E
[
‖Wi,S‖4

]
≤ CS−4E [MS (zi)]

≤ CS−4E

[
sup
s<t

E
[∥∥∇2g(zi)[eis, eit]

∥∥4+ε |zi
]4/(4+ε)

]
≤ CS−4E

[
b4(zi) sup

s<t
E
[
‖eis (z)]‖4+ε ‖eit(z)]‖4+ε |zi

]4/(4+ε)
]

≤ CS−4E

[
b4(zi)E

[
‖eis(z)]‖8+ε |zi

]4/(8+ε)
]

≤ CS−4
√
E [b8(zi)]E

[
‖eis‖8+2ε

]4/(8+2ε)

= O
(
S−4+µ8/2

)
.

It follows that
∑n

i=1

∑
s 6=t∇

2gi[eis, eit]/
(
nS2

)
= OP (n−1/2S−1+µ8/4).

As for the second term, by definition γ̂i − w̄i = ψi,S ; and it follows from Lemma 8 that

E
[
∇2gi[ψi,S , ψi,S ]

]
= O (S−α2) and

1

n

n∑
i=1

(
∇2gi[ψi,S , ψi,S ]− E

[
∇2gi[ψi,S , ψi,S ]

])
= OP

(
n−1/2S−α4/2

)
.

Summing up, B̃2 = H−1
0 E

[
∇2Gn[ψn,S , ψn,S ]−∇2Ĝn

]
/2 = O

(
S−2+µ2

)
while

Var
(
∇2Gn[ψn,S , ψn,S ]−∇2Ĝn

)
= O(n−1S−2+µ8/2) +O

(
n−1S−2+α4

)
.

This completes the proof.

Proof of Theorem 5. To apply the general result in Robinson (1988, Theorem 2), we

need to check that his conditions A.1 and A.3 are satisfied in our application. His condition

A.1 requires consistency of the approximate estimator for a suitable choice of S, which our

assumptions imply. Robinson’s condition A.3 also holds, given the smoothness conditionswe

imposed on Gn(θ, γ̂S) in our Assumption A.2.

B Lemmas

We first derive the expansion in (5):

Lemma 6 Under Assumptions A.1 and A.2, eq. (5) holds.
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Proof. We first take a Taylor expansion of Gn(θ, γ0) and Gn(θ, γ̂S) w.r.t. θ:

oP

(
n−1/2

)
= Gn(θ̂n, γ0) = Gn(θ0, γ0) +Hn(θ̄n, γ0)(θ̂n − θ0), (31)

oP

(
n−1/2

)
= Gn(θ̂n,S , γ̂S) = Gn(θ0, γ̂S) +Hn(θ̃n,S , γ̂S)(θ̂n,S − θ0), (32)

for some θ̄n (θ̃n,S) between θ̂n (θ̂n,S) and θ0. Since θ̂n (θ̂n,S) is consistent, θ̄n,S (θ̃n,S)
P→ θ0.

By standard arguments together with Assumption A.2,∥∥∥Hn

(
θ̃n,S , γ̂S

)
−H0

∥∥∥ ≤
∥∥∥Hn

(
θ̃n,S , γ̂S

)
−Hn

(
θ̃n,S , γ0

)∥∥∥+
∥∥∥Hn

(
θ̃n,S , γ0

)
−H

(
θ̃n,S , γ0

)∥∥∥
+
∥∥∥H (θ̃n,S , γ0

)
−H (θ0, γ0)

∥∥∥
≤ sup

‖θ−θ0‖≤δ
‖Hn (θ, γ̂S)−Hn (θ, γ0)‖+ sup

‖θ−θ0‖≤δ
‖Hn (θ, γ0)−H (θ, γ0)‖

+
∥∥∥H (θ̃n,S , γ0

)
−H (θ0, γ0)

∥∥∥
= oP (1) ,

and similar for Hn(θ̄n, γ0). Going back to eqs. (31)-(32), we have now shown that

θ̂n,S − θ0 = −H−1
0 Gn(θ0, γ̂S) + oP

(
1/
√
n
)
, θ̂n − θ0 = −H−1

0 Gn(θ0, γ0) + oP
(
1/
√
n
)
.

Subtracting the second expansion from the first gives the result.

To establish the rates for the first and second order differentials, we first establish some

useful auxiliary results:

Lemma 7 Let {Wi} be a sequence of random variables with E [Wi] = 0, E
[
‖Wi‖2r+δ

]
<∞

for some r ≥ 1 and δ > 0.

Assume that (Wi) is α-mixing with mixing coefficients αi, i = 1, 2, ..., satisfying αi ≤ Ai−a

for some A > 0, and a > 2r + 4r (r − 1) /δ − 2.

Then there exists a constant C = C (r, a,A) <∞ such that:

E

[∥∥∥∥ 1

n

∑n

i=1
Wi

∥∥∥∥2r
]
≤ n−r × CE

[
‖Wi‖2+δ

]2r/(2+δ)
+ o

(
n−r

)
.

Proof. From Rio (1994), we have for r ≥ 1,

E

[∥∥∥∥ 1

n

∑n

i=1
Wi

∥∥∥∥2r
]
≤ Cr

[
n−rM r

2,α,n + n1−2rM2r,α,n

]
, (33)
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where the numbers Mp,α,n are defined in Rio (1994). By Nze and Doukhan (2004, p. 1040),

Mp,α,n ≤
[
E ‖Wi‖p+δ

]p/(p+δ)
× (p+ δ) (p− 1)

δ

∞∑
n=0

(n+ 1)p+p(p−1)/δ−2 αn.

Given the bound we imposed on the mixing coefficients, there exists a constant C(A, a) such

that
∞∑
n=0

(n+ 1)p+p(p−1)/δ−2 αn ≤ C (A, a)
∞∑
n=0

(n+ 1)p+p(p−1)/δ−2−a <∞.

In particular, there exist constants C(r,A, a) such that

M r
2,α,n ≤ C (r,A, a)

[
E ‖Wi‖2+δ

]2r/(2+δ)
, and M2r,α,n ≤ C (r,A, a)

[
E ‖Wi‖2r+δ

]2r/(2r+δ)
.

(34)

The result follows by noting that n1−2r = o (n−r) for r > 1, and that for r = 1 both terms in

equation (33) are of order n−1 = n−r.

Lemma 8 Assume that {zi} satisfies Assumption A.1, and that γ̂j,S satisfy Assumption

A.5(4) for j = 1, ..., J . Let m (z; dγ) be a functional satisfying:

E
[
‖m (z; dγ)‖2r+δ

]
<∞, E

[
‖m (z; dγ)‖2+δ

]
≤ M̄ ‖dγ‖

k(2+δ)

, (35)

for some r, k ≥ 1 and δ > 0.

Then, with bS and ψS given in A.5, the following hold:

(i) For EIA’s, with MV
S := E

[
m
(
zi;ψi,S

)]
and MB

S := E [m (zi; bi,S)],

E

[∥∥∥∥ 1

n

∑n

i=1

{
m (zi; bi,S)−MB

S

}∥∥∥∥2r
]

= O
(
n−r

)
×
[
E ‖bS‖k(2+δ)

]2r/(2+δ)
,

E

[∥∥∥∥ 1

n

∑n

i=1

{
m
(
zi;ψi,S

)
−MV

S

}∥∥∥∥2r
]

= O
(
n−r

)
×
[
E ‖ψS‖

k(2+δ)
]2r/(2+δ)

.

(ii) For ECA’s, with m̄ (γ) = E [m (z; γ)] for any fixed γ,

E

[∥∥∥∥ 1

n

∑n

i=1
{m (zi; bS)− m̄ (bS)}

∥∥∥∥2r
]

= O
(
n−r

)
×
[
E ‖ψS‖

k(2+δ)
]2r/(2+δ)

,

E

[∥∥∥∥ 1

n

∑n

i=1
{m (zi;ψS)− m̄ (ψS)}

∥∥∥∥2r
]

= O
(
n−r

)
×
[
E ‖ψS‖

k(2+δ)
]2r/(2+δ)

.
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(iii) The means satisfy:∥∥MB
S

∥∥ ≤ M̄E
[
‖bi,S‖k

]
,

∥∥MV
S

∥∥ ≤ M̄E
[∥∥ψi,S∥∥k] , E

[
‖m̄ (ψS)‖2r

]
≤ M̄E

[
‖ψS‖

2kr
]
.

Proof. Define Wi,S := m
(
zi;ψi,S

)
−MS

(
ψi,S

)
. By assumptions (A.1) and (A.5), {Wi,S} is a

geometrically mixing process for any given value of S and so its mixing coefficients satisfy the

mixing conditions imposed in Lemma 7. Furthermore, (35) implies that E
[
‖Wi,S‖2r+δ

]
<∞.

We can therefore apply Lemma 7

E

[∥∥∥∥ 1

n

∑n

i=1

{
m
(
zi;ψi,S

)
−MS

(
ψi,S

)}∥∥∥∥2r
]
≤ Cn−r

[
E
∥∥m (zi;ψi,S)−MS

(
ψi,S

)∥∥2+δ
]2r/(2+δ)

+o
(
n−r

)
where C = C (r, a,A) only depends on r and the mixing coefficients of {zi} and

{
ψi,S

}
. By

(35),

E
[∥∥m (z;ψi,S)∥∥2+δ

]
≤ M̄E

[∥∥ψi,S∥∥k(2+δ)
]
n−r,

and ∥∥MS

(
ψi,S

)∥∥ ≤ E [∥∥m (zi;ψi,S)∥∥] ≤ M̄E
[∥∥ψi,S∥∥k] .

It is easily seen that the above inequalities still go through when replacing ψi,S with bi,S .

This prove (i) and (iii).

To derive the second inequality of (ii), now redefine Wi,S as Wi,S := m (zi;ψS)− m̄ (ψS).

It is easily seen that conditionally on ψS , (Wi,S) satisfies the conditions of Lemma 7, so that

E

[∥∥∥∥ 1

n

∑n

i=1
Wi,S

∥∥∥∥2r

|ψS

]
≤ CE

[
‖Wi,S‖2+δ |ψS

]
n−r + o

(
n−r

)
,

where C = C (r, a,A) does not depend on ψS . Next, observe that

E
[
‖Wi,S‖2+δ

]
≤ CE

[
‖m (z;ψS)‖2+δ

]
≤ CM̄E

[
‖ψS‖

k(2+δ)
]

;

we conclude that

E

[∥∥∥∥ 1

n

∑n

i=1
Wi,S

∥∥∥∥2r
]

= E

[
E

[∥∥∥∥ 1

n

∑n

i=1
Wi,S

∥∥∥∥2r

|ψS

]]
≤ CE

[
‖ψS‖

k(2+δ)
]
n−r + o

(
n−r

)
.

Finally,

E
[
‖m̄ (ψS)‖2r

]
≤ E

[
‖m (z;ψS)‖2r

]
≤ M̄E

[
‖ψS‖

2rk
]
.

The proof of the first inequality of (ii) follows along the same lines.
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In the next three lemmas, we suppress the dependence on θ since it is kept fixed at the

true value θ0.

Lemma 9 Under A.1-A.3, A.4(2), and A.6(4), the first and second order differentials of

Gn (θ0, γ̂S) for the ECA yield the rates given in Theorem 2.

Proof. First consider the EIA case, in which the approximation of Gn(γ) is on the form of

eq. (12). The functional differentials of Gn are given by

∇Gn [dγ] =
1

n

n∑
i=1

∇gi [dγ] , ∇2Gn
[
dγ, dγ′

]
=

1

n

n∑
i=1

∇2gi
[
dγ, dγ′

]
,

and dγ and dγ′ are the same for all observations i = 1, . . . , n.

Given A.6(4), the application of the first-order differential to the bias component can be

rewritten as

∇Gn[bS ] = S−β
1

n

n∑
i=1

∇gi
[
b̄
]

+
1

n

n∑
i=1

∇gi
[
bS − S−β b̄

]
.

Now,

E

[
1

n

n∑
i=1

∇gi
[
b̄
]]

= E
[
∇gi

[
b̄
]]
, and

E

[
1

n

n∑
i=1

∥∥∥∇gi [bS − S−β b̄]∥∥∥] ≤ G1

∥∥∥bS − S−β b̄∥∥∥ = o
(
S−β

)
.

By Lemma 8(i) with m (z; dγ) = ∇g (z) [dγ], k = 1 and r = 1,

Var (∇Gn[bS ]) ≤ 1

n
C ‖bS‖2 = O

(
S−2β

n

)
.

Since dγ 7→ ∇gi [dγ] is linear, the conditional mean of the stochastic component of the

first-order term is

E [∇Gn[ψS ]|Zn] =
1

n

n∑
i=1

∇gi [E [ψS |zi]] = 0.

Moreover, define ∇G [γ] = E[∇gi[γ]] (where expectations are taken w.r.t. the observation

zi); then

∇Gn[ψS ] = ∇G[ψS ] +
1

n

n∑
i=1

{∇gi [ψS ]−∇G[ψS ]} .

Recalling the definition of ∇G [ψS ], it follows from Lemma 8.(ii) with m (z; dγ) = ∇g(z) [dγ]

and k = 2 that the first term satisfies Var(∇G[ψS ]) ≤ ME
[
‖ψS‖

2
]

= O (S−α2) while the

second term is OP (n−1/2S−α2).
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Regarding the second order differential, its application to the bias component satisfies

∇2Gn[bS , bS ] = S−2β 1

n

n∑
i=1

∇2gi
[
b̄, b̄
]

+ oP

(
S−2β

)
;

moreover,

E

[
1

n

n∑
i=1

∇2gi
[
b̄, b̄
]]

= E
[
∇2gi

[
b̄, b̄
]]
,

and, applying Lemma 8.(ii) with m (z; dγ) = ∇2g(z) [dγ, dγ], k = 2 and r = 1,

Var
(
∇2Gn[bS , bS ]

)
≤ 1

n
C ‖bS‖4 = O

(
n−1S−4β

)
.

To bound the variance component, define ∇2G [γ, γ] = E
[
∇2gi [γ, γ]

]
, and write

∇2Gn[ψS , ψS ] = ∇2G [ψS , ψS ] +
1

n

n∑
i=1

(
∇2gi [ψS , ψS ]−∇2G [ψS , ψS ]

)
.

Applying Lemma 8(ii) with m (z; dγ) = ∇2g(z) [dγ, dγ] and r = 1, k = 2, we obtain that

E
∥∥∇2Gn [ψS , ψS ]

∥∥ = OP
(
S−2α2

)
.

Finally, by the same arguments as before, E
[
∇2Gn[ψS , bS ]

]
= 0 while Var

(
∇2Gn[ψS , bS ]

)
=

O(n−1S−α4) and Var
(
∇2Gn[ψS , bS ]

)
= O(n−1S−α2−2β).

Lemma 10 Under A.1-A.3, A.4(2) and A.5(4), the first and second order differentials of

Gn(θ0, γS) for the EIA in (11) yield the rates given in Theorem 2.

Proof. For the EIA, the first and second order differentials are ∇Gn [dγ] =
∑n

i=1∇gi [dγi] /n

and∇2Gn) [dγ, dγ′] =
∑n

i=1∇
2gi [dγi, dγ

′
i] /n, for any dγ = (dγ1, ..., dγn) and dγ′ = (dγ′1, ..., dγ

′
n).

It is easily seen that the bias components are the same as those we derived for the ECA in

Lemma 9, and so we only consider the variance components. With Zn = (z1, ..., zn), the

mean of the first-order variance component is zero,

E [∇Gn[ψS ]|Zn] =
1

n

n∑
i=1

∇gi
[
E
[
ψi,S |zi

]]
= 0,

while its variance satisfies, using Lemma 8.(i) with m (z, γ) = ∇g(z) [γ] (in particular, MV
S =

0),

Var (∇Gn[ψS ]) ≤ 1

n
CE

[
‖ψS‖

2
]

= O
(
n−1S−α2

)
.
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Applying Lemma 8(i) and (iii) with m (z; dγ) = ∇2g(z) [dγ, dγ] and k = 2, the mean and

the variance of the second order differential satisfy

E
[
∇2Gn[ψS , ψS ]

]
= E

[
∇2gi

[
ψi,S , ψi,S

]]
≤ CE

[∥∥ψi,S∥∥2
]

= O
(
S−α2

)
,

and Var
[
∇2Gn[ψS , ψS ]

]
= O(n−1S−α4). The cross term satisfies E

[
∇2Gn[ψS , bS ]

]
= 0 while

Var
(
∇2Gn[ψS , bS ]

)
= O(n−1S−α2S−2β), and so we can ignore this term since it is of lower

order.

Lemma 11 Assume that A.1-A.3, A.4(3) and A.6(6) hold. Then the rate of the remainder

term Rn,S can be sharpened to:

Rn,S = OP

(
S−3β

)
+OP

(
S−(2−µ4)

)
+O

(
S−(2−µ3)

)
+O

(
n−1/2S−(3−µ6)/2

)
.

Proof. Since the third-order differential exists, the remainder term in (9) can be further

expanded to obtain Rn,S = ∇3Gn [∆γ̂S ,∆γ̂S ,∆γ̂S ] /6 + R̄n,S where, by A.4(3) and the same

arguments used in the proof of Theorem 2, E
[∥∥R̄n,S∥∥] ≤ Ḡ0E

[∥∥∆γ̂i,S
∥∥4
]

= O
(
S−4β

)
+

O
(
S−(2−µ4)

)
. Regarding the third order term, it is easy to check that the bias component is

of order OP
(
S−3β

)
+OP

(
n−1/2S−3β

)
, by arguments similar to those used in Lemma 9.

This leaves the variance component. In the case of EIA, the variance component can be

written as ∇3Gn [ψS , ψS , ψS ] =
∑n

i=1∇
3gi [ψS , ψS , ψS ] /n. By Lemma 8, we obtain:

∇3Gn [ψS , ψS , ψS ]− E
[
∇3Gn [ψS , ψS , ψS ]

]
= O

(
n−1/2S−(3−µ6)/2

)
;

given the independence between simulations,

∣∣E [∇3Gn [ψS , ψS , ψS ]
]∣∣ ≤ 1

S3

S∑
s,t,u=1

∣∣E [∇3gi [ei,s, ei,t, ei,u]
]∣∣

=

∣∣E [∇3gi [ei,s, ei,s, ei,s]
]∣∣

S2

≤ C

S2
E
[
e3
i,s

]
= O(S−(2−µ3)).

In the case of ECA, define ∇3ḡ [γ, γ, γ] = E
[
∇2gi [γ, γ, γ]

]
and write

∇3Gn[ψS , ψS , ψS ] = ∇3ḡ [ψS , ψS , ψS ] +
1

n

n∑
i=1

{
∇3gi [ψS , ψS , ψS ]−∇3ḡ [ψS , ψS , ψS ]

}
.

Applying Lemma 8.(ii) withm (z; dγ) = ∇3g(z) [dγ, dγ, dγ], the two terms areOP
(
S−(3/2−µ3)

)
and OP (n−1/2S−(3−µ6)/2) respectively.
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