Please use this identifier to cite or link to this item:
Ehlert, Andree
Schlather, Martin
Year of Publication: 
Series/Report no.: 
Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 30
The extremal coefficient function has been discussed as an analog of the autocovariance function for extreme values. However, as to the behavior of valid extremal coefficient functions little is known apart from their positive definite type. In particular, the reconstruction of valid processes from given extremal coefficient functions has not been considered before. We show, for the one-dimensional case, the equivalence of the set correlation functions and the extremal coefficient functions with finite range on a grid, and study an analogy to Bochner’s theorem, namely that any such extremal coefficient function is representable as a convex combination of a finite set of positive definite functions. This allows for the construction of simple max-stable processes complying with a given extremal coefficient function and, in addition, highlights further properties of the latter. We will include an application of this approach and discuss several examples. As to processes with infinite range we will consider a natural extension of the term “long memory” that is well-known in the Gaussian framework to max-stable processes.
Extreme value theory
max-stable process
extremal dependence
extremal coefficient function
set covariance function
set correlation function
long memory
Document Type: 
Working Paper

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.