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Abstract

The extremal coefficient function has been discussed as an analog of the autocovari-
ance function for extreme values. However, as to the behavior of valid extremal coeffi-
cient functions little is known apart from their positive definite type. In particular, the
reconstruction of valid processes from given extremal coefficient functions has not been
considered before. We show, for the one-dimensional case, the equivalence of the set
correlation functions and the extremal coefficient functions with finite range on a grid,
and study an analogy to Bochner’s theorem, namely that any such extremal coefficient
function is representable as a convex combination of a finite set of positive definite func-
tions. This allows for the construction of simple max-stable processes complying with a
given extremal coefficient function and, in addition, highlights further properties of the
latter. We will include an application of this approach and discuss several examples. As
to processes with infinite range we will consider a natural extension of the term “long
memory” that is well-known in the Gaussian framework to max-stable processes.
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correlation function; homometric; long memory; summability; spectral representation; Bochner’s theorem
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1 Introduction

The study of componentwise maxima for independent copies of stationary processes on R
d

is a natural question arising in extreme value theory. Its relevancy to practice is indicated
by numerous applications to extremal phenomena in the environmental or financial context,
see e.g. [24, 5, 10]. In theory, the family of limiting processes that emerge from the above
setup is fully characterized by the so-called class of max-stable processes. As the latter fails
to be of finite parametric nature particular models for max-stable processes have become a
major matter of interest. In this regard we may mention the seminal paper by Smith [25],
the extensive class of M4 processes discussed by Smith and Weissman [26], and Schlather [23]
for the spatial case. Here, we will focus on certain properties of the dependence structure of
max-stable processes. Unlike the Gaussian family, however, where the dependence structure
is entirely determined by the corresponding autocovariance function the class of max-stable
processes cannot be completely characterized by a similar concept. Still, a suitable summary
measure for the dependence structure of such processes is given by the extremal coefficient
function, a conditionally negative definite function proposed by Schlather and Tawn [24] that
is a special case of the extremogram [6]. For a more generalized point of view we may also
refer to the notion of max-zonoids studied in [17]. Similar to the usual autocovariance the
extremal coefficient function is a dependence measure for pairwise (temporal or spatial) sepa-
rations of a process at a given lag h ∈ R

d. Although it is a rough summary of the dependence
structure, i.e. it neither characterizes the multivariate marginals of the process nor the bivari-
ate dependence structure over space or time completely, it has a convenient interpretation
that is appropriate to most applications. Moreover, as in the Gaussian case a summability
condition on the extremal coefficient function will allow for a corresponding characterization
of max-stable processes as having short or long memory. Further, any given extremal coeffi-
cient function imposes significant restrictions on the admissible set of underlying max-stable
processes. Here, we will exploit in more detail the structure of extremal coefficient functions
in order to recover corresponding max-stable processes. Note that throughout we will confine
our analysis to the one-dimensional discrete-time case. Based on the well-known fact that
the set of extremal coefficient functions is convex [24] we will, in particular, focus on convex
decompositions of those functions, i.e. a representation of the latter in terms only of the ver-
tices of their hull, where we will use the term vertex extremal coefficient function in the sense
of Sasvári [22], Definition 1.8.1. Up to uniqueness, what will not hold in our analysis here,
this is the content of Bochner’s theorem, see Theorems 1.8.10 and 1.9.6 in [22], for instance.
It will be instructive at this point to have an early look at Fig. 1 below where as an example
for a range of n = 5 we display the abovementioned vertex extremal coefficient functions. Put
differently, all valid extremal coefficient functions on Z up to range five are given by some
convex combination of the functions included in the figure. As a crucial point we will discuss
in detail the determination of the set of vertices. Our results also address Matheron’s [16]
question of characterizing the ensembles of positive definite functions belonging to certain
families of marginal distributions. Such characterization, namely that of separable positive
definite functions, has been considered by [11].
Our approach will be organized as follows. In Section 2 we will introduce the concept of
set correlation functions. Following a discussion of their properties we will restrict to their
evaluation on a grid, and determine the vertices of their convex set. We point out that the
analysis in Section 2 refrains from any specific aspects of extreme value theory. We will,
however, show in Section 3 that the ensembles of set correlation functions and extremal
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coefficient functions coincide on a grid. The reason to work with set correlation functions
first is that in order to analyze their structure and determine the vertices of their set we
may refer directly to well-known concepts from the literature, in particular the problem of
homometry [18, 19]. In Section 3 we will then formally refer to the theory of extremes
and discuss two particular concepts that are essential to our approach, namely max-stable
processes and extremal coefficient functions. In Section 4 we shall introduce a sparse reference
class of max-stable processes that is intimately related to the above set of vertices. The class
of processes depends on a weight vector that may be chosen such as to reproduce any valid
extremal coefficient function. The reconstruction of max-stable example processes from given
extremal coefficient functions is then essentially reduced to the determination of suitable
weights. An example of the latter in addition to some related applications will be discussed
in Section 5. Finally, the usefulness of partial knowledge of the extremal coefficient function
for assertions on the range of the underlying process will be considered in Section 6.
Throughout, following standard conventions we will write S + q = {x + q : x ∈ S}, and
accordingly aS = {ax : x ∈ S}, for a set S ⊆ R, and q, a ∈ R. We will denote the indicator
function of a set S ⊆ R by 1(x ∈ S). Further, we will assume all operations that involve
vectors to apply componentwise, and denote by “⊂” a proper inclusion whereas “⊆” does not
preclude equality. For x ∈ R let ⌊x⌋ = max{n ∈ Z : n ≤ x}.

2 Set correlation functions and basic notions

In this section we will concentrate exclusively on set correlation functions, a concept shown
in Section 3 to be equivalent to the extremal coefficient functions on a grid. Note that this
section is self-contained and independent of the concepts used in extreme value theory. In our
approach we will prove stepwise an analog of Bochner’s theorem in the sense of Sasvári’s [22]
Theorem 1.9.6 for the ensemble F∗

n,Z of set correlation functions with finite range n ∈ N that
are evaluated on Z. That is, we will show that F∗

n,Z is a convex set, and we will determine
its vertices, i.e. the extremal positive definite functions of F∗

n,Z, see Lemma 1 and Theorem 1
below. To begin with, it will be instructive to incorporate the relevant concepts successively
into the well-known framework of general covariograms. To this end, for an integrable and
square integrable function w(x) in R we define the covariogram by the convolution product

f(h) =

∫

w(x)w(x + h)dx, h ∈ R. (1)

Note that two fundamental properties of the covariogram, namely symmetry and positive defi-
niteness, are immediate from (1), and will be crucial in the following. As an important special
case of (1) we will consider next the length of the intersection of a set with its translation.
More precisely, for w(x) = 1(x ∈ S), S ∈ σ∞, let

fS(h) =

∫

1(x ∈ S)1(x ∈ (S − h))dx = |S ∩ (S − h)|, h ∈ R, (2)

denote the set covariance function of S, also termed geometric covariogram [15], where σ∞
stands for the ensemble of all Borel sets S ⊆ R with 0 < |S| < ∞. For later reference we
introduce σn ⊆ σ∞ in order to represent accordingly all Borel sets S ⊆ [q, n+q) for some q ∈ R.
The number n ∈ N will later be referred to as finite range. For convenience, in the following
we shall without loss of generality consider the set correlation functions f∗S(h) = fS(h)/fS(0)
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for all h ∈ R, S ∈ σ∞. To provide some preliminary insight into the behavior of f∗S note
that by (2) we have in particular that f∗S(0) = 1,

∫

f∗S(h)dh = |S|, and that f∗S(h) is not
differentiable at the origin [4]. As a further restriction of (1) and (2) we shall henceforth
confine our analysis to the evaluation of f∗S on a subset Q ⊆ R, i.e. we consider f∗S(h), h ∈ Q,
and put F∗

n,Q = {f∗S ∈ R
Q : S ∈ σn} for any n ∈ N ∪ {∞}. Note that f∗S ∈ F∗

∞,Q might be in
F∗

n,Q for some n ∈ N although S is unbounded. The following elementary lemma provides a
fundamental background for the rest of our analysis.

Lemma 1. For all n ∈ N ∪ {∞} and all p ∈ N the set F∗
n,p−1Z

is convex.

Proof. Let f∗S1
, f∗S2

∈ F∗
n,p−1Z

, n ∈ N ∪ {∞}. Consider first the case n ∈ N. Without loss of

generality we may assume that Si ⊆ [0, n), i = 1, 2. For λ ∈ [0, 1] put

S3 =
⋃

i∈Z

[([

0,
λ

p

)

∩ λ

(

S1 −
i− 1

p

))

∪

(([

0, 1 −
λ

p

)

∩ (1 − λ)

(

S2 −
i− 1

p

))

+
λ

p

)

+
i− 1

p

]

.

Now, we have that S3 ∈ σn, and f∗S3
(h) = λf∗S1

(h) + (1 − λ)f∗S2
(h), h ∈ Z/p, holds by (2). If

n = ∞, the assertion follows for Si ⊆ R, i = 1, 2.

Next, by V (F∗
n,Z) we will denote the unknown set of vertices representing the convex hull of

F∗
n,Z. It will be a consequence of Proposition 1 below that V (F∗

n,Z) is contained in a natural
superset with finite cardinality for any n ∈ N, i.e. |V (F∗

n,Z)| ≤ 2n. The superset will be
determined by the set of all 2n binary vectors that itself entails substantial redundancies to be
discussed below. We will introduce simple set correlation functions f∗Ub

for Ub =
⋃

j∈Ib
[j−1, j),

where Ib is the set of indices corresponding to ones in b = (b1, . . . , bn) ∈ Bn = {0, 1}n

(e.g. Ib = {1, 3, 4} for b = (1, 0, 1, 1)). For the restriction of f∗Ub
, b ∈ Bn, to Z we shall for

simplicity introduce the notation f∗Ib
, and put H∗

n,Z =
{

f∗Ib
∈ R

Z, b ∈ Bn

}

. For later reference,

note that by (2), in particular,

f∗Ib
(h) =

∑

k∈Z

min{bk, bk+h}|Ib|
−1 =

∑

k∈Z

bkbk+h|Ib|
−1, h ∈ Z, b ∈ Bn, (3)

where bk = 0 for k ∈ Z \ {1, . . . , n}.

Proposition 1. For all n ∈ N we have that V (F∗
n,Z) ⊆ H∗

n,Z. Further, V (F∗
∞,Z) ⊆

⋃∞
n=1 H

∗
n,Z.

Proof. In order to show the first assertion let n ∈ N and S ∈ σn. Without loss of generality
we may assume that S ⊆ [0, n). We will show that

f∗S(h) =
∑

b∈Bn

f∗Ib
(h)µb, h ∈ Z,

where 0 ≤ µb ≤ 1, b ∈ Bn,
∑

b∈Bn
µb = 1. To this end, for all b ∈ Bn let

δb = [0, 1) ∩
⋂

i∈Ib

(S + 1 − i) (4)
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and put

∆b = δb ∩
⋂

a∈Bn:Ib⊂Ia

δc
a ⊆ [0, 1). (5)

Now, we find that

∆a ∩ ∆b = δa ∩ δb ∩

(

⋃

ω∈Bn:Ia⊂Iω
or Ib⊂Iω

δω

)c

= ∅ for all a, b,∈ Bn with a 6= b. (6)

Here, the last equality follows from the fact that by (4) we have

δa ∩ δb ⊆
⋃

ω∈Bn:Ia⊂Iω
or Ib⊂Iω

δω, a, b,∈ Bn, a 6= b.

Let Sb = •

⋃

i∈Ib
(∆b + i− 1), b ∈ Bn, where the union is disjoint by (5). By (5) and (6) we get

in particular that

Sa ∩ (Sb + h) = ∅ for all h ∈ Z, and all a, b,∈ Bn with a 6= b. (7)

Further, (4) and (5) yield for all b ∈ Bn that Sb = •

⋃

i∈Ib
(∆b + i− 1) ⊆ S, and hence

•

⋃

b∈Bn

Sb ⊆ S. (8)

Next, note that x ∈ S by (4) implies that x ∈ δb + i − 1 for some i ∈ {1, . . . , n} and b ∈ Bn

with Ib = {i}. By (5) we get further that x ∈ ∆a + i − 1 for some a ∈ Bn with Ib ⊆ Ia.
Altogether we now find that x ∈ S implies

x ∈ •

⋃

b∈Bn

(∆b + i− 1) ⊆ •

⋃

b∈Bn

•

⋃

i∈Ib

(∆b + i− 1) = •

⋃

b∈Bn

Sb,

and hence S = •

⋃

b∈Bn
Sb by (8). Then, from (7) and (2) we get for µb = |Sb|/|S| = |∆b||Ib|/|S|,

b ∈ Bn, that

f∗S(h) =
∑

b∈Bn

f∗Sb
(h)µb =

∑

b∈Bn

f∗Ib
(h)µb

where the second equality holds by definition of Sb and f∗Ib
. We finally consider the second

assertion. For any S ∈ σ∞ let

Ln =
⋃

z∈Z

(

z +
⋃

i∈Z\{−n,...,n}

((S − i) ∩ [0, 1])

)

, n ∈ N,

and S = (S ∩ Ln) ∪ (S ∩ Lc
n). Then,

f∗S = |S ∩ Lc
n||S|

−1f∗S∩Lc
n

+ |S ∩ Ln||S|
−1f∗S∩Ln

∈ F∗
∞,Z

and f∗S∩Lc
n
∈ F∗

2n+1,Z. Now, for n → ∞ we have that |S ∩ Lc
n||S|

−1 → 1, and the second
summand tends to 0.
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Next, via the introduction of suitable equivalence relations we will successively discard redun-

dancies within Bn and finally determine a set Cn ⊆ Bn with V (H∗
n,Z) =

{

f∗Ib
∈ R

Z, b ∈ Cn

}

. In

particular, we will demonstrate that the immediate idea of congruence for any two sets Ia and
Ib, a, b ∈ Bn, is a sufficient condition for f∗Ia

= f∗Ib
only whereas the concept of homometry to

be discussed below is necessary and sufficient. Still, we will also study the former equivalence
relation in more detail as the number of noncongruent and homometric vectors a, b ∈ Bn will
turn out to be relatively small, cf. Proposition 2 and Tab. 1. To formalize the notion of congru-
ence first define reflections ru : {0, 1}n → {0, 1}n, u ∈ {0, 1}, r1((x1, . . . , xn)) = (xn, . . . , x1),
r0 = id, and translations st : {0, 1}n → {0, 1}n, t ∈ Z,

st((x1, . . . , xn)) =







(0, . . . , 0, x1, . . . , xn−t) if xn−t+1, . . . , xn = 0 and t ≥ 0,
(x−t+1, . . . , xn, 0, . . . , 0) if x1, . . . , x−t = 0 and t ≤ −1,
(x1, . . . , xn) else.

Now, for all a, b ∈ Bn we will define congruence by the equivalance relation a ∼c b, a =
st ◦ rz(b) for some (t, z) ∈ {−n + 1, . . . , n − 1} × {0, 1}. We denote the quotient set of Bn

with respect to ∼c by Bn/∼c and state the following result for |Bn/∼c|, i.e. the number of
non-congruent patterns in Bn.

Proposition 2. We have that

|Bn/∼c| = 2n−2 + 2⌊(n−2)/2⌋ + 2⌊(n−1)/2⌋ − 1, n ∈ N. (9)

In particular, we have |Bn/∼c| ∼ 2n−2.

Proof. Let Bn,1 = {b ∈ Bn : b1 = 1} ⊆ Bn where applying the translation defined above we
have that b = st(a) for all b ∈ Bn and some (t, a) ∈ {0, . . . , n− 1}×Bn,1. Hence, by definition
of the equivalence relation ∼c we find that

|Bn/∼c| = |Bn,1/∼c|. (10)

Next, consider the partition Bn,1,N ∪ Bn,1,E of Bn,1 where Bn,1,N = {b ∈ Bn,1 : bn = 0} and
Bn,1,E = Bn,1 \ Bn,1,N . We obviously get that a 6∼c b for any a ∈ Bn,1,N and any b ∈ Bn,1,E

such that
|Bn,1/∼c| = |Bn,1,N/∼c| + |Bn,1,E/∼c|. (11)

Note that by definition of Bn,1 and Bn,1,N we have that b ∈ Bn−1,1 if and only if (b, 0) ∈ Bn,1,N

such that, in particular, |Bn−1,1/∼c| = |Bn,1,N/∼c|. Applying the latter equality successively
to (11) we find with (10) that

|Bn/∼c| =

n
∑

j=1

|Bj,1,E/∼c|. (12)

For Sn = {b ∈ Bn,1,E : bk = bn−k+1, k = 1, . . . , n}, i.e. the set of all symmetric vectors
b ∈ Bn,1,E, we now consider the partition

Bn,1,E = An ∪ Sn (13)

where An = Bn,1,E \ Sn. It is immediate that Sn can be identified with its quotient set with
respect to ∼c, i.e. Sn/∼c =

⋃

S∈Sn
{S}. Moreover, with respect to the set An ⊆ Bn,1,E of
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asymmetric vectors for all a ∈ An we have that r1(a) = b for some b ∈ An, b 6= a. Note that
st(a) = a for all (t, a) ∈ Z × Bn,1,E, and hence we get that |An/∼c| = 1

2 |An|. Further, the
definition of Sn yields that a 6∼c b for any a ∈ Sn and any b ∈ An such that

|Bn,1,E/∼c| = |An/∼c| + |Sn/∼c| =
1

2
|An| + |Sn| =

1

2
|Bn,1,E| +

1

2
|Sn| (14)

where the second equality follows from the above results and the third equality holds by (13).
Note that Bn,1,E is the ensemble of all b ∈ Bn with b1 = bn = 1 and cardinality

|Bn,1,E| =

n−2
∑

m=0

(

n− 2

m

)

. (15)

For the number of symmtric sequences |Sn| we find by case differentiation that, for n ≥ 3,

|Sn| =
n−2
∑

m=0































(
1
2
(n−2)
1
2
m

)

if m,n even,
(

1
2
(n−3)
1
2
m

)

if n odd and m even,
(

1
2
(n−3)

1
2
(m−1)

)

if m,n odd,

0 else.

(16)

By case differentiation upon (9) we get that, for n ≥ 3,

|Bn/∼c| = 4 +
1

2

n−2
∑

j=2

j
∑

m=0

(

j

m

)

+
1

2

⌊(n−2)/2⌋
∑

j=1

j
∑

m=0

(

j

m

)

+

⌊(n−3)/2⌋
∑

j=1

j
∑

m=0

(

j

m

)

= 2n−2 + 2⌊(n−2)/2⌋ + 2⌊(n−1)/2⌋ − 1.

It is readily seen that the r.h.s. also holds for n = 1 and n = 2.

Note from Proposition 2 that the correction for congruence asymptotically reduces the num-
ber of relevant binary vectors by three quarters. Next, in order to motivate the notion of
homometry we shall consider an alternative interpretation of the set correlation that focusses
on the mutual differences between the elements in Ib, i.e.

f∗Ib
(h) = |{(x, y) ∈ I2

b : x+ h = y}||Ib|
−1, h ∈ Z. (17)

The concept of homometry, also known as turnpike or partial digest problem, is typically
specified by equations similar to (17). In particular, given all distances between points on
the line is it possible to retrieve the corresponding sets Ib, b ∈ Bn, up to congruence? Put
differently, if any is there a unique class [b] ∈ Bn/∼c, b ∈ Bn, identified by a given set
correlation function f∗ ∈ H∗

n,Z? The answer goes back at least as far as [18, 19] in the context
of the analysis of diffraction patterns in crystallography where the set covariance is related to
so-called multisets and where it is also well-known that |Bn/∼c| > |H∗

n,Z|, n ≥ 12, cf. Table 1.
In line with the above discussion two patterns a, b ∈ Bn are called homometric if, a ∼h b,
f∗Ia

= f∗Ib
, cf. [19]. Denote by [a] = {b ∈ Bn : b ∼h a} the equivalence class of a, i.e. we identify

the equivalence class [a] with the corresponding function f∗Ia
and put f∗[a] = f∗Ia

, a ∈ Bn. Let

Bn/∼h = {[b] : b ∈ Bn}.
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Emphasizing computational complexity the problem has been discussed more recently in [14].
In particular, the determination of some b ∈ [a] from f∗[a] appears to be NP-complex in general.

For later reference we may define |[b]| := |Ia| for some a ∈ [b], b ∈ Bn, by the following lemma.

Lemma 2. From a ∈ [b] for some b ∈ Bn it follows that |Ia| = |Ib|.

Proof. By definition we have that a ∈ [b], b ∈ Bn, is equivalent to f∗Ia
= f∗Ib

such that, in
particular, max Ia − min Ia = max Ib − min Ib =: r. The latter yields by (3) that fIa(r) =
fIb

(r) = 1. Now, by definition we get |Ia| = fIa(r)/f
∗
Ia

(r) = fIb
(r)/f∗Ib

(r) = |Ib|.

By the above discussion we may now restrict to any representative of Bn/∼h as candidate
vectors generating V (H∗

n,Z). For

Cn =

{

[a] ∈ Bn/∼h : f∗[a] 6=
∑

[b]∈Bn/∼h\{[a]}

f∗[b]µ[b], for all µ[b] ∈ [0, 1]

}

⊆ Bn/∼h (18)

we get that
{

f∗Ib
∈ R

Z : b ∈ Cn

}

= V (H∗
n,Z) = V (F∗

n,Z) (19)

where the second equality follows from Proposition 1 and the fact that H∗
n,Z ⊆ F∗

n,Z. Note
that beyond the idea of homometry we are not aware of a suitable concept that yields the
set Cn directly from Bn. The following theorem gives an analog of Bochner’s theorem (cf. e.g.
Theorems 1.9.6 in [22]) for set correlation functions on R that are evaluated on Z only.

Theorem 1. For all S ∈ σn, n ∈ N ∪ {∞}, there is X ⊆ Cn such that

f∗S(h) =
∑

[b]∈X

f∗[b](h)µ[b], h ∈ Z, (20)

where 0 < µ[b] ≤ 1, [b] ∈ X ,
∑

[b]∈X µ[b] = 1. Reversely, given the r.h.s. of (20) a set S ∈ σn

exists such that (20) holds. In particular, |X | ≤ n, n ∈ N.

Proof. The proof of Proposition 1 yields that for all S ∈ σn, µ̄b = |Sb|/|S| and h ∈ Z we have

f∗S(h) =
∑

b∈Bn

f∗Sb
(h)µ̄b =

∑

b∈Bn

f∗Ib
(h)µ̄b =

∑

[b]∈Cn

f∗[b](h)µ̂[b] =
∑

[b]∈X⊆Cn

f∗[b](h)µ[b],

where the third equality follows by (19). The existence of X ⊆ Cn with |X | ≤ n, is a
consequence of Carathéodory’s theorem [3] and (19). Finally, note that

∑

[b]∈Cn

µ̂[b] =
∑

[b]∈X

µ[b] =
∑

b∈Bn

µ̄b = 1

where the weights µ̂[b], [b] ∈ Cn, and µ[b], [b] ∈ X , are not unique in general.

The fact that in general Bn/∼h may include interior points of Cn is referred to in Table 1
where it is shown that |Bn/∼h| > |Cn| for n ≥ 5, cf. also Section 5.3. Note that the results
for |Bn/∼h| and |Cn| in Table 1 have been obtained by simulation, cf. [2]. Related questions
have also been studied by [12] and [20].

8



n |Bn| = 2n |Bn/∼c| |Bn/∼c| − |Bn/∼h| |Bn/∼h| − |Cn|
4 16 7 0 0
5 32 13 0 1
6 64 23 0 2
7 128 43 0 2
8 256 79 0 4
9 512 151 0 7
10 1024 287 0 19
11 2048 559 0 36
12 4096 1087 2 73
13 8192 2143 8 131
14 16384 4223 20 259
15 32768 8383 36 523
16 65536 16639 73 958
17 131072 33151 128 1762
18 262144 66047 234 3379
19 524288 131839 394 −
20 1048576 263167 682 −

Table 1: Number of equivalence classes with respect to congruence, cf. Proposition 2, and homometry where |H∗
n,Z

| =

|Bn/∼h|. We also state the number of homometric equivalence classes in the interior of Cn, i.e. a number |Bn/∼h|− |Cn|
of set correlation functions f∗

[b]
, b ∈ Bn/∼h, are convex combinations of some f∗

[a]
, [a] ∈ Cn, a 6= b, cf. Eq. (18). The

latter result has been obtained by a search algorithm and gives a lower bound. Because of computational limitations we
do not report the results for n ≥ 19.

3 Relations between extremal coefficient and set correlation

A stochastic process X = (Xt, t ∈ Z) with standard Fréchet margins is called max-stable if
its finite dimensional distributions satisfy

P (X1 ≤ x1, . . . ,Xk ≤ xk) = exp

(

−

∫ 1

0

k
∨

i=1

γ̃i(s)

xi
ds

)

(21)

for any k ≥ 1 and all zi ≥ 0, i = 1, . . . , k. Here, the so-called spectral functions γ̃i : [0, 1] → R+

are such that
∫ 1
0 γ̃i(s)ds = 1 for all i. According to [8] the max-stable process X can be

represented as
Xt = max

i∈N

UiγSi
(t), t ∈ Z,

where {(Ui, Si)}
∞
i=1 is a Poisson point process with intensity u−21(u > 0)du× 1(s ∈ [0, 1])ds,

and γi : R → R+,
∫

γi(s)ds = 1 for all i. By [27] a dissipative stationary max-stable process
Y has the representation

Yt = max
i∈N

Uiγt−zi
(Si), t ∈ Z,

where {(Ui, Si, zi)}
∞
i=1 is a Poisson point process on [0,∞) × S × Z with intensity measure

u−21(u > 0)du× dS × 1. Without loss of generality we may again assume that S = [0, 1] and
dS = 1(s ∈ [0, 1])ds. For g0(t) = γ⌊t⌋(t− ⌊t⌋), t ∈ R, we have that

Yt = max
i∈N

Uig0(t− zi), t ∈ Z, (22)
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where {(Ui, zi)}
∞
i=1 is a Poisson point process on [0,∞)×R with intensity measure u−21(u >

0)du× dz. Note that in (22) the spectral function g0 completely charaterizes the dependence
structure of the max-stable process Y on Z. Further, the range of Y is given by

rY = inf{m ∈ N : |supp(g0) ∩ (supp(g0) + t)| = 0 for all |t| ≥ m, t ∈ Z},

i.e. (Y1, . . . , Yk) and (Yk+q, . . . , Yk+q+l) are independent for all q ≥ rY , k, l ∈ N. As a summary
measure reflecting the temporal (spatial) dependence structure of Y the metric

dg0(h) =

∫

|g0(s) − g0(s+ h)|ds, h ∈ Z, (23)

has been proposed in [7]. Following its standard usage in the literature we shall not directly
refer to dg0 but define the equivalent extremal coefficient function [24] as a transformation of
(23) given by

φg0(h) =
dg0(h) + 2

2
=

∫

max{g0(s), g0(s+ h)}ds, h ∈ Z. (24)

Note that a more intuitive interpretation of φg0(h) using (21) is given by

P (Yg0,0 ≤ y, Yg0,h ≤ y) = P (Yg0,0 ≤ y)φg0 (h), y > 0, (25)

or, alternatively,
φg0(h) = 2 − lim

y→∞
P (Yg0,h > y | Yg0,0 > y). (26)

Both representations particularly emphasize the relevancy to practice of the extremal coeffi-
cient function, cf. [10]. Especially (26) provides a convenient interpretation in terms of the
conditional probability of an extreme event to follow a preceding extreme event at lag h. Note
that φY (h) = 2, h ∈ Z, by (25) is equivalent to independence of Yt and Yt+h for all t ∈ Z. For
the ensemble of extremal coefficient functions we will consider a summability condition, and
put Φ∞,Z =

{

φ ∈ [0, 2]Z :
∑

h∈Z
(2 − φ(h)) <∞

}

. We will denote by Φn,Z the restriction of
Φ∞,Z to those underlying processes X with finite range rX ≤ n. The above classification of
extremal coefficient functions motivates the following analogy to the term “long memory” [1]
that usually refers to the non-summabilty of the autocovariance function in the Gaussian
framework. We will propose an analogous notion for max-stable processes.

Definition 1. A second order weakly stationary random field on Z with covariance function
ρ has a long memory [1] if

∑

h∈Z
|ρ(h)| = ∞. A stationary random field Y on Z with existing

extremal coefficient function φ has a long memory if φY 6∈ Φ∞,Z, i.e. the correlation function
of the random field 1(Y > n) is not absolutely summable in the limit as n→ ∞.

Proposition 3. Any stationary max-stable process Y on Z with standard Fréchet margins
and summable function 2 − φ is dissipative.

Proof. Let Yt =
∫e
R ft(u)Mα(du), t ∈ Z, for some measure space R and some random measure

Mα, see [27] for details. Then R can be uniquely decomposed into a dissipative part and a
conservative part C [27, Theorem 6.2], where

∑

t∈Z
ft(u) = ∞, u ∈ C. Assume that µ(C) > 0

10



where µ is the control measure. By stationarity, µ(C0) > 0 for C0 = {u ∈ C : f0(u) > 0},
and we get

∑

t

lim
x→∞

P (Y0 ≥ x, Yt ≥ x)

1 − exp(−1/x)
≥
∑

t

lim
x→∞

1 − exp
(

−x−1
∫

C0
min{ft(u), f0(u)}µ(du)

)

1 − exp(−1/x)

=

∫

C0

∑

t

min{ft(u), f0(u)}µ(du) = ∞

from the fact that
∑

t ft(u) = ∞ implies
∑

t min{ft(u), f0(u)} = ∞ for all u ∈ C0.

The following theorem is essential to the integration of the results discussed in Section 2 into
the extreme value context. It characterizes every summable function 2 − φ for max-stable
processes on Z as a special set correlation function.

Theorem 2. For all n ∈ N ∪ {∞} we have F∗
n,Z = {2 − φ : φ ∈ Φn,Z}.

Proof. Let ξ ∈ F∗
n,Z, n ∈ N ∪ {∞}. Then, there is S ∈ σn such that f∗S(h) = ξ(h), h ∈ Z.

Further, for g0(x) = 1(x ∈ S)|S|−1 we have φg0 = 2 − ξ ∈ Φn,Z by (24) and (2). The reverse
direction is a direct consequence of Corollary 3 in [9], and Proposition 3.

Now, Theorem 2 yields in particular that a discrete-time max-stable random field has a
long memory if and only if its extremal coefficient function cannot be represented by a set
correlation function. Note that Definition 1 also characterizes certain dissipative processes as
having a long memory. Our point of view therefore differs from the interpretation in [21] where
the definition for short memory phenomena coincides with a process being purely dissipative.
Consider e.g. a dissipative process as in (22) with spectral function g0(s) = s−21(s ≥ 1) that
has a long memory according to Definition 1. With respect to Theorem 2 note also that
we have discussed three equivalent concepts representing the extremal coefficient function on
a grid, namely φ, d and f , cf. (24), (23) and (2). We will henceforth mainly be concerned
with two questions related to the above setup. Namely, in what way is the class of extremal
coefficient functions restricted by the right-hand side of (24), and how can processes of the
form given in (22) be reconstructed for given extremal coefficient functions? To this end,
from now on we will focus on so-called M3 processes, also termed mixed moving maxima [28].
More precisely, the processes are discrete versions of (22) where

Mt =
J

max
j=1

max
k∈Z

ajkUj,t−k, t ∈ Z, (27)

for some J ∈ N and a sequence {Uji, j ∈ {1, . . . , J}, i ∈ Z} of i.i.d. standard Fréchet vari-
ables, i.e. P (Uji ≤ u) = exp(−u−1), u > 0. Further, ajk ≥ 0, j ∈ {1, . . . , J}, k ∈ Z, and
∑J

j=1

∑

k∈Z
ajk = 1 such that the marginal distributions of theM3 processes are also standard

Fréchet. Note that we obtain (27) from (22) by choosing

g0(x) = J

J
∑

j=1

∑

k∈Z

ajk1(x ∈ k + J−1[j − 1, j)), x ∈ R. (28)

We will consider the following useful classification of M3 processes. To this end, by Mι we
will denote the set of all M3 processes with J ≤ ι ∈ N ∪ {∞}. Note that for their special
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structure the elements of M1 are canonically referred to as moving maxima or M2 processes.
Further, we put Mι,n for the restriction of Mι to processes up to range n. The extremal
coefficient function φM (h) using (23) and (28) equals φM (h) = (dM (h) + 2)/2 where

dM (h) =

J
∑

j=1

∑

k∈Z

|ajk − aj,k+h|, h ∈ Z,M ∈ M∞. (29)

For later reference, by Dι,n we will denote accordingly the set of functions dM (h), h ∈ Z, for
all M ∈ Mι,n, ι, n ∈ N.

4 A class of simple processes for given extremal coefficients

In the following we will turn the results for set correlation functions obtained in Section 2 into
the construction of actual max-stable processes corresponding to given extremal coefficient
functions. In particular, we will assign to each vertex of F∗

n,Z (see also Definition 1.8.1
in [22]) a simple class ofM2 processes that represents the respective vertex extremal coefficient
functions, cf. Corollary 1 below. We will then focus on weighted maxima of those classes in
order to incorporate the convexity of Φn,Z. To this end, consider the following sparse class
Z(ζ) ⊆ M|Cn|,n of M3 processes. Let G = {ζ = (ζ[b])[b]∈Cn

∈ [0, 1]|Cn| :
∑

[b]∈Cn
ζ[b]|[b]| = 1},

and for all ζ ∈ G define

Z(ζ) =

{

(Zt)t∈Z : Zt = max
[b]∈Cn

ζ[b]
n

max
k=1

r[b],kU[b],t−k, t ∈ Z,

and r[b] = (r[b],1, . . . , r[b],n) ∈ [b]

} (30)

where as before by {U[b],i, [b] ∈ Cn, i ∈ Z} we denote a sequence of i.i.d. standard Fréchet vari-
ables. Note from (30) that any complete vector of representatives r = (r[b])[b]∈Cn

determines
a particular process Z ∈ Z(ζ) for any given ζ ∈ G. In the following proposition we will state
an essential property of the class Z(ζ).

Proposition 4. We have that φA(h) = φB(h), h ∈ Z, for all A,B ∈ Z(ζ), ζ ∈ G.

Proof. By (30) for any fixed Z ∈ Z(ζ) there is a unique vector of representatives r ∈ B
|Cn|
n .

We consequently find by (29) that

φZ(h) =
∑

[b]∈Cn

ζ[b]
∑

k∈Z

max
{

r[b],k, r[b],k+h

}

= 2 −
∑

[b]∈Cn

ζ[b]
∑

k∈Z

min
{

r[b],k, r[b],k+h

}

= 2 −
∑

[b]∈Cn

ζ[b]|[b]|f
∗
[b](h), h ∈ Z,

where the last equality holds by (3), and where we tacitly assume that r[b],k = 0 for all
k ∈ Z\{1, . . . , n}, [b] ∈ Cn. To conclude the proof note that the r.h.s. is independent of r.

The next corollary follows immediately from the proof of Proposition 4. It identifies the
abovementioned classes of M3 processes Z(ζ) that generate the vertex extremal coefficient
functions.
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Corollary 1. Let ζ[b] = |[b]|−1 for any fixed [b] ∈ Cn, and let ζ[a] = 0 for all [a] ∈ Cn, [a] 6= [b].
Then, 2 − φZ(h) = f∗[b](h) ∈ V (H∗

n,Z) for all Z ∈ Z(ζ).

Referring to Corollary 1 we shall in the following denote the vertex extremal coefficient func-
tions by φ[b](h) = φZ(h) = 2 − f∗[b](h) for any Z ∈ Z(ζ) with ζ[b] = |[b]|−1, [b] ∈ Cn. The
functions are given in Fig. 1 for the case n = 5. We will show in Corollary 2 below that the
restriction to the class Z(ζ), ζ ∈ G, is admissible in order to represent any extremal coefficient
function φ ∈ Φn,Z. An actual example for the reconstruction of processes based on the classes
Z(ζ) will be discussed in more detail in Section 5.3.

Corollary 2. For any extremal coefficient function φ ∈ Φn,Z there is a ζ ∈ G with |{ζ[b] :
ζ[b] > 0, [b] ∈ Cn}| ≤ n such that for all Z ∈ Z(ζ) we have φZ(h) = φ(h), h ∈ Z.

Proof. By Theorem 2 there is S ∈ σn such that φ(h) = 2− f∗S(h), h ∈ Z. Further, Theorem 1
with ζ[b] = µ[b]/|[b]|, [b] ∈ X , yields that

f∗S(h) =
∑

[b]∈X

f∗[b](h)ζ[b]|[b]| = 2 − φZ(h) = 2 −
∑

[b]∈X

φ[b]ζ[b]|[b]|, h ∈ Z,

for any process Z ∈ Z(ζ). Here, the second equality follows from the proof of Proposition 4
and the third equality is immediate from the definition of φ[b].

Finally, it will be instructive to recall that any vertex extremal coefficient function φ[b] reflects
a class [b] ∈ Cn of homometric vectors rather than a unique vector b ∈ Bn. In particular, the
signature pattern [28] of a process is in general not determined by the extremal coefficient
function. Even for a given function φZ ∈ Φn,Z where Z ∈ Z(ζ), ζ ∈ G, the signature pattern
corresponding to Z is at best determined up to homometry, cf. Section 2.

5 Examples

5.1 Simplification of arbitrary M3 processes with given coefficients

Let A ∈ MJ,n, J, n ∈ N, be given by the coefficients ajk ≥ 0, j ∈ {1, . . . , J}, k ∈ Z. Due to the
bounded range n of A we may assume without loss of generality that ajk = 0, j ∈ {1, . . . , J},
k ∈ Z \ {1, . . . , n}. Define

ψ : [0, 1]n → [0, 1]n

b 7→ max (b− min{bi : bi > 0}, 0) .

Let the M3 process C ∈ M(Jn),n carry a third index l in addition to j, k, and let C be defined
by the coefficients cjlk ≥ 0, j ∈ {1, . . . , J}, l, k ∈ {1, . . . , n}, that is

Ct =
J

max
j=1

n
max
l=1

max
k∈Z

cjlkUjl,t−k, t ∈ Z, (31)

where the sequence {Ujli, j ∈ {1, . . . , J}, l ∈ {1, . . . , n}, i ∈ Z} again represents i.i.d. stan-
dard Fréchet variables. Further, let cjl = (cjl,1, . . . , cjln) = ψl−1(aj) − ψl(aj) where aj =
(aj,1, . . . , ajn) are the coefficients of A, and ψl = ψ ◦ . . . ◦ ψ gives the l-fold composition of ψ.
We will make use of the following simple fact.
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Figure 1: Vertex extremal coefficient functions φ[b](h), [b] ∈ Cn, for n = 5 and h = 0, . . . , 5. The respective equivalence
classes are identified by the corresponding representatives b ∈ Bn. Note that we only tentatively include the lines joining
the points as we confine our analysis to Z.

Lemma 3. For all a1, a2,m ∈ R let b1 = max(a1−m, 0), b2 = max(a2−m, 0), c1 = min(a1,m)
and c2 = min(a2,m). Then |a1 − a2| = |b1 − b2| + |c1 − c2|.

Now, by a repeated application of Lemma 3 it follows that

dA(h) = dC(h) =

J
∑

j=1

n
∑

l=1

n
∑

k=1

|cjlk − cjl,k+h|, h ∈ Z.

We will finally emphasize that the vertex extremal coefficient functions may be identified
naturally from C. To this end, for cjl 6= 0 let mjl = maxk cjlk and ĉjl = cjl/mjl such that by
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definition of cjl we have ĉjl ∈ Bn for all j ∈ {1, . . . , J} and all l ∈ {1, . . . , n}. Next, put

Cjl,t = |[ĉjl]|
−1 max

k∈Z

ĉjlkUjl,t−k ∈ M1,n, t ∈ Z,

such that (29) yields φCjl
= |[ĉjl]|

−1
∑

k∈Z
max{ĉjlk, ĉjl,k+h}. Further, using (31) we get that

Ct = maxJ
j=1 maxn

l=1 |[ĉjl]|mjlCjl,t, t ∈ Z, and, accordingly, by (29) we now have

φC(h) =

J
∑

j=1

n
∑

l=1

mjl|[ĉjl]|φCjl
(h). (32)

The fact that ĉjl ∈ Bn yields by (30) that Cjl ∈ Z(ζ) for ζ[ĉjl] = |[ĉjl]|
−1 such that for all

processes Cjl with ĉjl ∈ [b], [b] ∈ Cn, we find by Corollary 1 that φCjl
= φ[b]. Finally, (32)

gives

φA(h) = φC(h) =
∑

[b]∈Cn

β[b]φ[b], h ∈ Z,

where β[b] =
∑J

j=1

∑n
l=1mjl|[ĉjl]|1(ĉjl ∈ [b]) for all [b] ∈ Cn. To conclude the example

note that applying the arguments discussed in Sections 2 and 4 we may further reduce the
appropriate index set to X ⊆ Cn.

5.2 Blind reconstruction of M2 processes

We shall now turn to the blind retrieval of an actual example process for an extremal coefficient
function of a max-stable process in discrete time with finite range n. Here, we will first
restrict to the class of M2 processes, that is we put J = 1, in order to show that given a priori
knowledge about J there are alternative approaches for the reconstruction of processes that
do not necessarily resort to Corollary 2. Below we shall discuss such an approach. To this
end, let dX ∈ D1,n be given. Then, there is an unknown (not necessarily unique) M2 process
X that is determined by its coefficients x1, . . . , xn such that by (29) we have

dX(h) =

2n
∑

k=1

|xk − xk+h|, h = 1, . . . , n. (33)

In order to turn (33) into tractable systems of linear equations we will make use of the
following lemma that can be easily seen.

Lemma 4. Let xi ≥ 0, i = 1, . . . , n, and xi = 0, else. There is a permutation π on {1, . . . , n}
such that xπ−1(1) ≥ . . . ≥ xπ−1(n) and

∑

i∈Z

|xi − xi−h| =

n
∑

i=1

απ,h,ixi, h = 1, . . . , n, (34)

where
απ,h,i = 2 [1(π(i) < π(i− h)) + 1(π(i) < π(i+ h)) − 1] ∈ {−2, 0, 2} (35)

for all h, i ∈ {1, . . . , n}, and π(i) = ∞ for all i ∈ Z \ {1, . . . , n}. Further,
∑n

i=1 απ,h,i =
2h, h = 1, . . . , n. The sequence of coefficients απ,h,i, h, i = 1, . . . , n, is unique for a given
permutation π, and vice versa.
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Figure 2: Admissible combinations of a12 and a22 for the process A discussed in Section 5.3 where dA(h) ∈ D1,n (◦)
and dA(h) /∈ D1,n (•).

For the unknown M2 process X according to Lemma 4 there is a (not necessarily unique)
permutation π such that xπ−1(1) ≥ . . . ≥ xπ−1(n) and such that by (33) and (34) we have

dX(h) =

n
∑

i=1

απ,h,ixi, h = 1, . . . , n. (36)

As π is unknown so is the sequence απ,h,i, h, i = 1, . . . , n, and hence running through all
possible permutations Eq. (36) represents n! systems of linear equations where in each case the
coefficients απ,h,i are given by (35). Consequently, an appropriate permutation π is associated
to at least one of the linear systems, and a corresponding solution x1, . . . , xn representing a
process X exists. The latter can be found for instance via a linear program [2]. Note also
that for any d ∈ D∞,n the above approach reveals whether any solution to (36) exists at all,
i.e. whether d ∈ D1,n ⊆ D∞,n.

5.3 Blind reconstruction of M3 processes

As indicated by the above discussion we find that even with respect to the function dA(h)
for an arbitrary process A ∈ M2,n it appears to be nontrivial to state whether dA(h) ∈ D1,n.
Except for some pathological examples we are not aware of a suitable analytic criterion that
focusses directly on the coefficients of A. Thus, using (36) and the method outlined above
we will check by a trial and error procedure whether for simulated processes A ∈ M2,n with
arbitrary coefficients ajk, j ∈ {1, 2}, k ∈ {1, . . . , 5}, we have that dA(h) ∈ D1,n. We give
particular such processes A(a12, a22) where dA(a12,a22)(h) /∈ D1,n for at least some a12, a22 in
Table 2. In order to get more insight into the sensitivity of our results to changes of the
coefficients we run through all admissible values of a12 and a22 with all other coefficients fixed
and state whether dA(a12 ,a22) ∈ D1,n. The result is given in Fig. 2. Apart from a certain
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ajk k = 1 k = 2 k = 3 k = 4 k = 5

j = 1 0.01 a12 0.02 0.05 0.21
j = 2 0.52 − a12 − a22 a22 0.12 0.06 0.01

Table 2: Coefficients of the process A(a12, a22) discussed in Section 5.3.

tradeoff between a12 and a22 along the upper right boundary there appears to be no definite
structure evident from the figure.
Next, we will discuss an example for the reconstruction of max-stable processes that makes
use of Corollary 2, that is we do not consider the above instances where J = 1. We put n = 5
in order to cover at the same time the case |Bn/∼h| > |Cn| discussed in Section 2. To this
end, from the class of processes A discussed above we arbitrarily choose A(0.15, 0.18) with
dA(0.15,0.18)(h) /∈ D1,n where, in particular,

h 1 2 3 4 5

dA(0.15,0.18)(h) 1.06 1.46 1.54 1.96 2.00

From now on, we will assume d(h) = dA(h) to be given and consider the process A ∈ M2,n \
M1,n to be unknown. Let Gd = {ζ ∈ G : dZ(h) = d(h), h ∈ Z, Z ∈ Z(ζ)} be the set of
all vectors ζ ∈ G that determine sets Z(ζ) of suitable candidate processes. Note that Gd is
nonempty by Corollary 2. We will focus on the following system of linear equations

d(h) = dZ(h), Z ∈ Z(ζ), h ∈ Z, (37)

where by Proposition 4 we may choose Z ∈ Z(ζ) arbitrarily. A particular process Z ∈ Z(ζ)
is given in Table 3. To simplify notation we shall replace the indices [b], [b] ∈ Cn, by 1, . . . , 12
according to the second column in Tab. 3. We now get from (37) and (29) for Z as in Tab. 3

b [b] k = 1 k = 2 k = 3 k = 4 k = 5

(1, 1, 1, 1, 1) 1 ζ1 ζ1 ζ1 ζ1 ζ1
(1, 1, 0, 1, 1) 2 ζ2 ζ2 ζ2 ζ2
(1, 0, 1, 0, 1) 3 ζ3 ζ3 ζ3
(1, 1, 0, 0, 1) 4 ζ4 ζ4 ζ4
(1, 0, 0, 0, 1) 5 ζ5 ζ5
(1, 1, 1, 1, 0) 6 ζ6 ζ6 ζ6 ζ6
(1, 1, 0, 1, 0) 7 ζ7 ζ7 ζ7
(1, 0, 0, 1, 0) 8 ζ8 ζ8
(1, 1, 1, 0, 0) 9 ζ9 ζ9 ζ9
(1, 0, 1, 0, 0) 10 ζ10 ζ10
(1, 1, 0, 0, 0) 11 ζ11 ζ11
(1, 0, 0, 0, 0) 12 ζ12

Table 3: Example coefficients ζ[b]r[b],k, k = 1, . . . , 5, for a specific process Z ∈ Z(ζ) ⊆ M12,5, cf. (30). Here,
(ζ1, . . . , ζ12) = ζ where we use the notational convention explained after (37). See Fig. 1 for an illustration of the vertex
extremal coefficient functions φ[b], [b] ∈ Cn, that are retrievable from any Z ∈ Z(ζ) if ζ[b] = |[b]|−1. Note also that the
case b = (1, 1, 1, 0, 1) is not included in the table as [b] ∈ Bn/∼h but [b] /∈ Cn.
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that

dZ(1) =12ζ1 + 4ζ2 + 6ζ3 + 4ζ4 + 4ζ5 + 2ζ6 + 4ζ7 + 4ζ8 + 2ζ9 + 4ζ10 + 2ζ11 + 2ζ12

dZ(2) =14ζ1 + 6ζ2 + 2ζ3 + 6ζ4 + 4ζ5 + 4ζ6 + 4ζ7 + 4ζ8 + 4ζ9 + 2ζ10 + 4ζ11 + 2ζ12

dZ(3) =16ζ1 + 4ζ2 + 6ζ3 + 4ζ4 + 4ζ5 + 6ζ6 + 4ζ7 + 2ζ8 + 6ζ9 + 4ζ10 + 4ζ11 + 2ζ12

dZ(4) =18ζ1 + 6ζ2 + 4ζ3 + 4ζ4 + 2ζ5 + 8ζ6 + 6ζ7 + 4ζ8 + 6ζ9 + 4ζ10 + 4ζ11 + 2ζ12

dZ(5) =10ζ1 + 8ζ2 + 6ζ3 + 6ζ4 + 4ζ5 + 8ζ6 + 6ζ7 + 4ζ8 + 6ζ9 + 4ζ10 + 4ζ11 + 2ζ12.

Numerically, if φ(h) is a valid extremal coefficient function, i.e. Gd is nonempty, a particular
element ζ ∈ Gd may be determined by expanding (37) to a linear program. Here, using [2] we
find e.g.

ζ = (ζ1, . . . , ζ12) = (0.020, 0, 0, 0, 0, 0.085, 0, 0.105, 0, 0.040, 0.135, 0)

as a valid (not necessarily unique) solution. We point out that according to Corollary 2 there
are n = 5 nonzero elements in ζ.

Remark 1. For all processes Z ∈ Z(ζ), ζ ∈ G, we have that
∑

[b]∈Cn
ζ[b] = θZ where θZ

denotes the extremal index, a measure for the expected cluster size of Z, cf. [13]. Note also
that 1/n ≤ θZ ≤ 1, i.e. the range n of Z imposes a lower bound on the extremal index.

5.4 Necessary conditions for valid extremal coefficient functions

Apart from the reconstruction of max-stable processes for given extremal coefficient functions
the technique applied in Section 5.3 is applicable also to evaluate whether a supposed extremal
coefficient function of order n is valid for max-stable processes on Z. To our knowledge, in the
literature so far only necessary conditions for extremal coefficient functions to be admissible
have been discussed [5, 24]. Linking the results for first order variograms (madograms)
discussed by [16] to extremal coefficient functions it is shown in [5] that every valid extremal
coefficient function φ(h) for all h, k ∈ R satisfies

φ(h+ k)τ ≤ φ(h)φ(k), (C1)

φ(h+ k)τ ≤ φ(h)τ + φ(k)τ − 1, 0 ≤ τ ≤ 1, (C2)

φ(h+ k)τ ≥ φ(h)τ + φ(k)τ − 1, τ ≤ 0. (C3)

In addition, it is well-known that φ(h) is positive semi-definite, cf. [24]. We give an example
showing that conditions (C1) to (C3) are indeed not sufficient. The construction of such
an example is not evident but substantially facilitated by knowledge of the vertex extremal
coefficient functions displayed in Fig. 1. Consider e.g. the following function p : Z → [1, 2],
p(−h) = p(h), with

h 0 1 2 3 4

p(h) 1 5/3 5/3 3/2 2

and p(h) = 2, h ≥ 5. Note that

p(x) = φ[b](x) for x ∈ {0, 3, 4, 5} (38)

and that
p(x) 6= φ[b](x) for x ∈ {1, 2} (39)
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for b = (1, 0, 0, 1, 0) ∈ Bn. Further, by Fig. 1 we easily find that

(

φ[b](3), φ[b](4), φ[b](5)
)

6=
∑

[a]∈Cn\{[b]}

(

φ[a](3), φ[a](4), φ[a](5)
)

µ[a] (40)

for any µ[a] ∈ [0, 1], [a] ∈ Cn \{[b]}. Now, using (38) to (40) we get from the convexity of Φn,Z

that p is not a valid extremal coefficient function. However, it is readily verified that p still
satisfies (C1) to (C3).

6 Restrictions on the range of extremal coefficient functions

In the following we will study a lower bound on the range of a max-stable process if the
corresponding extremal coefficient is known for a fixed h ∈ N only. More precisely, if for any
fixed h ∈ N the extremal coefficient φ(h) is given we will specify the smallest lag h̄ ≥ h for
which φ(h̃) = 2 for all h̃ ≥ h̄ is possible. In practice, the approach will be applicable to the
study of the actual (bounded) memory spread of short memory processes, cf. Definition 1.
Consider for instance the question of a lower bound on the memory of financial markets after
shocks when information is limited to estimates of a single extremal coefficient.

Theorem 3. Let φY (h) ∈ [1, 2) be given for some fixed h ∈ N and some max-stable process
Y ∈ M∞. We have that Y /∈ M∞,rφ

for any

rφ ∈

{

N if φ(h) = 1,
{

1, . . . , [[(φ(h) − 1)−1]]h
}

, else,

where [[x]] = max{n ∈ Z : n < x} for any x ∈ R. On the other hand, if φ(h) ∈ (1, 2), for some
h ∈ N, then a process Y ∈ M∞,[[(φ(h)−1)−1]]h+1 with φY (h) = φ(h) exists.

Proof. The assertion for φ(h) = 1, h > 0, follows directly from Theorem 1.4.1(2) in [22]. The
proof for φ(h) ∈ (1, 2) is based on the M3 representation for max-stable processes discussed in
Section 3, and comprises three steps. First, within the classes M∞,K+h−1 of all M3 processes
with maximum range K + h − 1, K ∈ Nh+ 1 = {h + 1, 2h + 1, . . .}, we will define a simple
M3 process AK,h ∈ M1,K of range K. Then, we will show that AK,h ∈ M∞,K+h−1 minimizes
φB(h) for all B ∈ M∞,K+h−1. Based on this finding we may conclude in step three that all
processes Z ∈ M∞ with φZ(h) = φ(h) are at least of range [[(φ(h) − 1)−1]]h+ 1. We give an
example in order to show that the bounds are sharp.

1. For any K ∈ Nh + 1 let the process AK,h ∈ M1,K be given by the coefficients aK,k,
k ∈ Z, where

aK,ih+1 =

(

K − 1

h
+ 1

)−1

, i ∈ {0, 1, . . . , (K − 1)/h}, (41)

and all other coefficients zero. In particular, by (29) we have

dAK,h
(h) = 2aK,1. (42)

Without loss of generality we let B ∈ M∞,K+h−1 be given by

0 ≤ b1k = aK,k + ε1k ≤ 1, k ∈ {1, . . . ,K + h− 1}, (43)

19



where the aK,k are chosen according to (41). Further, for j ∈ {2, 3, . . .} and k ∈
{1, . . . ,K + h− 1} we let

0 ≤ bjk = εjk ≤ 1 (44)

and tacitly assume all other coefficients to be zero. Now, from
∑∞

j=1

∑

k∈Z
bjk = 1 we

get by (43) and (44) that
∞
∑

j=1

∑

k∈Z

εjk = 0 (45)

and, in particular,
K−1

h
∑

i=0

ε1,ih+1 ≤ 0. (46)

2. We show that for all processes B ∈ M∞,K+h−1 it holds that

dB(h) ≥ dAK,h
(h), K ∈ Nh+ 1. (47)

To this end, note that by (29) we find that (47) is equivalent to

−ε11 − ε1,K ≤
∞
∑

j=1

h
∑

l=1

K−1
h

−1
∑

i=0

|εj,l+(i+1)h − εj,l+ih| +
∞
∑

j=1

h
∑

l=1
j+l>2

(εjl + εj,K+l−1). (48)

Now, (43) and (44) yield that εj,l, εj,K+l−1 ≥ 0 for all j ∈ N and l ∈ {1, . . . , h} with
j + l > 2, such that (48) holds if min{ε11, ε1,K} ≥ 0. In order to show (48) for the
case min{ε11, ε1,K} < 0 put N = {ih + 1, i = 0, 1, . . . , (K − 1)/h} and for j ∈ N,
l ∈ {1, 2, . . . , h} let Sjl =

∑

i∈N+l−1 εji, µ̄jl = Sjl|N |−1 and µjl,max = maxi∈N+l−1 εji.
Further, let

µ1,min = −min {µ1,1,max, 0} . (49)

Now, we find that

−ε11 − ε1,K ≤ |ε11| + |ε1,K | ≤ |ε11 − µ1,min| + |ε1,K − µ1,min| + 2µ1,min

≤

K−1
h

−1
∑

i=0

|ε1,ih+1 − ε1,(i+1)h+1| + 2µ1,min. (50)

Also, by (49) we get for min{ε11, ε1,K} < 0 that mini∈N ε1,i ≤ µ1,min ≤ maxi∈N ε1,i

which yields the second inequality in (50). Next, we have

µ1,min ≤
−S1,1

|N |
=

1

|N |

∞
∑

j=1

h
∑

l=1
j+l>2

Sj,l =

∞
∑

j=1

h
∑

l=1
l+j>2

µ̄jl ≤
∞
∑

j=1

h
∑

l=1
j+l>2

µj,l,max. (51)

Here, if maxi∈N{ε1,i} ≥ 0 note that µ1,min = 0, such that the first inequality is obvious
from the fact that S1,1 ≤ 0 by (46). Else, if maxi∈N{ε1,i} < 0 we get that µ1,min =
mini∈N{−ε1,i} ≤ |N |−1

∑

i∈N −ε1,i = −S1,1|N |−1 which in that case yields the first
inequality. Further, the first equality in (51) holds by (45) and the second equality as
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well as the second inequality are immediate. Finally, for all j ∈ N and all l ∈ {1, . . . , h}
with l + j > 2 we have

2µj,l,max = |µj,l,max − εjl| + |µj,l,max − εj,l+K−1| + εjl + εj,l+K−1

≤

K−1
h

−1
∑

i=0

|εj,l+(i+1)h − εj,l+ih| + εjl + εj,l+K−1. (52)

where the equality follows from the fact that 0 ≤ εjl ≤ µjl,max for l + j > 2. Now, (48)
holds by (50) to (52).

3. Let Z(d(h)) ⊆ M∞ be the class of all M3 processes Z with dZ(h) = d(h). By (47) it
follows that Z(d(h)) ∩M∞,κ+h−1 = ∅ for all

κ ∈ {K ∈ Nh+ 1 : dAK,h
(h) > d(h)} = {K ∈ Nh+ 1 : K < [[2/d(h)]]h + 1}

where (42) yields the equality. Let K∗ = [[2/d(h)]]h + 1 where K∗ < ∞ from the fact
that d(h) > 0 by assumption. In particular, we now have that

dAK∗,h
(h) ≤ d(h) < dAK∗−1,h

(h). (53)

It remains to show that a process Z∗ ∈ M∞,K∗ ∩ Z(d(h)) exists. To this end, let Z∗

be given by z∗k = aK∗,k − εk + δk, k ∈ {1, 2, . . . ,K∗} where aK∗,k are the coefficients of
AK∗,h, cf. (41). Further, we put εih+1 = 1

2aK∗,1(d(h)−2aK∗,1), i ∈ {0, 1, . . . , (K∗−1)/h},
δ2 = 1

2 (d(h)−2z∗1) and all other coefficients zero such that Z∗ is of range K∗. Note that
(53) yields

0 ≤
1

2
d(h) − aK∗,1 < aK∗−1,1 − aK∗,1 =

h

K∗ − 1
−

h

K∗ − 1 + h
< 1

such that 0 ≤ ε1+ih < aK∗,1, i ∈ {0, 1, . . . , (K∗ − 1)/h}. Further, using (53) we have

2z∗1 = 2(aK∗,1 − ε1) < 2aK∗,1 = dAK∗,h
(h) ≤ d(h)

which yields that δ2 > 0. Finally, dZ∗(h) = d(h) is a consequence of (29).
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