Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: http://hdl.handle.net/10419/86883
Autoren: 
de Gooijer, Jan G.
Yuan, Ao
Datum: 
2011
Reihe/Nr.: 
Tinbergen Institute Discussion Paper 11-011/4
Zusammenfassung: 
Often socio-economic variables are measured on a discrete scale or rounded to protect confidentiality. Nevertheless, when exploring the effect of a relevant covariate on the whole outcome distribution of a discrete response variable, virtually all common quantile regression methods require the distribution of the covariate to be continuous. This paper departs from this basic requirement by presenting an algorithm for nonparametric estimation of conditional quantiles when both the response variable and the covariate are discretely distributed. Moreover, we allow the variables of interest to be pairwise correlated. For computational efficiency, we aggregate the data into smaller subsets by a binning operation, and make inference on the resulting prebinned data. Specifically, we propose two kernel-based binned conditional quantile estimators, one for untransformed discrete response data and one for rank-transformed response data. We establish asymptotic properties of both estimators. A practical procedure for jointly selecting band- and binwidth parameters is also presented. Simulation results show excellent estimation accuracy in terms of bias, mean squared error, and confidence interval coverage. Typically prebinning the data leads to considerable computational savings when large datasets are under study, as compared to direct (un)conditional quantile kernel estimation of multivariate data. With this in mind, we illustrate the proposed methodology with an application to a large real dataset concerning US hospital patients with congestive heart failure.
Schlagwörter: 
Binning
Bootstrap
Confidence interval
Jittering
Nonparametric
JEL: 
C14
Dokumentart: 
Working Paper
Erscheint in der Sammlung:

Datei(en):
Datei
Größe
659.72 kB





Publikationen in EconStor sind urheberrechtlich geschützt.