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Abstract: Often socio-economic variables are measured on a discrete scale or rounded to protect con-

fidentiality. Nevertheless, when exploring the effect of a relevant covariate on the whole outcome dis-

tribution of a discrete response variable, virtually all common quantile regression methods require the

distribution of the covariate to be continuous. This paper departs from this basic requirement by present-

ing an algorithm for nonparametric estimation of conditional quantiles when both the response variable

and the covariate are discretely distributed. Moreover, we allow the variables of interest to be pairwise

correlated. For computational efficiency, we aggregate the data into smaller subsets by a binning op-

eration, and make inference on the resulting prebinned data. Specifically, we propose two kernel-based

binned conditional quantile estimators, one for untransformed discrete response data and one for rank-

transformed response data. We establish asymptotic properties of both estimators. A practical procedure

for jointly selecting band- and binwidth parameters is also presented. Simulation results show excellent

estimation accuracy in terms of bias, mean squared error, and confidence interval coverage. Typically

prebinning the data leads to considerable computational savings when large datasets are under study, as

compared to direct (un)conditional quantile kernel estimation of multivariate data. With this in mind,

we illustrate the proposed methodology with an application to a large real dataset concerning US hospital

patients with congestive heart failure.
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1 Introduction

Nonparametric estimation of conditional cumulative distribution function (CDF) of a response

variable given a covariate has been well studied for continuous data. Given a sample conditional

CDF, sample conditional quantiles are often computed to characterize the distribution. There

are situations, however, where it is necessary to calculate sample conditional quantiles from data

having a completely discrete distribution. For example, in studying the relationship between

monthly unemployment spell and experience-education profile (in years), policymakers want to

know whether higher education reduces unemployment spell between the 25th and 75th quantiles

of the response variable as a function of the covariate. Another example concerns the need for

better management of hospital care by describing the shape of the conditional distribution of

the length of hospital stay, a variable often considered as a measure of patients’ recovery, given

covariates like patients age, sex, gender, ethnicity, or severity of disease.

Methods for unconditional quantile estimation for discrete data have been proposed by

González-Barrios and Rueda (2001), Chen and Lazar (2010), and Frydman and Simon (2007),

etc. Machado and Santos Silva (2005) introduced a variant of quantile regression for mixed

discrete-continuous variables. More recently, Li and Racine (2008) considered nonparametric

estimation of conditional CDFs for mixed discrete (categorical)—continuous random variables.

Clearly, the latter two approaches are restricted by the continuous assumption of the covariates.

But, as with the examples above, in practice there may not exist continuously distributed covari-

ates. In this paper we consider a setting where both the response variable and the covariate are

assumed to be discretely distributed. Moreover, we allow the variables of interest to be pairwise

correlated. For efficient and effective smoothing, we aggregate the data into smaller subsets by

a binning operation, and make inference on the resulting prebinned data. This set-up may offer

new insights as to the nature of the relationship between a response and potential covariates,

possibly with interesting implications to the issue at hand.

As an illustration Figure 1 displays a scatterplot of a discrete-valued response variable

“Length of hospital stay” (in days) versus “Severity of disease” (measured on a 7-point scale)

for a dataset of 20 631 patients; see Section 7 for more details. In addition Figure 1 shows

some selected conditional percentiles using a “naive” method, i.e. assuming the data are from

a continuous distribution. Kendall’s rank correlation coefficient indicates, at a two-tailed sig-

nificance level of 1%, that both variables are positively correlated. Note that the conditional

percentiles diverge noticeably toward the high end of the severity scale. For instance the central
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Figure 1. Some selected population conditional percentiles for the discrete-valued response vari-

able “Length of hospital stay” versus the covariate “Severity of disease” based on 20,631 obser-

vations.

50% of the response, 25th through 75th percentile, at a value 5 of the covariate is equal to 8

days while this becomes 22 days when the covariate takes a value 7. On the other hand, when

unconditional percentiles are computed, ignoring correlations between the response variable and

the covariate, the central 50% of the response variable is equal to 10 days. Hence, conditional

percentiles convey more information about the data than unconditional percentiles.

Note that the above dataset is large, which is common in many areas of science. However,

analysing large sample sizes  often needs special statistical methods to reduce the amount

of storage space and computing time. For instance, computing a standard kernel-smoothed

density estimator at  evaluation points for continuously distributed data requires  kernel

evaluations; see, e.g., Fan and Marron, 1994. A number of methods are available to address this

problem and most work with the idea of binning the data first. The binning operation will lead

to substantial computational savings since calculations are based on the number of bins, rather

than the number of data points with the total number of operations directly proportional to

the expected number of nonempty bins. Moreover, it has been shown (cf., González-Manteiga,
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Sánchez-Sellero and Wand 1996, and Holmström, 2000) that the estimation error of the binned

kernel-smoothed density estimator is essentially the same as that of the standard kernel estimator

for continuous data.

With a strong view toward analysing large datasets we propose a kernel-based, nonparamet-

ric, approach for conditional quantile estimation of correlated discretely distributed bivariate

data by binning the discrete-valued response variable. Binning has been studied in the case of

unconditional kernel-based density estimation and local polynomial kernel estimation of contin-

uous data. Its application to estimating conditional quantiles for data from bivariate discrete

distributions has not been a topic of research, as far as we are aware. Often binning is viewed

as a discrete approximation to the continuum with only mass points on a regular grid. But in

our case the discretization of the binning operation naturally parallels the type of data under

study. Hence, the binning operation is well motivated.

With discretely distributed data, each bin defines a local neighborhood of the data in the

sense that observations within a bin have similar probability mass function (pmf). The resulting

conventional binned sample conditional CDF is purely discrete, jumping at the bin points. Thus

asymptotic theory breaks down due to the fact that the sample conditional CDF is not absolutely

continuous with respect to Lebesgue measure. Consequently, asymptotic properties of binned

sample conditional quantiles cannot be obtained by Taylor series expansion. To circumvent this

problem we propose a new conditional quantile estimator by linearly interpolating between the

jumps of the conventional binned sample CDF. In fact, we consider two variants of this estimator:

one for untransformed discrete data, and one that can be used for rank-transformed response

data. In both cases we establish, under mild regularity conditions, asymptotic normality and

consistency. In addition to these theoretical contributions, we also formulate a data-driven

algorithm for jointly selecting the band- and binwidths of the proposed conditional quantile

estimators.

The paper has seven remaining sections. In Section 2, we present the binning principle in its

simplest form. In Section 3, we define two binned kernel-based conditional quantile estimators.

Section 4 presents asymptotic properties of the proposed quantile estimators. Various practical

issues related to the two estimators are discussed in Section 5. In Section 6 we provide numerical

simulations of the performance of the estimators for correlated bivariate discrete random vari-

ables. Section 7 contains an empirical illustration. Finally, Section 8 presents some concluding

remarks. We relegate all technical arguments to an Appendix.
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2 Binning

Let {1     } denote a set of observed random variables having a probability density function
() where  ∈ R has bounded support on [ ] (−∞     ∞). To bin the data, we divide
the support set into  intervals (bins, or alternatively referred to as grid sizes), {A}=1, with
A = [−1 ) ( = 1     − 1), A = [−1  ], and  = 0  1  · · ·   = . For

notational simplicity, we assume that the lengths of the intervals (binwidths),  = (−−1), are
fixed across the intervals. We refer to  ≡  ( = 0 1    ) as the grid points. Then a binning

rule in its simplest form may be represented by a sequence of weights {( );  = 0 1    },
with

P
=0( ) = 1, such that the data are replaced by the weights attached to each grid

point according to a certain rule. Thus a new data value is created as () =
P

=1( )

(grid count) at grid point . One example of a binning rule, adopted in this paper, is linear

binning (Jones and Lotwick, 1983) where

() =

X
=1

(1− |−1 − |)+ (2.1)

with + = max(0 ). Thus, it assigns a continuous value at l by the total weights attached to it.

Data values  closer to  contribute more weight, while ’s with distance   contribute zero

weight. Hall and Wand (1996) showed that, in terms of approximation error, linear binning is

more accurate than simple binning, where each observation is assigned to its nearest grid point.

3 Binned Conditional Quantiles for Discrete Distributions

3.1 Untransformed data

Our analysis concerns a pair of random variables ( ) such that (covariate) and  (response)

are discrete, taking values in the space N1 × N0 from a joint discrete probability distribution

function  ( ) = Pr( ≤   ≤ ), with N1 the set of positive integers and N0 the set of non-

negative integers. Then it is well-known that the -conditional quantile ( ∈ (0 1)) is defined as
the value () that solves  (()|) = , where  (|) = Pr( ≤ | = ), or alternatively

() = min∈N1{ (|) ≥ }. Let (1 1)     ( ) denote a random sample of size 

from the distribution  ( ). Assume that the raw data {} are arranged in increasing order,
giving rise to the data {(1)     ()} with {̃} denoting the corresponding rearranged ’s.

To obtain a binned estimator of  (|), the dataset {̃ ()} is split up into  disjoint

subsets with  denoting the number of distinct values ∗ ( = 1    ) taken on by the ’s
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( = 1     ). Assume that each subset contains  =
P

=1 (̃ = ∗) (  0; = 1    )

observations, with () the indicator function for set {}. In addition, let the grid count at
grid point , conditioning on the covariate  = ∗, be given by

(|) =
X
=1

(̃ = ∗)(1− |−1() − (− 1)|)+ ( = 1    ;  = 0 1     − 1) (3.1)

Note that (3.1) is a rescaled version of (2.1) with (̃ = ∗) representing the conditioning on

 =  in  (|). The rescaling allows for the case 0(|) = 0. Given (3.1), and assuming

 6= 0, the relative cumulated grid counts at each grid point  ( = 0    ) conditional on

each value ∗ ( = 1    ) can be computed.

Now the basic idea is to accumulate the bin weights in a matrix with each row corresponding

to a bin and each column to a conditioning value, and then kernel smooth the rows. This

requires, three steps. Summarize the relative cumulated grid counts (·) into an  × 

matrix C, defined as follows

(|) =
⎧⎨⎩ 0 if  = 1    ;  = 1

1


P−1
=1 (|) if  = 1    ;  = 2    

Next, compute an × kernel weighting matrix W , defined such that its ( )th element is

given by

() =
(( − ∗))P
=1 (( − ∗))



where(·) is a discrete kernel function on the ordered set [1∞], with  ( ∈ N1) the bandwidth.
Finally, combine C andW into an  × matrix CW with binned kernel-smoothed empirical

conditional CDFs. The ( )th element ( = 1     ;  = 1    ) of this product of matrices

is given by

(|) = 1P
=1 (( − ∗))

X
=1

(( − ∗))(|) (3.2)

Note (3.2) may be considered as a binned discrete analogue of the Nadaraya-Watson conditional

CDF estimator in the case ( ) is continuously distributed.

Using (3.2), it may be shown that the binned conditional quantile estimator is not consistent

if  is at a plateau of  (|), i.e.  (|) =  and  (|) is flat in a right-neighborhoud of ();
see Section 4. A way around this difficulty is to define a new conditional CDF, say ̃ (|), from
 (|) by interpolation at successive grid points, i.e.

̃ (|) =  (|) +
³ − 



´h
 (+1|)−  (|)

i
 (3.3)
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where  is chosen such that  ≤   +1. Consequently, the corresponding conditional

quantile is defined as () = inf∈R{̃ (|) ≥ }, where the superscript  highlights the fact
that (3.3) is a continuous CDF (see Section 4 for our choice of interpolation).

Given (3.3), and making use of (3.2), an estimator (|) of ̃ (|) at a general point ∗
( = 1    ), can be obtained as a linear interpolation between successively grid points. More

precisely, the binned kernel-smoothed empirical conditional CDF is given by

̃(|∗) = (|∗) +
³ − 



´h
(+1|∗)− (|∗)

i
 (3.4)

Hence the binned smoothed conditional quantile estimator of () is defined by

̂


(
∗
) =

⎧⎨⎩
³

−(|∗)
(+1|∗)−(|∗)

´
 +

³
(+1|∗)−

(+1|∗)−(|∗)
´
+1 if 6= 0

0 if = 0
(3.5)

where 0 is an arbitrary value, and where  is chosen such that
P

=1 (|∗) ≤  P+1
=1 (|∗).
The binned conditional quantile estimator ̂(·) of  (|) can be obtained from (3.5) by

using the transformation

̂(
∗
) = d̂



(
∗
)− 1e (3.6)

where d·e is the ceiling function that returns the smaller integer greater than, or equal to its
argument; see Machado and Santos Silva (2005, Theorem 2). Clearly, the advantage of binning

stems essentially from the fact that the grid counts need to be computed only once.

3.2 Rank-transformed data

In practice one may encounter a situation with highly skewed empirical conditional CDFs (see

Section 7). This gives rise to many empty bins and a few bins containing a large proportion of

the observations. A rank transformation of  avoids this problem. Hence, we now introduce a

binned conditional quantile estimator for rank-transformed discrete-valued data. The proposed

estimator is similar in spirit to a kernel-smoothed binned conditional quantile estimator for

bivariate continuously distributed random variables introduced by Magee, Burridge and Robb

(1991).

Ranks can be assigned to data in several ways. Here, we rank the entire set of observations

{} from smallest to largest, giving rise to the dataset {1     } with {̃} the corresponding
rearranged ’s. In the case of ties we order tied observations at random (random ranking
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approach). Then, following the same setup as introduced in Subsection 3.1, the dataset {̃ }
is split up into  disjoint subsets each containing  ( = 1    ) observations. From the

ranking of the response data we conclude that 0 = 0 and  =  + 1. Then, similar to (3.1),

we assume that the grid count at grid point , conditioning on the covariate  = ∗, is given

by

̃(|) =
X
=1

(̃ = ∗)(1− |−1 − (− 1)|)+ ( = 1    ;  = 0 1     − 1) (3.7)

where  = (+1) denotes the corresponding binwidth. Thus, in analogy with (3.2), a typical

element of the  × matrix CW with binned rank-transformed empirical CDFs is given by


 (|) =

1P
=1 (( − ))

X
=1

(( − ))̃(|) (3.8)

( = 1     ;  = 1    )

where

̃(|) =
⎧⎨⎩ 0 if  = 1    ;  = 1

1


P
=1 ̃(|) if  = 1    ;  = 2    

Using (3.8), the th smoothed conditional quantile estimator ̃(
∗
) for the binned rank-

transformed data, at a general point ∗ ( = 1    ), can be obtained as a linear interpolation

between two known successive grid points. More precisely, the binned kernel-smoothed empirical

conditional CDF is given by

̃
 (|∗) = 

 (|∗) +
³  − 

+1 − 

´
[

 ( + 1|∗)− 
 (|∗)] (3.9)

where  is such that     +1, and +1 denotes the smallest rank in the data bigger than

. Hence, the binned kernel-smoothed quantile estimator for the rank-transformed observations

is given by

̃(
∗
) =

⎧⎨⎩
³

−
 (|∗)


 (+1|∗)−

 (|∗)
´
 +

³

 (+1|∗)−


 (+1|∗)−

 (|∗)
´
+1 if  6= 0

0 if  = 0
(3.10)

where  is chosen such that
P

=1 

 (|∗) ≤  

P+1
=1 


 (|∗), and 0 is an arbitrary

value. Transforming (3.10) back into the original observations, and assuming  6= 0, results in
the following binned kernel-smoothed estimator of (

∗
):

̃
y
(

∗
) = [1− (̃(∗)− b̃(∗)c)]̃(b̃(∗)c) + (̃(

∗
)− b̃(∗)c)̃(b̃(∗)c+1) (3.11)
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where b·c is the floor function returning the greatest integer less than or equal to its argument,
and where {̃(1)     ̃()} are the ordered (increasing order) values of {} when ̃ = ∗

( = 1     ; = 1    ). Then, similar to the transformation in (3.6), the discrete conditional

binned quantile estimator of (·) is given by

̃(
∗
) = d̃

y
(

∗
)− 1e (3.12)

The code for computing (3.6) and (3.12) is available upon request from first author.

4 Asymptotic Results

To study the asymptotic properties of ̂(·) we use the method of jittering; see, e.g., Machado and
Santos Silva (2005). With this method, a continuous distribution is constructed which coincides

with the discrete distribution up to interpolation. Asymptotic properties of the conditional

quantile estimator in the continuous case are easily obtained using existing theory, and then

asymptotic results for the discrete case follow from relationship (3.6). Asymptotic properties of

(3.12) will be based on theorems for linear rank statistics given by Hájek, Šidák and Sen (1999).

4.1 Untransformed data

Without loss of generality, we assume that the support of  | is composed of consecutive integers
{0 1 2   }. Let  =  ( = |) and  =  ( ≤  |) =

P
≤ . We add small jitters  to

, so that the data  =  +  ( = 1     ) are of continuous type, and the order of the ’s

is preserved, i.e., if    then    . The distribution of  is chosen to be independent of

the value of  as  ∼  [0 1), the uniform distribution on [0 1). Let (|) be the distribution
of the ’s, then we have the following fact

(|) =  (|) ( = 0 1 2   )

(·|) is a continuous distribution by linear interpolating  (·|), and ̃ (|) given in (3.3) is
exactly the conditional distribution function of the binned version based on the ’s, (|)
in (3.4) is the corresponding empirical version, ̂



(·) is the corresponding conditional quantile
estimate, and the relationship between ̂(·) and ̂



(·) is given in (3.6).
As in Cheng and Lazar (2010), we consider two cases.

(i) −1     for some  ∈ {1 2   }. So  is not at a plateau of ̃ (·|). Using
results for continuous distribution, we will have ̂



(·) → (·), and since the function d− 1e is
continuous at  = (·), consequently we have ̂(·) = d̂



(·)− 1e → d(·)− 1e = (·).
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(ii) If  =  for some , then (·) is an integer, the function d − 1e has a jump at
 = (·). Consequently, although ̂



(·) → (·), but d̂


(·)− 1e → d(·)− 1e fails because of
the discontinuity. So for such , ̂(·) is not consistent for (·). As implied in Serfling (1980,
p.77), in this case, for large , ̂(·) ≥ (·) + 1 with probability approximately 0.5.

The theoretical results are derived under the following assumptions:

A.1  =  → 0 and
P

≥1 exp(−) ∞ for all   0.

A.2  =  → 0.

A.3 (·) has bounded continuous third derivative.
A.4  = (−15) and  = (()−14).

Let
2→ stands for convergence in squared mean,

→ for convergence in distribution, () be

Bernoulli distribution with  =  ( = 1), () be the pmf of , and ( ) the joint pmf of

( ).

Theorem 1. Under A.1—A.3, as →∞, we have

sup


((|)−  (|))2 → 0; sup


(̃(|)− ̃ (|))2 → 0

Theorem 2. Under A.1—A.3, as →∞, we have

() ̂


()
2→ () ∀ ∈ (0 1);

() ̂()
2→ () ∀ ∈ (0 1) \ { :  ∈ N0}

Theorem 3. Assume that A.3 and A.4 hold. Then

(i) ∀ ∈ (0 1) \ { :  ∈ N0}, we have
√
(̂



()− ())
→ (0 2) with 2 = (1− )()

Z
2()2( ()) (4.1)

(ii) If  =  for some  ∈ N1, we have
√
(̂



()− ())
→ +(0 2+) +−(0 2−) (4.2)

where 2+ = (1−)
R
2()[(


()|)]2, 2− = (1−)−1

R
2()[−1(()|)]2,

and +(0 21) + −(0 22) denotes the two-piece normal distribution function Φ(1)( 
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0) + Φ(2)(  0), with Φ(·) the distribution function of (0 1).
(iii) ∀ ∈ (0 1) \ { :  ∈ N0}, or  ∈ { :  ∈ N0}, we have

̂()− ()
→ (0); or ̂



()− ()
→ (05)

In practice, the unknown quantities , () and ( 

()) for given  can be estimated by

̂ = { : ( ) = ( )} ̂() = { :  = } and ( ̂


())

where ̂


() is given by (3.5). Let ̂
2 be an estimator of 2 with () and ( ()) replaced

by ̂() and ( ̂


()). Denote ̂
2
+ and ̂

2
+ accordingly. For fixed , let  be the number of

values  taken on by the ’s, | be the number of ()’s with  =  and  = . Then

we have the following corollary.

Corollary 1. Assume A.1—A.4 hold, and that  →∞ and | →∞ as →∞, then Theorem
3 still holds with 2, 2+ and 2− replaced by ̂

2, ̂2+ and ̂2+ respectively.

4.2 Rank-transformed data

Since ̃
 (|) = 

 (|) for all  ( = 1     ;  = 1    ), so ̃
 (·|)→ ̃ (·|) iff 

 (·|)→
 (·|). We impose the following conditions:
B.1 →∞, with   0.

B.2  → 0.

B.3
R
2() ∞.

B.4  = (()−12).

Theorem 4. Under B.1—B.3, we have


 (|) →  (|); ̃

 (|) → ̃ (|)

Theorem 5. Under B.1—B.3, we have

() ̃


 ()
→ () ∀ ∈ (0 1);

() ̃()
→ () ∀ ∈ (0 1) \ { :  ∈ N0}
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Theorem 6. Assume B.1, B.3 and B.4 hold. Then

(i)

√
(̃

 (|)− ̃ (|)) → (0 21) with 
2
1 = ̃ (|)(1− ̃ (|))−1()

Z
2()

(ii) ∀ ∈ (0 1) \ { :  ∈ N0}, we have
√
(̃()− ())

→ (0 2) with 2 = (1− )

Z
2()2( ())

(iii) If  =  for some  ∈ N1, we have
√
(̃()− ())

→ +(0 2+) +−(0 2−)

where 2+ = (1−) R 2()[(

()|)]2, 2− = (1−) R 2()[−1(()|)]2.

(iv) ∀ ∈ (0 1) \ { :  ∈ N0}, or  ∈ { :  ∈ N0}, we have

̃()− ()
→ (0); or ̃()− ()

→ (05)

Proofs of these theorems may be found in the Appendix.

In practice, ̃ (|) is estimated by ̃
 (|), 21 by ̂21 with ̃ (|) and −1() replaced by

̂−1() and ̃
 (|). Denote ̂2 accordingly, with () and () replaced by ̃() and ̃



 (),

and ̂() and ( ̂()) as in Corollary 1. Then we have the following corollary.

Corollary 2. Assume B.1—B.4 hold, and the conditions on  and | of Corollary 1, then

Theorem 6 still holds.

5 Practical Issues

5.1 Kernel selection

It is well-known that the bias of kernel estimates of pmfs for cells near the boundary of the sample

space can incur increased bias. Reduced bias may be achieved by using boundary corrected kernel

estimators. For discrete data, a kernel function devised to correct boundary effects has been

proposed by Rajagopalan and Lall (1995). The general form of this kernel is given by

() = 2 +  | | ≤ 1 (5.1)

where  = (− ) (  ∈ N1) with  the point at which the kernel function is evaluated. The

parabolic shape of (5.1) was inspired by the so-called Epanechnikov kernel in the continuous
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Table 1: Expressions for the coefficients  and  for the discrete quadratic kernel() = 2+,

| | ≤ 1, where  = (− ) with  the point at which the kernel is evaluated.

Region Coefficients

 

  + 1 3
1−42

−3
1−42

1   ≤ + 1 −62
(−1+)(−2+)(−3+)

3(2−+2−3+2)
(−1−)(−2+)(−3+)

 = 1 (  1) −6
2−1

3
+1

Note: Based on Rajagopalan and Lall (1995), after correcting mistakes in the expressions for  and  for the

regions   + 1 and 1   ≤ + 1. Further, the expressions for  and  with  = 1 given by these authors, have

been simplified.

case, which enjoys some optimality properties as opposed to other commonly used kernels. The

coefficients  and  are functions of . They can be obtained by solving the following conditions:

i) () = 0 for | | ≥ 1, ii)
P=+

=−() = 1, and iii)
P=+

=−() = 0. Expressions

for  and  are given in Table 1. Throughout the paper we adopt (5.1). But in the initial

phase of the simulation study we experimented with (5.1), a triangular, and a rectangular kernel

function. In the latter two cases, the bias of the conditional quantile estimators can be quite

large for near-boundary bins if  ≤ 10 000.

5.2 Grid size, band- and binwidth selection

To obtain good nonparametric estimates, we use the cross-validation (CV) principle for jointly

selecting band- and binwidth parameters, adapting the CV-approach used by Magee, Burridge

and Robb (1991). As an example, consider the case of estimating (3.12). Given a fixed value

of  a value of  can be obtained by minimizing the loss function () =
P

=1

P
=1 (̃ =

∗)( − ̃
(−)
 (∗)), where () = (  0) + ( − 1)(  0) is the so-called “check”

function, and ̃
(−)

(·) is the “delete-one” conditional quantile estimate.
To avoid summing over  terms, it is convenient to subtract from () the quantity ∗ =

( − ̆(
∗
)), where ̆(

∗
) is some quantile estimate at 

∗
 that does not vary with . Let

1 (4) be the number of observations   min{̃(∗) ̆(∗)} (  max{̃(∗) ̆(∗)}),
when (̃ = ∗) = 1. Similarly, let 2 and 3 denote the number of observations falling

in the interval (min{̃(∗) ̆(∗)}max{̃(∗) ̆(∗)}) when respectively ̃(
∗
)  ̆(

∗
)

and ̃(
∗
)  ̆(

∗
) with (̃ = ∗) = 1. Then, rewriting () − ∗ and replacing  by

12



̄ =
1
2
(̃(

∗
) + ̆(

∗
)), gives the loss function

X
=1

[1(1− ){̃(∗)− ̆(
∗
)}+ 2(̃(

∗
)  ̆(

∗
))(̆(

∗
)− ̄ + (1− )̃(

∗
))

+3(̃(
∗
)  ̆(

∗
))(−(1− )̆(

∗
)− ̃(

∗
) + ̄) + 4{̆(∗)− ̃(

∗
)}] (5.2)

Now a practical band- and binwidth approach involves the following steps:

1. Consider the CV criterion

CV() =

X
=1

(() − ̆
(−)
 (∗))

where ̆
(−)
 (·) is an unsmoothed estimator of (·) given the sample {(̃ )| 1 ≤  ≤

  6= }. Select a prespecified range of grid sizes , giving rise to a set of binwidth values
D. Then, the binwidth is chosen as

CV = argmin
∈D

{ ()}

2. Given CV obtained in Step 1, the bandwidth parameter is chosen as to minimize (5.2).

3. Repeat Steps 1 and 2 with CV obtained from Step 2, and by replacing the unsmoothed

estimator of the CDF in Step 1 with the binned kernel-smoothed conditional CDF (3.9).

6 Simulations

In this section we evaluate via simulation the performance of ̂(·) using uncorrelated and
positively correlated uniformly distributed discrete bivariate random variables  and  , us-

ing a bivariate Gaussian copula with a given correlation parameter . Assume that  ( ) is

distributed over the support  = {1 2     } ( = {1 2     }), with  () a positive

integer, according to the pmf () = 1 (() = 1) for  ∈  ( ∈ ) and zero elsewhere.

The support of ( ) is  × . Then it may be deduced from results in Nelsen (1987) that

the maximum feasible correlation between  and  is given by (){(2 − 1)(2 − 1)}12.
Hence, with  ∼  [1 10] and  ∼  [1 100], the correlation parameter becomes 0995. For

each choice of  we generate  = 10 000 random samples, and for each  conditioning is based

on each ̃ = ∗ value. Values for  are set at  = 0, 0.2, 0.4, and 0.6. In practice, positive

rather than negative or zero correlations are often observed between pairs ( ). This setup

resembles the empirical application in Section 7, with a small number of distinct covariates as

13



Figure 2. Boxplots of a simulated correlated dataset with  ∼  [1 10] and  ∼  [1 100];

 = 10 000,  = 06.

opposed to a relatively larger number of response values. Figure 2 shows boxplots of the condi-

tional distribution of  given values of  for a typical simulated dataset of size  = 10 000 with

 = 06. It can be seen that the conditional distribution of  is skewed to the right (left) for

 taking values at the lower (higher) boundary region. For  = 02 skewness of the underlying

conditional distribution is less pronounced, but still present.

6.1 Performance of the untransformed binned conditional quantile estimator

To abstract from the issue of binwidth selection, we evaluate the precision of ̂(·) by taking grid
sizes = 30, 40, and 50. So in Step 1 of the CV-algorithm  will be held constant while in Step

2 we select the value of CV from the set {2 3     20}. We only report simulation results for
 = 05 (median), because a pilot study showed that similar conclusions could be reached with

other quantile values. Overall, the optimal CV-selected bandwidth value is not very sensitive to

the choice of  with an maximum average (across all  = 10 000 replications) value of about 11

and a maximum average standard deviation of about 6. Assuming  = 0, 05(
∗
) = 50 for all

values ∗ = {1 2     10}. For  = 02, 0.4 and 0.6, 05(·)’s are calculated on the basis of 10,000
independently sampled, but paired correlated uniformly distributed discrete random variables

with samples of size 30,000. These “theoretical” quantiles are included in Table 3, columns 2

and 9.

Our measure of precision is the empirical mean squared error (MSE) of the untransformed

14



Table 2: Ratios of the empirical MSEs (averaged over  = 10 000 replications) of ̂05(
∗
)

relative to the CQR estimator and, in parentheses, relative to the “naive” estimator;  ∼
 [1 10],  ∼  [1 100],  = 40.

∗  = 0  = 02

 = 5 000  = 10 000  = 20 000  = 5 000  = 10 000  = 20 000

1 2.44(0.95) 2.13(0.90) 1.81(0.85) 0.80(0.97) 0.49(0.95) 0.26(0.95)

2 3.24(0.94) 2.64(0.91) 2.14(0.86) 3.13(0.93) 2.58(0.89) 2.00(0.84)

3 4.21(0.94) 3.29(0.91) 2.39(0.86) 2.62(0.95) 1.73(0.94) 1.08(0.91)

4 5.20(0.94) 3.88(0.91) 2.62(0.85) 6.06(0.94) 4.92(0.90) 3.58(0.85)

5 6.05(0.94) 4.46(0.92) 2.62(0.85) 8.41(0.94) 6.94(0.91) 5.87(0.84)

6 5.90(0.95) 4.31(0.91) 2.67(0.85) 4.19(0.96) 2.68(0.91) 1.55(0.87)

7 4.96(0.94) 4.03(0.91) 2.47(0.86) 1.89(0.95) 1.14(0.90) 0.62(0.86)

8 4.15(0.93) 3.35(0.90) 2.37(0.86) 1.02(0.92) 0.61(0.87) 0.35(0.82)

9 3.21(0.93) 2.72(0.91) 2.05(0.85) 1.34(0.94) 0.80(0.92) 0.45(0.85)

10 2.45(0.94) 2.14(0.90) 1.79(0.86) 1.79(0.90) 1.39(0.85) 1.08(0.80)

 = 04  = 06

1 0.30(0.96) 0.17(0.95) 0.09(0.93) 0.18(0.98) 0.10(0.99) 0.06(0.98)

2 1.05(0.86) 0.60(0.92) 0.34(0.86) 0.55(0.90) 0.31(0.83) 0.18(0.76)

3 0.87(0.93) 0.48(0.95) 0.26(0.92) 0.66(0.91) 0.36(0.84) 0.21(0.77)

4 1.77(0.96) 0.98(0.96) 0.54(0.94) 1.81(0.90) 1.01(0.86) 0.61(0.80)

5 9.31(0.95) 8.42(0.87) 8.06(0.80) 7.20(0.95) 4.31(0.92) 2.49(0.92)

6 4.21(0.90) 2.44(0.94) 1.40(0.94) 1.68(0.91) 0.98(0.86) 0.54(0.78)

7 0.73(0.84) 0.43(0.86) 0.24(0.78) 0.65(0.96) 0.33(0.94) 0.18(0.91)

8 0.44(0.95) 0.25(0.85) 0.14(0.79) 0.31(0.95) 0.16(0.93) 0.08(0.90)

9 0.48(0.94) 0.26(0.86) 0.15(0.81) 0.26(0.94) 0.14(0.91) 0.08(0.88)

10 0.65(0.92) 0.42(0.79) 0.28(0.70) 0.45(0.78) 0.32(0.70) 0.25(0.65)

conditional quantile estimates averaged over all replications. We consider the following two

estimators: (a) the conditional quantile regression (CQR) estimator of Machado and Santos

Silva (2005), for discrete-continuous data; (b) the unsmoothed “naive” conditional quantile

estimator, i.e. grouping the data according to the values of the covariates and assuming that

the underlying distribution for each resulting dataset is continuous. Thus the numbers in Table

2 represent the relative improvement attained by ̂05(·) relative to the CQR estimator and, in
parentheses, the relative improvement attained by ̂05(·) relative to the “naive” estimator. To
conserve space, Table 2 only contains results for  = 40.

The results show that across all covariates and sample sizes , the CQR estimator achieves

the lowest empirical MSE when  = 0. However, when both  and  increase in value, the ̂05(·)
estimator performs markedly better than the CQR estimator, apart for covariate values in the

range [4, 6]. In particular, the MSE of the CQR estimator is dominated by increased positive

bias when  takes values at the lower boundary region. As an example, Figure 3 shows the

bias of both conditional quantile estimators for  = 5 000. We see that for all values  and

∗ 6= 5, the absolute bias of the CQR estimator is substantially higher than the absolute bias of

15



Figure 3. Bias of the CQR estimator (black circles) and the binned conditional quantile estimator

̂05(·) (white circles) averaged over  = 10 000 replications;  ∼  [1 10],  ∼  [1 100],

 = 40,  = 5 000.

̂05(·). At ∗ = 5, however, the difference between both estimators is minimal, suggesting that
the CQR estimator is only feasible if the conditional distribution of  , given values of , is not

too skewed.

A much clearer picture about the usefulness of ̂05(·) emerges from the relative improvement
attained by this estimator relative to the infeasible “naive” estimator. In each case, the numbers

in parentheses in Table 2 show that ̂05(·) has lower empirical MSE than the “naive” estimator.
In cases where  = 5 000, the difference is minor across almost all values of . But, as  increases,

the difference is quite substantial. The largest gains are for  = 04, and 0.6 at ∗ = 10, when

 = 20 000. Thus meaningful improvements in estimation efficiency can be achieved by using

the untransformed binned conditional quantile estimator when the data are correlated and the

sample size is large.

6.2 Confidence intervals and coverage probabilities

Theorems 3 and 6 can be used to construct large-sample confidence interval (CIs) for (·) at
a given confidence level . Here we focus on the practicality of the asymptotic result (4.1).

For (·) we select the Gaussian kernel which is widely recognized as having good asymptotic
efficiency compared to the optimal one, the Epanechnikov kernel. There is no simple rule for

choosing the bandwidth . Its choice depends on the sample size, the value of the covariate,
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Table 3: Theoretical conditional quantile values 05(·), averages of coverage probabilities of
̂05(·) based on Theorem 3(i) (“True”), averages of bootstrapped coverage probabilities of ̂05(·)
with corresponding averages of upper- and lower CI limits in squared brackets;  ∼  [1 10],

 ∼  [1 100],  = 40,  = 1 000,  = 500, 1−  = 095.

∗ 05(·)  = 0 05(·)  = 02

 = 5 000  = 10 000  = 5 000  = 10 000

True Boot (·) True Boot (·) True Boot (·) True Boot (·)
1 50 0.959 0.955 [45, 53] 0.973 0.975 [46, 52] 37 0.976 0.950 [32, 39] 0.922 0.962 [33, 38]

2 50 0.957 0.969 [45, 53] 0.973 0.950 [46. 52] 42 0.965 0.966 [37, 45] 0.979 0.953 [39, 44]

3 50 0.962 0.957 [45, 53] 0.972 0.980 [46, 52] 45 0.965 0.971 [40, 48] 0.978 0.977 [41, 47]

4 50 0.957 0.958 [45, 53] 0.973 0.970 [46, 52] 47 0.961 0.958 [42, 50] 0.976 0.977 [43, 49]

5 50 0.955 0.955 [45, 53] 0.977 0.953 [46, 52] 49 0.959 0.964 [44, 52] 0.975 0.951 [45, 51]

6 50 0.960 0.960 [45, 53] 0.972 0.967 [46, 52] 51 0.956 0.955 [46, 54] 0.979 0.955 [47, 53]

7 50 0.959 0.961 [45, 53] 0.973 0.956 [46, 52] 53 0.960 0.961 [48, 56] 0.977 0.962 [50, 56]

8 50 0.960 0.969 [45, 53] 0.974 0.974 [46, 52] 55 0.964 0.972 [50, 58] 0.974 0.977 [51, 57]

9 50 0.957 0.951 [45, 53] 0.972 0.950 [46, 52] 58 0.965 0.968 [53, 61] 0.979 0.957 [55, 61]

10 50 0.958 0.962 [44, 53] 0.975 0.958 [46, 52] 63 0.972 0.974 [59, 66] 0.979 0.977 [60, 65]

 = 04  = 06

1 27 0.977 0.974 [24, 30] 0.975 0.965 [24, 28] 21 0.967 0.963 [19, 23] 0.918 0.973 [18, 21]

2 36 0.932 0.979 [32, 40] 0.936 0.962 [32, 37] 32 0.954 0.961 [29, 35] 0.949 0.956 [29, 33]

3 41 0.973 0.975 [37, 45] 0.919 0.953 [38, 44] 38 0.927 0.968 [35, 42] 0.920 0.972 [35, 40]

4 45 0.968 0.972 [41, 49] 0.983 0.968 [40, 46] 43 0.973 0.969 [39, 47] 0.914 0.976 [40, 45]

5 48 0.962 0.967 [44, 52] 0.974 0.967 [45, 51] 48 0.974 0.962 [44, 52] 0.985 0.962 [45, 51]

6 52 0.963 0.953 [47, 55] 0.981 0.954 [47, 53] 52 0.971 0.973 [48, 56] 0.979 0.961 [49, 54]

7 55 0.962 0.968 [51, 59] 0.977 0.955 [52, 57] 57 0.980 0.968 [53, 61] 0.923 0.963 [53, 58]

8 59 0.969 0.976 [55, 63] 0.979 0.960 [56, 61] 62 0.934 0.952 [58, 65] 0.939 0.966 [59, 64]

9 64 0.929 0.983 [60, 68] 0.925 0.971 [61, 66] 68 0.959 0.956 [65, 71] 0.960 0.952 [65, 69]

10 73 0.967 0.966 [70, 76] 0.955 0.958 [70, 74] 79 0.940 0.953 [76, 81] 0.836 0.979 [77, 80]

and the shape of the empirical (a)symmetric distribution of the data. We simply replace 

by ̂ = −15 | log() with  = 001 002     1 a set of constants, and with  | the

conditional variance of  | = . This choice of  satisfies Condition A.4.

Note that for  = 0, we have  | =
q
(2 − 1)12. For  6= 0, the “theoretical” values

of  | , () and ( ) are, as before, based on  = 10 000 independently sampled, but

paired correlated uniformly distributed discrete random variables with samples of size 30,000.

Let  denote the 100(1 − ) percentile of the standard normal distribution. Now for each

pair (∗ (∗)) ( = 1     10), correlation parameter , sample size , and value , the

performance of the CIs are assessed by recording the proportion of times, using  = 10 000

replications, the theoretical conditional quantiles (·) are contained in the interval

̂(
∗
)± 

s
(1− )(∗)

Z
2()2(∗ (∗))

.p
̂ (6.1)

Let ̂ ((
∗
)) ( = 1     10) denote the resulting proportion of times (·) falls in the inter-

val (6.1) for all combinations of , , and . Then, for each  and , the “best” theoretical cov-
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erage probability (denoted by “True” in Table 3) is chosen as min∈[001 100]
P10

=1 |̂ ((∗))−
095|, with  = 05. The corresponding values of  vary between the ranges [037 054] ( = 0,

 = 5 000) and [063 065] ( = 06,  = 10 000). On balance, the coverage probabilities are

satisfactory, with values very close to the nominal level for all values of  and . Based on

the above results, we conclude that a value of  in the range [047 057] may result in good

theoretical coverage probabilities across all values of  and .

An alternative approach to compute empirical coverage probabilities and CIs is to use the

bootstrap. Guerra, Polansky and Schucany (1997) introduced this method for discrete univariate

datasets. Here, as an example, we employ the sequence of bootstrap realizations of ̂(
∗
),

{̂† (∗)}=1, to estimate  (̂(∗) ≤ (
∗
)). We can do so by defining the bootstrap statistic

b (̂†(∗) ≤ (
∗
)) =

1



X
=1

(̂
†
 (

∗
) ≤ ̂(

∗
)) (6.2)

Thus a two-sided (1−) CI may be based on finding the largest  (∗) and smallest (∗) in a
fixed and countable set of estimated conditional quantiles such that both  (̂

†
(

∗
) ≤ (

∗
)) ≤

2 and  (̂
†
(

∗
) ≤  (

∗
)) ≥ 1 − 2 hold. In other words, given the discrete nature of

the conditional quantiles, the set (∗) = [(
∗
) 


 (

∗
)] is the narrowest interval such that

 (̂
†
(

∗
) ∈ (∗)) ≥ 1− .

The bootstrapping takes place as follows. At each simulation run (i) generate a random

sample (∗
  

∗
 ) of size  with replacement from the empirical joint distribution of ( ),

(ii) compute ̂(·), (iii) compute (6.2) based on  = 500 bootstrap samples drawn from the

original sample, (iv) calculate the lower and upper CI bounds, using a nominal level  and (6.2).

Repeat this procedure over 1,000 independent runs. To save space, we only report results for

the parameter configurations listed in Table 2.

Table 3 summarizes the averages of the empirical coverage probabilities obtained from (6.2)

and averaged over 1,000 runs, and averages of the confidence sets (·) (given in squared brackets).
Recall that, by construction, we require that the empirical bootstrapped coverage probabilities

are ≥ 095. Nonetheless, we may conclude that the empirical coverages are quite close to the
nominal coverage probability. In addition, in all cases the CIs contain the true conditional

quantile value. As expected, the length of (·) decreases as  increases from  = 5 000 to

 = 10 000, from a maximum average of about 9 to 6. In that case the minimum average length

of (·) goes down from about 8 to 3. If we increase  to 25 000, with  = 06, the average

CI encompasses approximately 2 or 3 observations. Hence, the simulation evidence for ̂05(·)
confirms the implications of the asymptotic results in Theorem 3. To provide a contrast, we also
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computed CIs for the rank-transformed conditional quantile estimator ̃05(·). In all cases the
interval lengths are longer, containing on average 2 additional observations. From Theorem 6

we know that ̃(·) is less efficient, in the sense that its variance is bigger than the asymptotic
variance of ̂(·). Our simulation results confirm this result.

7 Empirical Illustration

We illustrate the method with an application using a large US database about hospital patients

that have congestive heart failure and are transferred to a tertiary facility. About 96% of these

patients are living in New York state. The total dataset contains information on all medical

conditions being identified by the medical staff for each of the years 2003—2005 ( = 20 631

observations). We assume that the dataset has the nature of a population, and hence empirical

conditional quantiles will be considered as population quantities. One key response variable 

is “Length of stay” (Los), measured in days. This variable is used for management of hospital

care, quality control, appropriateness of hospital use, and hospital planning. A suitable covariate

 is “Severity”, measured on a 7-point scale. This latter variable is largely a function of how

complex the initial condition of a patient is. Increments of one are added for each confounding

condition presented. Of course, if two conditions are present and both are life threatening the

result could be four, but this is unusual. Similarly, a secondary condition like diabetes may

not raise the variable “Severity” if it is generally associated with the primary condition like a

heart attack. Figure 4 shows conditional frequency distributions for each covariate. Skewness

(kurtosis) ranges between 2.9 (15.6) at  = 3 and 6.0 (83.9) at  = 4. The probability masses

are fairly concentrated around the values of the conditional median, with large outliers at  = 6

and  = 7.

The empirical illustration of the performance of ̂(·) and ̃(·) is based on  = 10 000

random samples of size  = 5 000 drawn without replacement from the full dataset. For both

̂(·) and ̃(·) the optimal bandwidth values were chosen using the CV-criterion in Subsection
5.2 with  running from 55 up to 200, and with CV in the range [2 31]. The accuracy of each

estimator is assessed by the average bias computed over the entire range of conditional quantile

estimates. Table 4 shows these result for the first three conditional quartiles. Columns 2, 5,

and 8 contain the “population” conditional quantiles. For this particular dataset these latter

quantile estimates are the same as the values obtained by the “naive” quantile estimator, and

plotted in Figure 1.

Note that across all values of  and , the conditional quantile estimators perform well in

19



Figure 4. Conditional frequency distributions of  “Length of stay” (LOS) as a function of the

covariate  “Severity”.
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Table 4: Average bias for ̂(·) and, in parentheses, ̃(·);  = 5 000.

 (·)  = 025 (·)  = 050 (·)  = 075

1 4 -0.658 (-0.506) 5 0.356 (0.439) 8 -0.015 (0.005)

2 4 -0.102 (0.002) 6 0.123 (0.166) 9 0.241 (0.247)

3 4 0.124 (0.180) 7 -0.338 (-0.105) 10 -0.045 (-0.046)

4 5 -0.439 (-0.173) 7 0.035 (0.040) 11 -0.049 (-0.029)

5 5 -0.047 (-0.000) 8 -0.213 (-0.055) 12 0.220 (0.243)

6 6 0.056 (0.054) 10 0.027 (0.045) 16 0.337 (0.303)

7 11 0.152 (0.227) 19 -0.251 (-0.287) 32 -0.260 (-0.829)

terms of the highest percentage of zero bias. The effects on the bias of the estimators vary sub-

stantially with different values of the covariate  and quartiles , showing both underestimation

and overestimation. As an example, consider the case  = 1. At  = 075 we see that both

conditional quantile estimators have good performance, but this is not the case at  = 025. On

the other hand, at  = 7 and  = 075 the ranked-based conditional quantile estimator performs

worse than the untransformed conditional quantile estimator. Clearly, the shape of the condi-

tional distribution has an impact on the performance of the estimators. However, removing five

outlying observations at  = 7 from the sample, we noticed no improvement in the bias results.

Basically, the above observations also apply to samples of size  = 10 000. Although in the

latter case the bias of the conditional quantile estimators is in general smaller than the bias of

these estimators when  = 5 000.

When we estimated the full dataset, without resampling, both conditional quantile estimators

showed zero bias results for almost all values of  and . For ̂(·) the agreement between
“population” and estimation results was less good at  = 1,  = 050, at  = 2,  = 075, and at

 = 6,  = 075. In all cases we noted a positive bias of one observation. For ̃(·) we obtained
a negative bias of one observation at  = 1,  = 025, and at  = 31,  = 075.

8 Conclusions

In this paper, we offer two kernel-based methods for estimating conditional quantiles of pairwise

correlated and discretely distributed random variables. Both methods make use of the local

structure through pre-binning the data. Since grid counts need to be computed only once for

the life of a dataset, large gains in computational efficiencies can be achieved. In particular,

jointly with the introduction of a practical band- and binwidth selection procedure, we showed

that our kernel methods can be applied to the large datasets that appear in real-world problems.

The results from the simulations show that the untransformed binned conditional quan-
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tile estimator achieves excellent estimation accuracy in terms of bias, MSE, and CI coverage.

However, for long-tailed right skewed distributions the rank-transformed conditional quantile

estimator also produces good nonparametric estimates. The rank-transform has the advantage

of distributing the data more evenly across the set of bins. So the estimation error will be less

large in some areas than with untransformed data, and hence will offset the increase in asymp-

totic variance of the rank-based conditional quantile estimator as opposed to the untransformed

estimator. In addition, compared to the CQR estimator and the “naive” estimator the gains in

using the binned conditional quantile estimators can be considerable when dealing with large

correlated bivariate discrete datasets. Moreover, our explicit asymptotic CIs on both conditional

quantile estimates can be used for quite quick computation of the intervals.

Appendix: Proofs

For ease of notation, we write  ≡ ∗ throughout the appendix.

Proof of Theorem 1. Let ̂(|) be the Nadaraya-Waston estimator of ̃ (|) based on the
original data ’s, i.e.

̂(|) =
P

=1((−))( ≤ )P
=1((−))

  ∈ R

Since ̃ (|) =  (|) and ̃(|) = (|) for all  ∈ N1, we have

((|)−  (|))2 = (̃(|)− ̃ (|))2

≤ (̃(|)− ̂(|))2 + 2|̃(|)− ̂(|)||̂(|)−  (|)|+ (̂(|)−  (|))2

By (A.1) and Theorem 1 in Stute (1986), sup |̂(|)−  (|)| → 0, which implies

sup


(̂(|)−  (|))2 → 0 and sup




µ
|̃(|)− ̂(|)||̂(|)−  (|)|

¶
→ 0

Note the definition of (|) does not depend on the ordered data, i.e.

(|) =
X
=1

( = )(1− |−1 − |)+

So,

(̃(|)− ̂(|))2 = (̃ − ̂)
2

[()−1
P

=1((−))]2

:=

µ
()−1

P
=1((−))(|)− ()−1

P
=1((−))( ≤ )

¶2
[()−1

P
=1((−))]2
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Since ()−1
P

=1((−))
→  ()  0, so ()−1

P
=1((−))   ()2 (a.s.)

for large . In ̃, the ’s are the original data, let  be the counter part of ̃ based on the

binned ’s with binwidth , then (̃ − ̂)
2 ≤ ( − ̂)

2.

Thus under A.2 and A.3, by the same way as in Theorem 1 of González-Manteiga (1996),

we have

(̃(|)− ̃ (|))2 ≤ 4

 2()
(̃ − ̂)

2 ≤ 4

 2()
( − ̂)

2 =
4

 2()
[(2) + (2)]

the right hand side above is independent of . These give the desired result.

Proof of Theorem 2. (i) For   0, we have

̃ (()− |)    ̃ (() + |)

Let  be the set of all events on which the results in Theorem 1 hold. Then for large , on 

we have

̃(

()− |)    ̃(


() + |)

Since ̃ (|) ≥  iff  ≥ ̃−1(|), we have, on  for all large ,

()−  ≤ ̂


() ≤ () + 

Since ̂


() is bounded on  for large , and   0 is arbitrary, the conclusion is true.

(ii) It is a consequence of (i), as in the discussion of (ii) before Condition A.1.

Proof of Theorem 3. (i) Let ̂(|) as given in the proof of Theorem 1. Note A.4 implies

A.1 and A.2, so as in the proof of Theorem 1, ̃(|) = ̂(|) +  (()
−12), thus we have



µ√
(̂



()− ()) ≤ 

¶
= 

µ
̂


() ≤ () + ()
−12

¶

= 

µ
̃(


() + ()

−12|) ≥ 

¶
= 

µ
̂(


() + ()

−12|) ≥ + (()−12)
¶

= 

µ
1



X
=1

(
−


)( ≤ () + ()

−12) ≥ 
1



X
=1

(
−


) + (()−12)

¶

= 

µ
1



X
=1

1


(

−


)[( ≤ () + ()

−12)− ] ≥ (()−12)
¶

:= 

µ
1



X
=1

 ≥ (()−12)
¶
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Note by A.4, →∞ and  = (()−12). Also,  (  ()|) = , so

() =
1



Z Z
(

 − 


)[(  () + ()

−12)− ] ( )

=

Z Z
()[(  () + ()

−12)− ](+  )

=

Z
[(  () + ()

−12)− ]( )(1 +())

=  (  ()|)() + ( ())()
−12− () + (()−12)

= ( ())()
−12+ (()−12)

also,

 () = (2)−2() ∼ (2)

= −1
Z Z

2()[(  () + ()
−12)− 2(  () + ()

−12) + 2](+  )

=
1


(1− )()

Z
2() + (−1) :=

1


20 + (−1)

Thus by the Central limit theorem, we get



µ
1



X
=1

 ≥ (()−12)
¶

= 

µ
−
√
−10

1



X
=1

( −()) ≤ −10 ( ())+ (1)

¶
→ Φ(−10 ( ()))

where Φ(·) is the distribution function of (0 1), i.e.
√
(̂



()− ())
→ (0 2)

with 2 = (1− )()
R
2()2( ()).

(ii) In this case, for   0, () = (

()|)()−12+ (()−12), and  () ∼

−1(1− )
R
2(); and for   0, () = −1(()|)()−12, and  () ∼

−1(1− )−1
R
2(). The rest of the proof is the same as in (i).

(iii) This is a direct result from the discussion before Theorem 1.

Proof of Corollary 1. By the given condition we have ̂ →  (a.s.), ̂() → () (a.s.)

and by Theorem 2, ̂


()
2→ (). The above convergences are all stronger than those in

probability. Thus the results in Theorem 3 hold by Slutsky’s Theorem.

Proof of Theorem 4. We only prove consistency for 
 (|) to  (|), that for ̃

 (|)
follows as the comment before Theorem 4. Rewrite 

 (|) := 
 (|), for  being the
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smallest rank such that () ≤ , and with ̃() = , as the standard form of a linear rank

statistic


 (|) =

X
=1

()

with,

 =

X
=1

1


( = )  =

(( − ))P
=1(( − ))

 () =

X
=1

(1− |−1−(−1)|)+

In the above we used the fact that
P

=1 (( − )) =
P

=1(( − )).

We will use the method and results in Hájek, Šidák and Sen (1999). Let

 =
1



X
=1

  =
1



X
=1

() 2 =
1

− 1
X
=1

(()− )2

Note (1− |−1− |)+ = [− ((−1)− )] if (−2) ≤   (−1); = [− (− (−1))]
if ( − 1) ≤   ; and = 0 elsewhere. So if  ∈ (( − 1) ( + 1)) for some  ≤ , then

() =
P

=1(1− |−1− |)+ = [( − ) + (− ( − 1))] = 1 = 2(), and () = 0 for   .

We have

 =



+(

1


) 2 =




(1− 


) +(



2
)

X
=1

 =

X
=1


1



X
=1

( = ) =

X
=1

 = 1

Since  is the smallest rank with () ≤  and with ̃() = ,  is the number of the ’s

with  ≤  and with  = , so we have

 =
1



X
=1

( ≤ | = ) +(1)
→  (|) 2

→  (|)(1−  (|))

Also, with  = ,

X
=1

( − )2 =

X
=1

2
1

2
(

X
=1

( = ))2 − 2 =

X
=1

2 − 1

= ()−1
()−1

P
=1

2(( − ))µ
()−1

P
=1(( − ))

¶2 − 1
By standard results on kernel estimation we have

()−1
X

=1

(( − )) = () + (1) ()−1
X

=1

2(( − )) = ()

Z
2() + (1)

So we get, as 1 = (()−1),

X
=1

( − )2 = ()−1
()

R
2() + (1)

2() + (1)
− 1 = ()−1−1()

Z
2() + (()−1)

25



Thus, by Theorem 3.3.3 in Hájek, Šidák and Sen (1999, p. 61),

(
 (|)) = (

X
=1

) = (



) +(1)→  (|)

and

 (
 (|)) = 2

X
=1

( − )2 = ()−1 (|)(1−  (|))−1()
Z

2() + (()−1)

Now we have, ∀  0,



µ
|

 (|)−  (|)| ≥ 

¶
≤ 

µ
|

 (|)−[
 (|)]| ≥ 2

¶
≤ 4

2
 (

 (|))

∼ 4

2
 (|)(1−  (|))−1()

Z
2() → 0

This complete the proof of Theorem 4.

Proof of Theorem 5. The proof is similar to that of Theorem 2.

Proof of Theorem 6. We use the notations in the proof of Theorem 4.

(i) Let

() =

⎧⎨⎩ 1  ≤ ̃ (|)
0 otherwise

Then it is easy to check that

lim


Z 1

0

[(1 + [])− ()]2 = 0

Also
R 1
0
2() ∞, R 1

0
[()−]2 = ̃ (|)(1− ̃ (|))  0, where  = R 1

0
() = ̃ (|).

By definition we have ̃
 (|) = 

 (|) + (), and () = (()−1) by B.4. Thus by the

liner rank statistic form of 
 (|) as given in the proof of Theorem 4, Theorem 6.6.1 in Hájek,

Šidák and Sen (1999, p. 194), and the relationship ̃
 (|) = 

 (|) + (()−1), we have

that ̃
 (|) is asymptotically normal ( 2) with  = ̃

 (|) =  + (()−12) and

2 = [
P

=1( − )2]
R 1
0
[() − ]2. Using results of  and

P
=1( − )2 from the proof

of Theorem 4, we get

√
(̃

 (|)− ̃ (|)) → (0 21) with 21 = ̃ (|)(1− ̃ (|))−1()
Z

2()

(ii) As in the proof of Theorem 3, here we have



µ√
(̃()− ()) ≤ 

¶
= 

µ
̃
 (() + ()

−12|) ≥ 

¶
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As in the proof of Theorem 4, we have, with (|) being the density of ̃ (|),

(̃
 (() + ()

−12|)) = ̃ (() + ()
−12|) +(1)

= ̃ (()|) + (()|)()−12+ (()−12) +(1)

= + (()|)()−12+ (()−12)

Also,

 (̃
 (() + ()

−12|)) = ()−1̃ (() + ()−12|)

×(1− ̃ (() + ()
−12|))−1()

Z
2() + (()−1)

= ()−1(1− )−1()
Z

2() + (()−1)

Applying Theorem 6.6.1 in Hájek, Šidák and Sen (1999, p. 194) again to the linear rank statistic

form of ̃
 (() + ()

−12|), as in the proof of Theorem 4, we get



µ
̃
 (() + ()

−12|) ≥ 

¶
= 

µ
(̃

 (() + ()
−12|))− ̃

 (() + ()
−12|)q

 (̃
 (() + ()

−12))

≤ (()|)
[(1− )−1()

R
2()]12

+ (1)

¶
→ Φ

µ
()(()|)

[(1− )
R
2()]12



¶


or

√
(̃()− ())

→ (0 2) with 2 = (1− )

Z
2()2( ())

(iii) and (iv) the proofs are similar to those of (ii) and (iii) in Theorem 3.

Proof of Corollary 2. Since by Theorems 4 and 5, ̃
 (|) → ̃ (|), ̃ () → () and

̃()
→ (). The rest of the proof is similar to that of Corollary 1.
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