Please use this identifier to cite or link to this item:
Bibinger, Markus
Mykland, Per A.
Year of Publication: 
Series/Report no.: 
SFB 649 Discussion Paper 2013-006
We find the asymptotic distribution of the multi-dimensional multi-scale and kernel estimators for high-frequency financial data with microstructure. Sampling times are allowed to be asynchronous. The central limit theorem is shown to have a feasible version. In the process, we show that the classes of multi-scale and kernel estimators for smoothing noise perturbation are asymptotically equivalent in the sense of having the same asymptotic distribution for corresponding kernel and weight functions. We also include the analysis for the Hayashi-Yoshida estimator in absence of microstructure. The theory leads to multi-dimensional stable central limit theorems for respective estimators and hence allows to draw statistical inference for a broad class of multivariate models and linear functions of the recorded components. This paves the way to tests and confidence intervals in risk measurement for arbitrary portfolios composed of high-frequently observed assets. As an application, we enhance the approach to cover more complex functions and in order to construct a test for investigating hypotheses that correlated assets are independent conditional on a common factor.
asymptotic distribution theory
asynchronous observations
conditional independence
high-frequency data
microstructure noise
multivariate limit theorems
Document Type: 
Working Paper

Files in This Item:

Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.