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Inference for Multi-Dimensional
High-Frequency Data: Equivalence of Methods,
Central Limit Theorems, and an Application to

Conditional Independence Testing
Markus Bibinger & Per A. Mykland

Humboldt-Universität zu Berlin and Department of Statistics, University of Chicago

ABSTRACT. We find the asymptotic distribution of the multi-dimensional multi-scale and kernel
estimators for high-frequency financial data with microstructure. Sampling times are allowed to
be asynchronous. The central limit theorem is shown to have a feasible version. In the process,
we show that the classes of multi-scale and kernel estimators for smoothing noise perturbation are
asymptotically equivalent in the sense of having the same asymptotic distribution for corresponding
kernel and weight functions. We also include the analysis for the Hayashi-Yoshida estimator in
absence of microstructure.
The theory leads to multi-dimensional stable central limit theorems for respective estimators and
hence allows to draw statistical inference for a broad class of multivariate models and linear functions
of the recorded components. This paves the way to tests and confidence intervals in risk measurement
for arbitrary portfolios composed of high-frequently observed assets. As an application, we enhance
the approach to cover more complex functions and in order to construct a test for investigating
hypotheses that correlated assets are independent conditional on a common factor.

Key words: asymptotic distribution theory, asynchronous observations, conditional independence, high-frequency data,
microstructure noise, multivariate limit theorems

JEL Classification: C14, C32, C58, G10

1 Introduction
The estimation of daily integrated variance and covariance1 has become a central building block in model
calibration for financial risk analysis. Recent years have seen a tremendous increase in trading activities
along with ongoing buildup of computer-based trading. The availability of recorded asset prices at such
high frequencies magnifies the appeal of asset price models grounded on continuous-time stochastic pro-
cesses which are a cornerstone of financial modeling since the seminal works by Black & Scholes (1973)
and Heston (1993). Increasing observation frequencies makes it possible to consider efficient estimation
from underlying statistical experiments. Rising demand for an advanced theoretical foundation thus gave
birth to the field of statistics for high-frequency data, going back to the path-breaking work of Andersen &
Bollerslev (1998), Andersen et al. (2001, 2003), and Barndorff-Nielsen & Shephard (2001, 2002).
This article contributes to this strand of literature by considering a continuous-time stochastic process,
i. e. a continuous semimartingale X comprising current stochastic volatility models, observed on a fixed
time span [0, T ] at (n + 1) points of a discrete grid and by investigating asymptotics when the mesh size
of the grid tends to zero. A natural estimator for the integrated variance of a process is the discrete version
called realized variance or realized volatility. For a continuous semimartingale, this estimator is consis-
tent, and it weakly converges with usual

√
n-rate to a mixed normal distribution where twice the integrated

quarticity occurs as random asymptotic variance (Barndorff-Nielsen & Shephard (2002), Jacod & Prot-
ter (1998), Zhang (2001)). Therefore, the concept of stable weak convergence by Rényi (1963) has been
called into play to pave the way for statistical inference and confidence intervals. In our setting, stable

1More accurately known as integrated volatilities and covolatilities, but we here stick to the more heavily used terminology.
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convergence is equivalent to joint weak convergence with every measurable bounded random variable2

and thus, accompanied by a consistent estimator of the asymptotic variance, allows to conclude a feasible
central limit theorem. This reasoning makes stable convergence a key element in high-frequency asymp-
totic statistics, and it completes the asymptotic distribution theory for a univariate setup.3 Yet, an apparent
problem pertinent to applications is to quantify the risk of a collection of high-frequently observed assets.
Suppose we wish to estimate the quadratic variation of a sum X1 + X2, both processes X1 and X2 docu-
mented as high-frequency data and modeled by continuous semimartingales. The quadratic variation of the
sum is the sum of integrated variances and twice the integrated covariance. For the latter, the derivation of a
feasible central limit theorem is evident as for its one-dimensional counterpart. However, when estimating
[X1 + X2] with the sum of these estimates, we do not obtain a feasible asymptotic distribution theory for
this combined estimator for free. This is due to the fact, that the single estimates are correlated. To deduce
the asymptotic variance of the compound estimator, we are in need of a multivariate limit theorem involv-
ing the asymptotic covariance matrix of the estimators. The first part of this article is devoted to that task
and provides asymptotic covariances of covariance matrix estimators within prominent specific models for
high-frequency data.
The aspiration to progress to more complex statistical models in this research area, has again been mainly
motivated by economic issues. First of all, in a multi-dimensional framework, different assets are usually
not traded and recorded at synchronous sampling times, but geared to individual observation schemes.
Employing simple interpolation approaches has led to the so-called Epps effect (cf. Epps (1979)) that co-
variance estimates get heavily biased downwards at high frequencies by the distortion from an inadequate
treatment of non-synchronicity. In the absence of microstructure, the estimator by Hayashi & Yoshida
(2005) remedies this flaw of naively interpolated realized covariances and a feasible central limit theorem
has been attained in Hayashi & Yoshida (2011).
For one-dimensional high-frequency data, increasing sample sizes are expected to render the estimation
error by discretization smaller and smaller – which is clearly the case if we assume an underlain contin-
uous semimartingale. Contrary to the feature of the statistical model, in many situations high-frequency
financial data exhibit an exploding realized variance when the sampling frequency is too high.4 This ef-
fect is ascribed to market microstructure frictions as bid-ask spreads and trading costs. A favored way
to capture this influence is to extend the classical semimartingale model, where the semimartingale acts
to describe dynamics of the evolution of a latent efficient log-price which is corrupted by an independent
additive noise. Following this philosophy from Zhang et al. (2005), several integrated variance estima-
tors have been designed which smooth out noise contamination first. The optimal minimax convergence
rate for this model declines to n1/4, what is known from the mathematical groundwork provided by Gloter
& Jacod (2001). This rate can be attained using the multi-scale realized variance by Zhang (2006), pre-
averaging as described in Jacod et al. (2009), the kernel estimator by Barndorff-Nielsen et al. (2008) or a
Quasi-Maximum-Likelihood approach by Xiu (2010). Though the estimators have been found in indepen-
dent works and rely on various principles, it turned out that they are actually quite similar and in a certain
asymptotic sense equivalent which is clarified in Section 3 below.
The approaches to cope with microstructure noise analogously carry over to the synchronous multi-dimen-
sional setting. Recently, methods to deal with noise and non-synchronicity in one go have been estab-
lished in the literature. In fact, to each of the abovementioned smoothing techniques one extension to non-
synchronous observation schemes has been proposed. First, the multivariate realised kernels by Barndorff-
Nielsen et al. (2011) using refresh time sampling are eligible to estimate integrated covariance matrices and
guarantee for positive semi-definite estimates at the cost of a sub-optimal convergence rate. Aı̈t-Sahalia
et al. (2010) suggested to combine a generalized synchronization algorithm with the Quasi-Maximum-
Likelihood approach. Eventually, a feasible asymptotic distribution theory for the general non-synchronous
and noisy setup has been provided by Bibinger (2012) and Christensen et al. (2011) for hybrid approaches
built on the Hayashi–Yoshida estimator and the multi-scale and pre-average smoothing, respectively. Al-
though these estimators combine similar ingredients they behave quite differently, since for the approach
in Bibinger (2012) interpolation takes place on the high-frequency scale after smoothing is adjusted with

2For a discussion of the general case, see p. 270 of Jacod & Protter (1998).
3See Section 2 for definition and further discussion.
4This is usually seen with the help of a so-called signature plot, see Andersen et al. (2000) and also the discussion in Chapter 2.5.2

of Mykland & Zhang (2012).
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respect to a synchronous approximation whereas Christensen et al. (2011) suggest to denoise each process
first and take the Hayashi-Yoshida estimator from pre-averaged blocks which results in interpolation with
respect to a lower-frequency scale. Park & Linton (2012) use Fourier methods on the same problem.

Remarkably, when interpolations in the fashion of the Hayashi-Yoshida estimator are performed on
the high-frequency scale their impact on the asymptotic discretization variance of the hybrid generalized
multi-scale estimator vanishes asymptotically at the slower convergence rate in the presence of noise.5 This
reveals that non-synchronicity becomes less important in the latent observation model with noise dilution.
In all four models, discretely observed continuous semimartingales with or without noise, synchronously or
non-synchronously, we develop the asymptotic covariance structure of the respective estimation methods.
We choose the realized covariance matrix, the multi-scale, the Hayashi-Yoshida and the generalized multi-
scale estimator to establish the multivariate limit theorems. While the asymptotic covariances for the syn-
chronous settings are found following a similar strategy as for the asymptotic variances, the most intricate
challenge arises for non-synchronous sampling schemes. The asymptotic variance of the Hayashi-Yoshida
estimator can be illuminated as in Bibinger (2011a) by a synchronous approximation and interpolations
and hinges on an interplay of the two different sampling grids. For covariances, we consider two Hayashi-
Yoshida estimates with generally four different sampling schemes. Nevertheless, utilizing an illustration
with refresh times of pairs and quadruplets will reveal the nature of the asymptotic covariance. For the
generalized multi-scale estimator in the most general setup we benefit again from the fact that interpolation
effects fall out asymptotically. Yet, the effects by superposition with noise require a tedious notation to
cover all possible sampling designs. In typical situations, as a completely asynchronous sampling design,
only the signal parts will contribute to asymptotic covariances, and the multivariate distribution simplifies
leading to a tractable general approach.
Relying on the asymptotic distribution of the considered integrated covariance matrix estimators, we strive
to design a statistical test for investigating hypotheses, if two processes have zero covariation conditioned
on a third one. We end up with a feasible stable central limit theorem for the test statistic involving products
of estimators and thus obtain an asymptotic distribution free test. This test which we call conveniently con-
ditional independence test renders information about the dependence structure in multivariate portfolios
and can be applied to test for zero covariation of idiosyncratic factors in typical portfolio dependence struc-
ture models, as the one by Eberlein et al. (2008). In particular, we may identify dependencies between
single assets not carried in common macroeconomic factors that influence the whole portfolio and disen-
tangle those from correlations induced by market influences.
The outline of the article is as follows. We start in Section 2 by discussing asymptotic covariance matrices
for the realized covariances in a simple equidistant discretely observed Itô process setup. We proceed to
statistical experiments with noise in Section 3, non-synchronous sampling in Section 4 and both at the
same time in Section 5. In Section 6, the results are gathered to conclude feasible multivariate central limit
theorems. The conditional independence test is introduced in Section 7 and after an empirical study of
asymptotic covariances applied in Section 8 to high-frequency financial data. The proofs can be found in
Appendix A.

2 The simple case: Asymptotic covariance matrix of realized covari-
ances

Assumption 1. Consider a continuous p-dimensional Itô semimartingale (Itô process)

Xt = X0 +

∫ t

0

µs ds+

∫ t

0

σs dWs , t ∈ R+ , (1)

adapted with respect to a right-continuous and complete filtration (Ft) on a filtered probability space
(Ω,F , (Ft),P) with adapted locally bounded drift process µ, a p-dimensional Brownian motion W and
adapted p × p′ càdlàg volatility process σ. Suppose that σ itself is an Itô process again, given by an
equation similar to (1). The processes σ and W can be dependent, allowing for leverage effect.

5 Similar findings were made for the two-scales estimator in Zhang (2011), and for local likelihood in Bibinger et al. (2012).
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Since we have in mind financial applications in which X is assumed to represent an hypothetical un-
derlying log-price process, we will call X efficient (log-price) process in this context.
For the ease of exposition we restrict ourselves to p = 4, which suffices to reveal the general asymptotic
covariance form. The target of inference is the integrated covariance matrix

∫ T
0

Σs ds, over a certain fixed
time span [0, T ], where Σ = σσ>, with σ from (1). We denote in the following

Σs =


σ

(11)
s σ

(12)
s σ

(13)
s σ

(14)
s

σ
(12)
s σ

(22)
s σ

(23)
s σ

(24)
s

σ
(13)
s σ

(23)
s σ

(33)
s σ

(34)
s

σ
(14)
s σ

(24)
s σ

(34)
s σ

(44)
s

 (2)

in the four-dimensional setting.

Assumption 2. The Itô process X from Assumption 1 with p = 4 is discretely observed at equidistant
observation times iT/n, i ∈ {0, . . . , n}.6

We write

∆iX = X iT
n
−X (i−1)T

n
, 1 ≤ i ≤ n, and ∆j

iX = X iT
n
−X (i−j)T

n
, 1 ≤ i ≤ n, 2 ≤ j ≤ i , (3)

for the increments and for increments to longer lags, respectively, and analogously for the single compo-
nents.
The standard estimators for the integrated covariance matrix based on discrete observations considered in
this section, but also the estimators designed to deal with noise and non-synchronicity below, will have
variances hinging on the random volatility process σ. This is the main motivation why for high-frequency
asymptotics in the strand of literature on integrated variance estimation, stable weak convergence is in-
herent as an essential concept.7 Stable central limit theorems allow for feasible limit theorems if the
asymptotic variance can be estimated consistently and thus for statistical inference and confidence bands.8

The stability of weak convergence with respect to F is established for all estimators considered throughout
this article. In the sequel, we use the notation VarΣ( · ),CovΣ( · ) for random (co-)variances dependent
on Σ. The stochastic limits multiplied with the convergence rate will be denoted AVAR and ACOV for
asymptotic variance and covariance, respectively.

Proposition 2.1. On Assumptions 1 and 2, for p = 4, the asymptotic covariance between realized covari-
ances yields:

ACOV

(
n∑
i=1

∆iX
(k)∆iX

(l) ,
n∑
i=1

∆iX
(r)∆iX

(q)

)
= T

∫ T

0

(σ(kr)
s σ(lq)

s + σ(kq)
s σ(lr)

s ) ds , (4)

for all k, l, r, q ∈ {1, 2, 3, 4}. In particular, we have

ACOV

(
n∑
i=1

∆iX
(1)∆iX

(2) ,

n∑
i=1

∆iX
(3)∆iX

(4)

)
= T

∫ T

0

(σ(13)
s σ(24)

s + σ(14)
s σ(23)

s ) ds .

6The discussion in this section extends to data that are synchronous but mildly irreguar, cf. Mykland & Zhang (2012), Chapter
2.7.1.

7Let Zn be a sequence of X -measurable random variables, with FT ⊆ χ. We say that Zn converges stably in law to Z
as n → ∞ if Z is measurable with respect to an extension of X so that for all A ∈ FT and for all bounded continuous g,
EIAg(Zn) → EIAg(Z) as n → ∞. IA denotes the indicator function of A, and = 1 if A and = 0 otherwise. In the case of
no microstructure, X = FT . If there is microstructure, X is formed as the smallest sigma-field containing FT and also making the
microstructure measurable. We refer to Jacod (1997), Jacod & Protter (1998), and Bibinger (2011a) for background information on
stable convergence for this estimation problem.

8Stable convergence also permits the suppression of drift through measure change, see Section 2.2 of Mykland & Zhang (2009),
which draws on Rootzén (1980). The device is similar to the passage to risk neutral measures in finance, going back to Ross (1976),
Harrison & Kreps (1979), and Harrison & Pliska (1981). This mode of convergence also permits the localization of processes such
as volatility, so they can be assumed bounded, see Chapter 2.4.5 of Mykland & Zhang (2012).
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A generalization for non-equidistant sampling is covered by Proposition 4.1 in Section 4. From now
on we express the general asymptotic covariances using indices 1, 2, 3, 4 as in the second formula above,
and obtain special cases by inserting ‘(1) = (2)’ etc. Proposition 2.1 includes the well-known results that

nVarΣ

(
n∑
i=1

(∆iX)2

)
p−→ 2T

∫ T

0

σ4
s ds

for the realized variance in a one-dimensional setup, where the asymptotic variance hinges on the so-called
integrated quarticity, and

nVarΣ

(
n∑
i=1

∆iX
(1)∆iX

(2)

)
p−→ T

∫ T

0

(1 + ρ2
s)(σ

(1)
s σ(2)

s )2 ds

in a bivariate model with spot correlation process ρs. Already in the two-dimensional model we addition-
ally obtain asymptotic covariances between realized variances and the realized covariance

nCovΣ

(
n∑
i=1

∆iX
(1)∆iX

(2) ,

n∑
i=1

(∆iX
(1))2

)
p−→ 2T

∫ T

0

ρs(σ
(1)
s )3σ(2)

s ds .

The key steps for proving (4) are the approximation

∆iX ≈ σ (i−1)T
n

(
W iT

n
−W (i−1)T

n

)
, (5)

more precisely given in the Appendix A, and the formula

Cov
(
Z(i)Z(l), Z(m)Z(u)

)
= ΣimΣlu + ΣiuΣlm . (6)

for a multivariate normal Z ∼ N(0,Σ) with covariance matrix (Σij). The right-hand side of (5) is condi-
tionally on F(i−1)T/n centered Gaussian and this finding will be helpful, since by the martingale structure
of realized (co-)variances and estimation errors in the upcoming sections below, the asymptotic covariances
are given as limit of the sequence of conditional covariances. Hence it will be possible to apply (6) which
is a special case of the general formula for moments from a multivariate normal by Isserlis (1918).

3 Inference for observations with microstructure noise
Assumption* 2. The process X is observed synchronously on [0, T ] with additive microstructure noise:

Yi = Xti + εi , i = 0, . . . , n .

The ti, 0 ≤ i ≤ n, are the observation times and we assume that there is a constant 0 < α ≤ 1/9, such
that

δn = sup
i

((ti − ti−1) , t0, T − tn) = O
(
n−

8/9−α
)
, (7)

stating that we allow for a maximum time instant tending to zero slower than with n−1, but not too slow.
The microstructure noise is given as a discrete-time process for which the observation errors are assumed
to be i. i. d. and independent of the efficient process. Furthermore, the errors have mean zero, and fourth
moments exist.

Exact orders in (7) and below in (18) and (25) arise from upper bounds of remainder terms after apply-
ing Hölder inequality. We keep to the notation

∆iX = Xti −Xti−1 and ∆j
iX = Xti −Xti−j , 1 ≤ i ≤ n, 2 ≤ j ≤ i .

Since notation varies between papers, note the correspondence to the other main form:

∆iX is the same as ∆Xti .
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The covariance matrix of the vectors εj , 0 ≤ j ≤ n, is denoted H and for p = 4 we set

H =


η1

2 η12 η13 η14

η12 η2
2 η23 η24

η13 η23 η3
2 η34

η14 η24 η34 η4
2

 . (8)

Note that an i. i. d. assumption on the noise is standard in related literature, an extension to m-dependence
and mixing errors can be attained as in Aı̈t-Sahalia et al. (2011). For notational convenience of asymptotic
variances, we restrict ourselves to i. i. d. noise in this section – in the general asynchronous framework
below asymptotic covariances of generalized multi-scale estimates are not affected by the noise.
Increments in such a microstructure noise model

∆jY =

∫ tj

tj−1

µs ds+

∫ tj

tj−1

σs dWs + εj − εj−1

are substantially governed by the noise, since the second addend is Op(δ
1/2
n ) and the drift acts only as

nuisance term of order in probabilityOp(δn). For an accurate estimation of the integrated covariance matrix
in the presence of noise smoothing methods are applied. We now discuss several main approaches and
integrate them in a unifying theory. To this end, we show that two prominent methods are asymptotically
equivalent.

3.1 Asymptotic Equivalence of the Multi-Scale and Kernel Estimators
For the estimation of integrated variance the following rate-optimal estimators with similar asymptotic
behavior have been proposed in the literature: a multi-scale approach by Zhang (2006), pre-averaging noisy
returns first as in Jacod et al. (2009), the kernel approach by Barndorff-Nielsen et al. (2008) and a Quasi-
Maximum-Likelihood-Estimator by Xiu (2010). We investigate the covariance structure of the multi-scale
estimator explicitly, but since all these estimators have a similar structure as quadratic form of the discrete
observations, analogous reasoning will apply to the other methods. In particular, we shed light on the
connection to the kernel approach to profit at the same time from the considerations by Barndorff-Nielsen
et al. (2008) pertaining parametric efficiency and the asymptotic features of different kernel functions. The
multi-scale estimator

̂[
X(1), X(2)

](multi)
T

=

M(12)
n∑
i=1

αi
i

n∑
j=i

∆i
jY

(1)∆i
jY

(2) , (9)

and analogous for other components, arises as linear combination of subsampling estimators that are aver-
aged lower-frequent realized covariances using frequencies i = 1, . . . ,M

(12)
n .

For discrete weights αi, 1 ≤ i ≤Mn, with
∑Mn

i=1 αi = 1 and
∑Mn

i=1(αi/i) = 0, the expression

αi =
i

M2
n

h

(
i

Mn

)
− i

2M3
n

h′
(

i

Mn

)
+

i

6M4
n

(h′(1)− h′(0))− i

24M5
n

(h′′(1)− h′′(0)) , (10)

adopted from Zhang (2006), with twice continuously differentiable functions h satisfying
∫ 1

0
xh(x) dx = 1

and
∫ 1

0
h(x) dx = 0, gives access to a tractable class of estimators. The multi-scale frequencies are chosen

M
(kl)
n = ckl

√
n with constants ckl, (k, l) ∈ {1, 2, 3, 4}2, minimizing the overall mean square error to order

n−1/4. The estimator is thus rate-optimal according to the lower bounds for convergence rates by Gloter &
Jacod (2001) and Bibinger (2011b).
At the present day, it is commonly known that the nonparametric smoothing approaches to cope with noise
contamination have a connatural structure and related asymptotic distribution. A prominent intensively
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studied alternative to the multi-scale approach is the kernel estimator by Barndorff-Nielsen et al. (2008)

̂[
X(1), X(2)

](kernel)
T

=

n∑
j=1

∆jY
(1)∆jY

(2)

+

Hn∑
h=1

K

(
h

Hn

)( n∑
j=h+1

∆jY
(1)∆j−hY

(2) + ∆j−hY
(1)∆jY

(2)
)
, (11)

with a four times continuously differentiable kernel K on [0, 1], which satisfies the following conditions:

max

{∫ 1

0

K2(x) dx,

∫ 1

0

(K′(x))2 dx,

∫ 1

0

(K′′(x))2 dx

}
<∞,K(0) = 1,K(1) = K′(0) = K′(1) = 0.

In the one-dimensional setup (11) has the shape of a linear combination of realized autocovariances of
the discretely observed process. The subsequent explicit relation between kernel and multi-scale estimator
enables us to embed the findings about several kernels and the construction of an asymptotically efficient
one for the scalar model provided by Barndorff-Nielsen et al. (2008). Since the multi-scale approach
exhibits good finite-sample properties in the treatment of end-effects, it can be worth to road-test resulting
transferred multi-scale estimators in practice.

Theorem 3.1. For each kernel function K matching the assertions above, for the estimator defined in (11)
and the multi-scale estimator (9) with weights determined by (10) and h = K′′, we have

n
1/4

(
̂[

X(1), X(2)
](multi)
T

− ̂[
X(1), X(2)

](kernel)
T

+ 4η12

)
p−→ 0 , (12)

as n → ∞, Mn = Hn → ∞. The term 4η12 is due to the different impact of end-effects in (11) and (9)
and, since the variance-covariance structure carries over to adjusted unbiased versions of the estimators,
is not crucial for the relation of the asymptotic (co)variances.

3.2 Asymptotic Equivalence of Adjusted Estimators
The multi-scale and kernel estimators defined in (9) and (11) are sensitive to end-effects which is caused
by the dominating noise component (which does not depend on n). Due to end-effects, on Assumption *2,
the estimators (9) and (11) with weights determined by (10) and corresponding kernels have a bias −2η12

and 2η12, respectively. We here investigate a correction to each of the two types of estimator:
Correction to Multi-scale: Follow Zhang (2006) by modifying the first two weights

α1 7→ α1 + 2/n, α2 7→ α2 − 2/n, (αi)3≤i≤Mn
7→ (αi)3≤i≤Mn

. (13)

Correction to the Kernel estimator:

multiplying the realized covariance in the first addend with
n− 1

n
. (14)

This correction is different from the ‘jittering’ approach provided in Barndorff-Nielsen et al. (2008).9

We call the adjusted estimators, respectively,

̂[
X(1), X(2)

](multi,adj)
T

and ̂[
X(1), X(2)

](kernel,adj)
T

.

With these adjustments, we obtain the following direct equivalence of the two estimators.

Theorem 3.2. Under the assumptions of Theorem 3.1, for each kernel function K, we have

n
1/4

(
̂[

X(1), X(2)
](multi,adj)
T

− ̂[
X(1), X(2)

](kernel,adj)
T

)
p−→ 0 , (15)

as n→∞, Mn = cmulti
√
n and Hn = ckern

√
n.

9Section 2.6 p. 1487-88 of Barndorff-Nielsen et al. (2008).
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kernel K

cubic 1− 3x2 + 2x3

Parzen (1− 6x2 + 6x3)1{x≤1/2} + 2(1− x)3
1{x>1/2}

rth Tukey-Hanning sin
(
π
2 (1− x)r

)2
kernel first-order weights αi

cubic 12i2

(M)3 −
6i

(M)2

Parzen i
M2

(
36i
M − 12

)
for i ≤M/2 and i

M2

(
12− 12i

M

)
for i > M/2

rth Tukey-Hanning
πir(1− i

M )r−2((r−1) sin (π(1− i
M )r)+πr( i

M−1)r cos (π(1− i
M )r))

2M2

Table 1: Collection of important kernels and corresponding weights for the multi-scale (first order term).

The extension from Hn = Mn in Theorem 3.1 to asymptotically of the same (optimal) order follows
directly, by inserting the minimum in the transformations in the proof, and by elementary bounds for the
remainder.

Remark 1. (Dependent noise.) In the case of m-dependence it will be convenient to discard the first m
frequencies and renormalize in (9). The adjusted estimator is robust.

Remark 2. (Strong representation.) The results in Theorems 3.1-3.2 are similar to other “strong repre-
sentation” results in the high-frequency literature, such as in Zhang (2011) (see key equation (39) on p.
41) and Mykland et al. (2012), Theorem 4. (The convergence is in probability, but is comparable to strong
representation through a standard subsequence-of-subsequence argument.)

3.3 Optimal choice of weights, and Asymptotic distribution
The standard weights employed in Zhang (2006) and Bibinger (2011b):

αi =

(
12i2

((M
(12)
n )3 −M (12)

n )
− 6i

((M
(12)
n )2 − 1)

− 6i

((M
(12)
n )3 −M (12)

n )

)
(16)

=
12i2

(M
(12)
n )3

− 6i

(M
(12)
n )2

(1 + O(1))

minimize the asymptotic noise variance and lead to, as mentioned by Barndorff-Nielsen et al. (2008), the
same asymptotic properties as for the kernel estimator (11) with a cubic kernel. However, as derived by
Barndorff-Nielsen et al. (2008) there are kernels surpassing the cubic kernel in efficiency by shrinking the
signal and cross parts of the variance while allowing for an increase in the noise variance and striving for
the best balance of all three. A fourth term appearing in the asymptotic (co-)variance, see (17) below,
induced by end-effects and noise, can be circumvented by their ‘jittering’ technique. Asymptotically,
Tukey-Hanning kernels as listed in Table 1 combined with this ‘jittering’ attain the optimal asymptotic
variance in the scalar case known from the inverse Fisher information in Gloter & Jacod (2001). All weights
(10) satisfy the relations

∑Mn

i=1 αi = 1 and
∑Mn

i=1 αi/i = 0. Classical pre-averaging is asymptotically
equivalent to the Parzen kernel. This linkage has been shown by Christensen et al. (2010); see also the
discussion in Jacod et al. (2009) (Remark 1, p. 2255). At this stage, we derive the asymptotic covariance
structure for the typically considered equidistant observations setup and we will extend this to irregular
sampling below in our general non-synchronous model.
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kernel Nα
1 Dα Mα Nα

2

cubic 12 13/70 6/5 6/5

Parzen 24 3/4 151/560 15/40

1st Tukey-Hanning π4/8 π2/16 3/8 π2/8

16th Tukey-Hanning 14374 5.132 0.0317 10.264

Table 2: Constants in asymptotic covariance for important kernels.

Proposition 3.1. On the Assumptions 1 and * 2 with ti = iT/n, 0 ≤ i ≤ n, the asymptotic covariance
of the multi-scale estimates (9) with M (12)

n = c12
√
n,M

(34)
n = c34

√
n, c = min (c12, c34), and weights

(10), and by the equivalence also of the corresponding kernel estimates, is

ACOV
(

̂[
X(1), X(2)

](multi)
T

, ̂[
X(3), X(4)

](multi)
T

)
= 2Dα c T

∫ T

0

(σ(13)
s σ(24)

s + σ(14)
s σ(23)

s ) ds

+ 2Nα
1 c
−3 (η13η24 + η14η23) + c−1Mα

∫ T

0

(
η13σ

(24)
s + η24σ

(13)
s + η14σ

(23)
s + η23σ

(14)
s

)
ds (17)

+ c−1Nα
2 (η13η24 + η14η23) ,

with constants Dα, Nα
1 , Nα

2 and Mα depending on the specific kernel, see Table 2.10

A generalization for non-equidistant sampling is covered by Proposition 5.1 in Section 5. In this case,
the first addend of (17) (signal term) hinges on a function (29), while the other terms are analogous. In-
serting ‘(1) = (2) = (3) = (4)’ in the general formula (17), we obtain the asymptotic variance of the
one-dimensional multi-scale estimator as given in Zhang (2006). Also, for (1) = (3) and (2) = (4), we
have the asymptotic variance of the integrated covariance multi-scale estimator as given for the special case
in which H is diagonal in Bibinger (2012).

4 Inference for non-synchronous observations in the Absence of Mi-
crostructure noise

This section is devoted to the estimation problem under sampling with different observation schemes in
each component. Denote n = n1 + n2 + n3 + n4, the total number of observations. For deterministic real
sequences we introduce the notation an ∼ bn to express shortly that an = O(bn) and bn = O(an). For
sequences of random variables we analogously use an ∼p bn if an = Op(bn) and bn = Op(an).

Assumption** 2. Components of the process X are observed discretely at times t(l)i , 0 ≤ i ≤ nl, l =
1, 2, 3, 4, which follow sequences of observation schemes for which n1 ∼ n2 ∼ n3 ∼ n4, and with a
constant 0 < α ≤ 1/3 it holds that

δn = sup
(i,l)

((
t
(l)
i − t

(l)
i−1

)
, t

(l)
0 , T − t(l)nl

)
= O

(
n−

2/3−α
)
. (18)

Similarly as before, we denote componentwise

∆iX
(l) = X

(l)

t
(l)
i

−X(l)

t
(l)
i−1

and ∆j
iX

(l) = X
(l)

t
(l)
i

−X(l)

t
(l)
i−j

, 1 ≤ i ≤ nl, 2 ≤ j ≤ i , l ∈ {1, 2, 3, 4} .

10General expressions for the constants Dα, Nα1 , Nα2 and Mα are the same as in Zhang (2006) and Bibinger (2012), since they
apply equally in the special cases discussed there. In this paper, we do not focus so much on the theoretical expressions for constants,
as our focus in the feasible CLT.
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Under non-synchronous sampling the equitable estimator for the integrated covariance is the following
generalized realized covariance by Hayashi & Yoshida (2005):

̂[
X(1), X(2)

](HY )

T
=

n1∑
i=1

n2∑
j=1

∆iX
(1)∆jX

(2)
1

[min (t
(1)
i ,t

(2)
j )>max (t

(1)
i−1,t

(2)
j−1)]

, (19)

where the sum comprises all products of increments with overlapping observation time instants. This
estimator is asymptotically unbiased, i. e. unbiased and UMVU in the absence of a drift term, and can
be deduced as Maximum-Likelihood estimator in a model with deterministic function Σt as illustrated in
Mykland (2012). If supposed that we have sequences of sampling schemes for which some characteristic
features, specified in detail below, have a limit describing an asymptotic behavior of asynchronicity, a stable
central limit theorem with optimal convergence rate

√
n has been established and there are also feasible

versions (cf. Hayashi & Yoshida (2011) and Bibinger (2011a)). The asymptotic variance is in general larger
than for (4) in the synchronous case and hinges on functions capturing the superposition of the two sampling
times designs. For this reason, the analysis of the covariance structure in a multi-dimensional setup gets
more involved, since for a covariance we confront a superposition of four different sampling schemes
instead of two. For a more illustrative description, we use the illuminative rewriting of the Hayashi-Yoshida
estimator from Bibinger (2011a) with a synchronous approximation and an uncorrelated addend due to the
lack of synchronicity.
For this purpose we introduce the notion of next- and previous-tick interpolations:

t+l (s) = min
i∈{0,...,nl}

(
t
(l)
i |t

(l)
i ≥ s

)
and t−l (s) = max

i∈{0,...,nl}

(
t
(l)
i |t

(l)
i ≤ s

)
for l ∈ {1, 2, 3, 4} and s ∈ [0, T ]. One way to rewrite (19) using telescoping sums is:

̂[
X(1), X(2)

](HY )

T
=

n1∑
i=1

∆iX
(1)

(
X

(2)

t+2 (t
(1)
i )
−X(2)

t−2 (t
(1)
i−1)

)

=

n2∑
j=1

∆jX
(2)

(
X

(1)

t+1 (t
(2)
j )
−X(1)

t−1 (t
(2)
j−1)

)
.

For the generalization of the idea of closest synchronous approximations define

T 12
0 = max

(
t+1 (0), t+2 (0)

)
, T 12

i = T 12
i−1 + max

(
t+1 (T 12

i−1), t+2 (T 12
i−1)

)
, i = 1, . . . , N12 ,

T 34
0 = max

(
t+3 (0), t+4 (0)

)
, T 34

i = T 34
i−1 + max

(
t+3 (T 34

i−1), t+4 (T 34
i−1)

)
, i = 1, . . . , N34 .

The times T 12
i , T 34

i , are the refresh times from Barndorff-Nielsen et al. (2011) built for each pair of pro-
cesses and thus we will refer to these times, which coincide with the ones defined in a slightly different
manner in Bibinger (2011a), as refresh times in the following. The notion of next- and previous-ticks will
be applied analogously as above to refresh times:

T+
12(s) = min

i∈{0,...,N12}

(
T 12
i |T 12

i ≥ s
)

and T+
34(s) = min

i∈{0,...,N34}

(
T 34
i |T 34

i ≥ s
)
,

and T−12(s), T−34(s) in the same fashion for s ∈ [0, T ]. Writing X(l),+
T 12 for X(l)

t+l (T 12)
, l = 1, 2, and X(l),−

T 12

for X(l)

t−l (T 12)
, l = 1, 2, the Hayashi-Yoshida estimator (19) can be illustrated

̂[
X(1), X(2)

](HY )

T
=

N12∑
i=1

(
X

(1),+

T 12
i
−X(1),−

T 12
i−1

)(
X

(2),+

T 12
i
−X(2),−

T 12
i−1

)
, (20)

where N12 ≤ min (n1, n2) is the number of refresh times T 12
i . This illustration is particularly useful
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Figure 1: Interaction of next-tick and previous-tick interpolation terms affecting the covariance.

to decompose the Hayashi-Yoshida estimator in two uncorrelated addends - a fictional non-observable
synchronous realized covariance and the error due to the lack of synchronicity:

̂[
X(1), X(2)

](HY )

T
= D12

T +A12
T (21a)

with

D12
T =

N12∑
j=1

(
X

(1)

T 12
j
−X(1)

T 12
j−1

)(
X

(2)

T 12
j
−X(2)

T 12
j−1

)
, (21b)

A12
T =

N12∑
j=1

(
X

(1),+

T 12
j
−X(1)

T 12
j

)(
X

(2)

T 12
j
−X(2),−

T 12
j−1

)
+
(
X

(2),+

T 12
j
−X(2)

T 12
j

)(
X

(1)

T 12
j
−X(1),−

T 12
j−1

)
(21c)

+
(
X

(1)

T 12
j−1
−X(1),−

T 12
j−1

)(
X

(2)

T 12
j
−X(2)

T 12
j−1

)
+
(
X

(2)

T 12
j−1
−X(2),−

T 12
j−1

)(
X

(1)

T 12
j
−X(1)

T 12
j−1

)
.

Each increment in (20) is the sum of three addends, the increment over the refresh time instant and
a previous- and next-tick interpolated increment, where in each product only one of the next-tick and
previous-tick increments is non-zero.
The covariance is hence given by

E
[
D12
T D

34
T +A12

T D
34
T +A34

T D
12
T +A12

T A
34
T

]
− E

[
D12
T

]
E
[
D34
T

]
= E

[
D12
T D

34
T

]
+ E

[
A12
T A

34
T

]
− E

[
D12
T

]
E
[
D34
T

]
+ O(1) .

The products D12
T A

34
T and D34

T A
12
T tend to zero in probability, since the expectation for the Brownian parts

equals zero by one factor in each addend of an interpolated increment over an interpolation time instant
disjoint to the instants of the other factors. The product D12

T D
34
T comprises the refresh time sampling

for the pairs of processes. It can be decomposed passing over to refresh times of refresh times (which
are the refresh times of all four processes in the definition of Barndorff-Nielsen et al. (2011)) in the way:
D12
T D

34
T = D12,34

T + A12,34
T . The idea is the same as for the usual Hayashi-Yoshida estimator (20) as we

have two non-synchronous sampling designs by the sequences T 12
i , 0 ≤ i ≤ N12, T

34
l , 0 ≤ l ≤ N34. For

this purpose define

S0 = max
(
T 12

0 , T 34
0

)
, Si = Si−1 + max

(
T+

12(Si−1), T+
34(Si−1)

)
, i = 1, . . . , N .

Here, different as for the variance of one Hayashi-Yoshida estimator the term A12,34
T , comprising interpo-

lations from T 12
i , 0 ≤ i ≤ N12, and T 34

l , 0 ≤ l ≤ N34, to the times Sk, 0 ≤ k ≤ N , will not contribute
to the asymptotic covariance. The term has in general a non-zero expectation depending on σ(12)σ(34),
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but is compensated by terms in E
[
D12
T

]
E
[
D34
T

]
. Therefore, two terms will constitute the asymptotic co-

variance of two Hayashi-Yoshida estimators. A simple covariance term as in the presence of synchronous
observations at the refresh times Sk, 0 ≤ k ≤ N , and the product A12

T A
34
T . For the latter all products of

terms of the above given type including next- and previous ticks which overlap in time can contribute to its
expectation. To quantify this for general observation schemes we consider an auxiliary structure founded
on the partition of [0, T ] in the refresh time increments (Sk − Sk−1), k = 1, . . . , N . For each increment
(Sk − Sk−1), k = 1, . . . , N , we consider the refresh times T 12

i , T 34
j , lain next outside the interval and

within the interval, i. e.T+
12(Sk), T−12(Sk), T+

34(Sk), T−34(Sk), where at least one of the pairs equals Sk and
the same for Sk−1. This is visualized in Figure 1 in which observations at pairwise refresh times are il-
lustrated by dots and “missing” observations by circles. On the left-hand side arrows and bars and on the
right-hand side colored rectangles mark the intervals where interpolations for pairs intersect and thus con-
tribute to the covariance. Although we have no further interest what observations take place between the
considered refresh times, in particular more pairwise refresh times of one pair can lie in this interval, inter-
polation terms of those will not overlap with one of the other pair. We only need to focus on the depicted
borders of the intervals and the correlation between adjacent steps. As visualized on the left side of Figure
1, next-tick interpolation terms at Si and the last precedent refresh time of the other pair have a non-empty
intersection and contribute to the covariance. It is also possible - as highlighted on the right side of Figure
1 - that the next-tick interpolation term at the subsequent refresh time of the other pair and at Si overlap
and have a non-zero correlation. The same findings apply to previous-tick interpolation terms. Together
with the covariance between next- and previous-tick steps at the same Si of adjacent terms, which can be
quantified similarly as for the variance in Bibinger (2011a), we have captured all possible terms triggering
the covariance by non-synchronous sampling.

Definition 1. Define the deterministic sequences

GN (t) =
N

T

∑
Si≤t

(Si − Si−1)
2
, (22a)

F 13,N
24 (t) =

N

T

∑
Si+1≤t

(
min

(
t+1 (Si), t

+
3 (Si)

)
− Si

)+ (
Si −max

(
t−2 (Si−1), t−4 (Si−1)

))
(22b)

+
(
Si −min

(
t−1 (Si−1), t−3 (Si−1)

))+
(Si − Si−1)

+
(
min

(
t+2 (Si), t

+
4 (Si)

)
− Si

)+ (
Si −max

(
t−1 (Si−1), t−3 (Si−1)

))
+
(
Si −min

(
t−2 (Si−1), t−4 (Si−1)

))+
(Si − Si−1) ,

H13,N
24 (t) =

N

T

∑
Si+1≤t

(
min

(
t+1 (Si), t

+
3 (Si)

)
− Si

)+ (
Si+1 −max

(
t−2 (Si+1), t−4 (Si+1)

))+
(22c)

+
(
min

(
t+2 (Si), t

+
4 (Si)

)
− Si

)+ (
Si+1 −max

(
t−1 (Si+1), t−3 (Si+1)

))+
,

I13,N
24 (t) =

N

T

∑
Si+1≤t

(
Si −max

(
T−12(Si), T

−
34(Si)

))+
(22d)

×
(
min

(
max (t+1 (Si)), t

+
3 (Si),max (t+1 (T+

12(Si)), t
+
3 (T34(Si)))

)
−max

(
T+

12(Si), T
+
34(Si)

))+
+
(
min

(
T−12(Si−1), T−34(Si−1)

)
−max

(
t−1 (Si−1), t−3 (Si−1)

))+ (
min

(
T+

12(Si−1), T+
34(Si−1)

)
− Si−1

)+
+
(
Si −max

(
T−12(Si), T

−
34(Si)

))+
×
(
min

(
max (t+2 (Si)), t

+
4 (Si),max (t+2 (T+

12(Si)), t
+
4 (T34(Si)))

)
−max

(
T+

12(Si), T
+
34(Si)

))+
+
(
min

(
T−12(Si−1), T−34(Si−1)

)
−max

(
t−2 (Si−1), t−4 (Si−1)

))+ (
min

(
T+

12(Si−1), T+
34(Si−1)

)
− Si−1

)+
where ( · )+ denotes the positive part, and analogous sequences F 14,N

23 , H14,N
23 , I14,N

23 of monotone increas-
ing functions on [0, T ]. These are called quadratic covariations of times in the sequel.
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Assumption 3. Assume that for the sequences (22a), (22b), (22c) and (22d) from Definition 1 the following
convergence assertions hold:

(i) GN (t) → G(t), F 13,N
24 (t) → F 13

24 , F
14,N
23 (t) → F 14

23 , H
13,N
24 (t) → H13

24 (t), H14,N
23 (t) → H14

23 (t),
I13,N
24 (t) → I13

24 (t), I14,N
23 (t) → I14

23 (t) as N → ∞, where the limits are continuously differentiable
functions on [0, T ].

(ii) For any null sequence (hN ), hN = O
(
N−1

)
GN (t+ hN )−GN (t)

hN
→ G′(t) , (23a)

F 13,N
24 (t+ hN )− F 13,N

24 (t)

hN
→ F 13

24
′
(t) , (23b)

H13,N
24 (t+ hN )−H13,N

24 (t)

hN
→ H13

24
′
(t) , (23c)

I13,N
24 (t+ hN )− I13,N

24 (t)

hN
→ I13

24
′
(t) , (23d)

uniformly on [0,T] asN →∞ and analogously forH14,N
23 , F 14,N

23 , I14,N
23 . The limiting functions are

called asymptotic quadratic covariations of times in the sequel.

Assumption 3, which generalizes the notion of a quadratic variation of time for the one-dimensional
case by Zhang et al. (2005), directly postulates that sequences of time instants appearing in the sequences
of conditional covariances after applying Itô isometry and (5) converge to some limit. This is a rather weak
condition and necessary for the existence of asymptotic covariances.

Proposition 4.1. On the Assumptions 1, **2 and 3 the asymptotic covariance of two Hayashi-Yoshida
estimators is

ACOV
(

̂[
X(1), X(2)

](HY )

T
, ̂[
X(3), X(4)

](HY )

T

)
= T

∫ T

0

G′(s)(σ(13)
s σ(24)

s + σ(14)
s σ(23)

s ) ds (24)

+ T

∫ T

0

(
F 13

24
′
+H13

24
′
+ I13

24
′
)
σ(13)
s σ(24)

s ds+ T

∫ T

0

(
F 14

23
′
+H14

23
′
+ I14

23
′
)
σ(23)
s σ(14)

s ds .

For ‘(1) = (3)’ and ‘(2) = (4)’, we find the asymptotic variance of the Hayashi-Yoshida estimator as
illustrated in Bibinger (2011a). In this case I13

24
′
, I14

23
′ and H14

23
′ are zero.

5 The general case: Asymptotic covariance matrix of the generalized
multi-scale estimates under Asynchronicity and Microstructure

This section focuses on the general model – comprising non-synchronous sampling and noise perturbation
– and an hybrid approach founded on a combination of the estimators from Sections 3 and 4.

Assumption*** 2. The process X is observed non-synchronously with additive microstructure noise:

Y
(l)

t
(l)
j

= X
(l)

t
(l)
j

+ ε
(l)
j , j = 0, . . . , nl, l ∈ {1, 2, 3, 4} .

The sequences of observation schemes are regular in the sense that n1 ∼ n2 ∼ n3 ∼ n4 and with a
constant 0 < α ≤ 1/9 it holds that

δn = sup
(i,l)

((
t
(l)
i − t

(l)
i−1

)
, t

(l)
0 , T − t(l)nl

)
= O

(
n−

8/9−α
)
. (25)

The observation errors are i. i. d. sequences, independent of the efficient processes, centered and fourth
moments exist. Noise components can be mutually correlated only at synchronous observations.

13



In the following we establish the asymptotic covariance matrix for the generalized multi-scale method
from Bibinger (2011b) and Bibinger (2012). It arises as a convenient composition of the multi-scale real-
ized (co-)variance by Zhang (2006) from Section 3 and a synchronization approach inspired by the estima-
tor by Hayashi & Yoshida (2005). Virtually we can think of an idealized synchronous approximation by
refresh times, apply subsampling and the multi-scale extension to this scheme, and afterwards interpolate
to the next observed values on the highest available frequency. Reviving the notation from Section 4, the
generalized multi-scale estimator can be illustrated:

̂[
X(1), X(2)

](multi)
T

=

M(12)
n∑
i=1

αi
i

N12∑
j=i

(
X

(1),+

T 12
j
−X(1),−

T 12
j−i

)(
X

(2),+

T 12
j
−X(2),−

T 12
j−i

)
. (26)

This estimator crucially differs from the approach by Christensen et al. (2011), which has the form of the
traditional Hayashi-Yoshida estimator, but bound to a low-frequency scheme of pre-averaged observations
over blocks of order

√
n high-frequency observations. The estimator (26) relies more on the principle of

the refresh-time approximation – but contrary to Barndorff-Nielsen et al. (2011) – we use pre- and next-tick
interpolations such that the final estimator has no bias due to non-synchronicity. For this reason the article
on hand can not accomplish a unified theory that is applicable to alternative approaches by Barndorff-
Nielsen et al. (2011), Aı̈t-Sahalia et al. (2010) and Christensen et al. (2011), since unlike their roots from
Section 3 they are not connatural any more. We consider (26) because the method attains a much smaller
discretization variance in comparison to the one by Christensen et al. (2011), is rate-optimal and a feasible
central limit theorem is accessible from Bibinger (2012).

Remark 3. (Identical results for kernel estimators.) Since equations (7) and (25) are the same, it follows
from Section 3 that our results on irregular sampling for the synchronous case, where the generalized
multi-scale estimator (26) coincides with the original one (9), in the following apply identically to kernel
estimators. Furthermore, all results for the estimator (26) apply to a generalized kernel estimator with
pairwise refresh time sampling as in (26).

Definition 2. For given sampling schemes t(l)j , 0 ≤ j ≤ nl, 1 ≤ l ≤ p = 4 and r < nl, define the
functional sequences

G(l)
n,r(t) :=

nl
r T

∑
t
(l)
j ≤t

(t
(l)
j − t

(l)
j−1)

r∧j∑
q=0

(t
(l)
j−q − t

(l)
j−q−1) , (27)

for each component and analogously for refresh times T klj , 0 ≤ j ≤ Nkl, (k, l) ∈ {1, 2, 3, 4}2, introduced
in Section 3:

G
(l,k)
Nkl,r

(t) :=
Nkl
r T

∑
Tkl
j ≤t

(
T klj − T klj−1

) r∧j∑
q=0

(
T klj−q − T klj−q−1

)
. (28)

Denote GN,r(t) as the function build in the same fashion from the refresh times of all four observed com-
ponents Sj , 0 ≤ j ≤ N .

The existence of a limit G of the sequence in Definition 2 is essential to establish an asymptotic distri-
bution theory, since it dominates the terms that appear in the (co-)variances of the multi-scale and related
estimators and contribute to the asymptotic (co-)variance, namely the following existing limit:

Dα(t) := lim
N→∞

 N

MN T

∑
Sr≤t

∆Sr

MN∑
i,k=1

αiαk

r∧i∧k∑
q=0

(
1− q

i

)(
1− q

k

)
∆Sr−q

 . (29)

In the equidistant setupDα(t) = Dαt with the constant Dα found in Proposition 3.1. We will call the limit
G in case of existence local asymptotic sampling autocorrelation (LASA). If we focus on the special case
‘(1)=(2)=(3)=(4)’, convergence of (27) is assumed for the one component.
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The preceding definition suffices to quantify the influence of non-equidistant synchronous schemes on
the asymptotic properties of the multi-scale estimator, but to give a very general asymptotic covariance
structure of the generalized multi-scale estimator in a transparent form, we can not avoid to introduce some
tedious notation in the following. Readers interested mainly in the usual completely non-synchronous
setup, where the asymptotic covariances of estimates involving different components only hinge on the
signal parts, may proceed with Corollary 5.2.

Definition 3. Depending on the sequences of sampling schemes, define the following sequences of func-
tions:

SN13(t) =
1

N

∑
t
(1)
j ≤t

∑
t
(3)
k ≤t

1{t(1)j =t
(3)
k }

, (30a)

and in the same way SN14(t), SN23(t) and SN24(t). Define in the case of existence for givenM (12)
N ,M

(34)
N with

MN = min (M
(12)
N ,M

(34)
N ):

S24
13 = lim

N→∞
N−1M−1

N

N12∑
j=0

N34∑
k=0

j∧M(12)
N∑

r=1

k∧M(34)
N∑

q=1

(
1{t+1 (T 12

j )=t+3 (T 34
k ),t−2 (T 12

j−r)=t−4 (T 34
j−q)} (31a)

+1{t+2 (T 12
j )=t+4 (T 34

k ),t−1 (T 12
j−r)=t−3 (T 34

j−q)}

)
,

S23
14 = lim

N→∞
N−1M−1

N

N12∑
j=0

N34∑
k=0

j∧M(12)
N∑

r=1

k∧M(34)
N∑

q=1

(
1{t+1 (T 12

j )=t+4 (T 34
k ),t−2 (T 12

j−r)=t−3 (T 34
j−q)} (31b)

+1{t+2 (T 12
j )=t+3 (T 34

k ),t−1 (T 12
j−r)=t−4 (T 34

j−q)}

)
,

S̃24
13 = lim

N→∞
M−1
N

M
(12)
N −1∑
j=0

M
(34)
N −1∑
k=0

(
1{t+1 (T 12

j )=t+3 (T 34
k ),t+2 (T 12

j )=t+4 (T 34
k )} (31c)

+1{t−1 (T 12
N12−j)=t−3 (T 34

N34−k),t−2 (T 12
N12−j)=t−4 (T 34

N34−k)}

)
,

S̃23
14 = lim

N→∞
M−1
N

M
(12)
N −1∑
j=0

M
(34)
N −1∑
k=0

(
1{t+1 (T 12

j )=t+4 (T 34
k ),t+2 (T 12

j )=t+3 (T 34
k )} (31d)

+1{t−1 (T 12
N12−j)=t−4 (T 34

N34−k),t−2 (T 12
N12−j)=t−3 (T 34

N34−k)}

)
.

Assumption* 3. Assume that for the sequences (27)/ (28) from Definition 2, and the sequences from Defi-
nition 3, the following convergence assumptions hold:

(i) As N → ∞ and r → ∞ with r = O(N): GN,r(t) → G(t), for a continuous differentiable limiting
function G on [0, T ].

(ii) For any null sequence (hN ), hN = O
(
N−1

)
:

GN,r(t+ hN )−GN,r(t)

hN
→ G′(t) (32)

uniformly on [0,T] as N →∞.

(iii) SN13(t) → S13, S
N
14(t) → S14(t), SN23(t) → S23(t), SN24(t) → S24(t) as N → ∞, where the limits

are continuously differentiable functions on [0, T ].
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(iv) For any null sequence (hN ), hN = O
(
N−1

)
:

SN13(t+ hN )− SN13(t)

hN
→ S′13(t) ,

SN14(t+ hN )− SN14(t)

hN
→ S′14(t) , (33a)

SN23(t+ hN )− SN23(t)

hN
→ S′23(t) ,

SN24(t+ hN )− SN24(t)

hN
→ S′24(t) , (33b)

uniformly on [0,T] as N →∞.

Proposition 5.1. On the Assumptions 1, ***2 and *3, the asymptotic covariance of generalized multi-
scale estimates (26) with M (12)

n = c12

√
N12 = c̃

√
N,M

(34)
n = c34

√
N34 = c∗

√
N , c = min (c̃, c∗), and

weights (10) is given by

ACOV
(

̂[
X(1), X(2)

](multi)
T

, ̂[
X(3), X(4)

](multi)
T

)
= 2 c T

∫ T

0

(Dα)′(s)(σ(13)
s σ(24)

s + σ(14)
s σ(23)

s ) ds

+ c−3
(
S24

13C
24
13,αη13η24 + S23

14C
23
14,αη14η23

)
+ c−1

(
S̃24

13C̃
24
13,αη13η24 + S̃23

14C̃
23
14,αη14η23

)
(34)

+ c−1Mα

∫ T

0

(
η13S

′
13σ

(24)
s + η24S

′
24σ

(13)
s + η14S

′
14σ

(23)
s + η23S

′
23σ

(14)
s

)
ds ,

with the existing differentiable limiting function (29) hinging on (28). All constants SC,α, S̃C̃,α depend on
the asymptotic proportion of sampling times where pairs of two components are recorded synchronously
and the selected weights.

In a synchronous setting clearly S24
13 = S23

14 = S̃24
13 = S̃23

14 = 1, C24
13 = C23

14 = 2Nα
1 (=24 for the cubic

kernel), C̃24
13 = C̃23

14 = Nα
2 (=6/5 for the cubic kernel) and S′13 = S′14 = S′23 = S′24 = 1[0,T ], and (34)

coincides with (17) except the influence of irregular sampling. In particular, the asymptotic variance of the
multi-scale estimator for synchronous non-equidistant sampling yields

AVAR

(
̂[

X(1), X(2)
](multi)
T

)
= 2 c T

∫ T

0

(Dα)′(s)(σ(11)
s σ(22)

s + (σ(12)
s )2) ds

+ 2Nα
1 c
−3
(
η2

1η
2
2 + η2

12

)
+ c−1Mα

∫ T

0

(
η2

1σ
(22)
s + η2

2σ
(11)
s + 2 η12σ

(12)
s

)
ds (35)

+ c−1Nα
2

(
η2

1η
2
2 + η2

12

)
.

Interestingly, in most situations if S24
13 = S23

14 = 0, the noise part will vanish. Furthermore, we obtain the
following important result for the completely non-synchronous case:

Corollary 5.2. In the case that no synchronous observations take place: t(l)i 6= t
(k)
j for all l 6= k and

(i, j) ∈ {0, . . . , nl} × {0, . . . , nk}, or the amount of synchronous observations tends to zero as n → ∞,
using the same notation as in Proposition 5.1 and on the same (remaining) assumptions, we have:

ACOV
(

̂[
X(1), X(2)

](multi)
T

, ̂[
X(3), X(4)

](multi)
T

)
=2 c T

∫ T

0

(Dα)′(s)(σ(13)
s σ(24)

s +σ(14)
s σ(23)

s ) ds , (36)

with the existing derivative of the limiting function (29).

Here, formula (36) makes sense only for different components and we may not insert ‘(1)=(3)’ or
likewise as above. However, the relation is meaningful for the asymptotic covariance between integrated
variance estimators.

Remark 4. Our major focus is not on the theoretical limits G and of other sequences, since in the general
case they are specified only as limits. We do not need these values, however, for inference, as we shall see
in the next section on feasible inference.
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Note that convergence of (27) is the natural assumption to derive a central limit theorem for irregularly
spaced (non-equidistant) observations already in the one-dimensional framework. It emulates the asymp-
totic quadratic variation of time for realized variance to an asymptotic local autocorrelation of sampling
time instants which constitutes the counterpart to the sum of squared time instants emerging in the vari-
ance for subsampling and the other smoothing approaches. The only difference is that not directly the limit
of (27) will appear in the asymptotic variance, but some limiting function additionally involving specific
weights (the kernel). If we think of random sampling independent of Y , the structure of (27) will be partic-
ularly simple for i. i. d. time instants. Virtually, only the expectation will matter and we can apply the law of
large numbers. Assuming (32) is less restrictive than the assertion in Zhang (2006), i. e. sampling needs not
to be close to an equidistant scheme in the sense that asymptotic quadratic variation of time converges to T
at T. Remarkably, for the popular model of homogenous Poisson sampling independent of X with expected
time instants T/n, the asymptotic variance (35) is the same as for equidistant observations. This emanates
from the i. i. d. nature of time instants and the vanishing influence of the first addend 2T/(nr) in (27) as
r →∞. The finite sample correction factor in (32) for this Poisson setup is thus (r + 1)/r.

At first glance the simple appearance of the covariance between generalized multi-scale estimates in
the typical general setup where all observations are non-synchronous and in the presence of microstruc-
ture noise is intriguing. The covariance hinges only on the discretization error as if we had synchronous
observations at the refresh times Si, i = 0, . . . , N . The noise falls out of the asymptotic covariance on the
assumption that observation errors at different observation times are independent.
This feature constitutes another nice property of the generalized multi-scale method that not only the
asymptotic variance of the estimator has a simple form, where the impact of non-synchronicity falls out in
the signal part, but the asymptotic covariances are even simpler and particularly are not influenced by the
superposition of the four underlying different sampling schemes. Here, we benefit by the fact that for the
construction of (26) a smoothing method to reduce noise contamination is utilized which at the same time
smoothes out interpolation effects and hence the error due to non-synchronicity.

6 A feasible multivariate stable central limit theorem
In the sequel, we conclude a feasible stable central limit theorem for linear combinations of estimated
entries of the integrated covariance matrix with estimators of the types considered above. A remaining
step towards a feasible asymptotic distribution theory allowing to draw statistical inference, is to provide
consistent estimators for the asymptotic covariances from Propositions 2.1, 3.1, 4.1 and 5.1. In the vein of
Bibinger (2012), we construct consistent asymptotic covariance estimators in the general non-synchronous
framework, following a histogram-type approach. For the simple case in the absence of noise and non-
synchronicity, we give a simple-structured estimator resembling the prominent bipower variation.

Proposition 6.1. In the setting of Section 2, the estimator

ÂCOV

(
n∑
i=1

∆iX
(1)∆iX

(2),

n∑
i=1

∆iX
(3)∆iX

(4)

)

=
n

T

n−1∑
i=1

∆iX
(1)∆i+1X

(2)∆iX
(3)∆i+1X

(4) + ∆i+1X
(1)∆iX

(2)∆iX
(3)∆i+1X

(4) , (37)

is a consistent estimator of the general asymptotic covariance according to (4).
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On the assumptions imposed in Proposition 5.1, the estimator

ÂCOV
(

̂[
X(1), X(2)

](multi)
T

, ̂[
X(3), X(4)

](multi)
T

)

= 2 c T

KN∑
j=1

̂∆[X(1), X(3)]
n ̂∆[X(2), X(4)]

n

+ ̂∆[X(1), X(4)]
n ̂[X(2), X(3)]

n(
∆DN

j

)2 Dα
N (T )

KN

+ c−3
(
Ŝ24

13Ĉ
24
13,αη̂13η̂24 + Ŝ23

14Ĉ
23
14,αη̂14η̂23

)
+ c−1

(
ˆ̃S24

13
ˆ̃C24

13,αη̂13η̂24 + ˆ̃S23
14

ˆ̃C23
14,αη̂14η̂23

)
(38)

+ c−1Mα

KN∑
j=1

̂∆[X(2), X(4)]
n

∆jSN13

SN13(T )

KN
η̂13 +

KN∑
j=1

̂∆[X(1), X(3)]
n

∆jSN24

SN24(T )

KN
η̂24

+

KN∑
j=1

̂∆[X(1), X(4)]
n

∆jSN23

SN23(T )

KN
η̂23

KN∑
j=1

̂∆[X(2), X(3)]
n

∆jSN14

SN14(T )

KN
η̂14

 ,

gives a consistent histogram-wise estimation of the general asymptotic covariance from (34). Here we use

DN
j := inf {t ∈ [0, T ]|Dα(t) ≥ jDα(T )/KN}, 0 ≤ j ≤ KN , ∆DN

j = DN
j −DN

j−1 ,

(SNlk )j := inf {t ∈ [0, T ]|Slk(t) ≥ jSlk(T )/KN}, 0 ≤ j ≤ KN , l = 1, 2, k = 3, 4 ,

∆jS
N
lk = (SNlk )j − (SNlk )j−1, 1 ≤ j ≤ KN ,

η̂kl = −(N Skl(T ))−1

NSkl(T )∑
i=1

∆iX
(k)∆i+1X

(l), k = 1, 2, l = 3, 4 ,

and empirical realizations for all functions based on the sampling design from Definition 3. The number
of bins KN satisfies KNN

−1/3 → 0 as KN → ∞. The binwise evaluated estimators in (38) are multi-
scale estimators on each bin with multi-scale frequencies MN (j), 1 ≤ j ≤ KN . One possible choice is
KN = cN1/5 and MN (j) = c5/4N3/5.

Remark 5. The feasible CLT remains valid when relaxing Assumptions of Proposition 5.1 on existence
of the limit G in Assumption *3, since every subsequence of (29) has an in probability converging subse-
quence, see the discussion at the end of p. 1411 in Zhang et al. (2005) for analogous reasoning and more
details.

The estimator (38) simplifies in many cases, i. e. the completely non-synchronous setup, to the first
addend. An estimator for the asymptotic covariance (17) of multi-scale estimators in the synchronous
case is inherent in (38) when inserting appropriate constants. One estimator for the non-noisy but non-
synchronous model and the asymptotic covariance given in (24) may be constructed in a similar fashion as
(38) with histogram-type estimators based on equispaced grids with respect to the quadratic covariations
of times introduced in Definition 1. Since the principle is clear from the above given estimator, we forego
to explicitly state that estimator. In the synchronous setup or for l = k, the noise (co-)variance can be
estimated

√
nl consistently by the realized (co-)variance or using adjacent increments as stated above.

For ‘(1) = (2) = (3) = (4)’, our estimator (37) becomes 2n
∑
i(∆iX)2(∆i+1X)2 and differs from

the standard estimator (2n/3)
∑
i(∆iX)4 proposed in Barndorff-Nielsen & Shephard (2002) which is

preferable because its variance 42 2/3n−1 is slightly smaller than 48n−1 of (37) for this case. The constant
c in Proposition 6.1 is fixed from the minimum constant for the multi-scale estimates here. For an algorithm
how to select the tuning parameter adaptively involving pilot estimates to calibrate the whole estimation
procedure first, we refer to Bibinger (2012) for the generalized multi-scale and Barndorff-Nielsen et al.
(2008) for the univariate kernel estimator.
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For a quadratic symmetric (p × p) matrix A ∈ sym(p) ⊂ Rp×p, we denote the mapping to the vector of
its p(p+ 1)/2 free entries

SVEC(A) = ((Arq)1≤r≤p,1≤q≤r)
>

= (A11, A12, . . . , A1p, A22, A23, . . . , A2p, . . . , Ap−1p, App)
>
.

Theorem 6.1. Denote ̂[X(k), X(l)]
n

, 1 ≤ k ≤ p, 1 ≤ l ≤ p, one of the integrated covariance matrix

estimators from Sections 2–5 and consider the vector SVEC

((
̂[X(k), X(l)]

n)
1≤k≤p,1≤l≤p

)
of estimated

entries. The estimators fulfill a multivariate stable central limit theorem with rate rn:

rn

(
SVEC

((
̂[X(k), X(l)]

n

− [X(k), X(l)]
)

1≤k≤p,1≤l≤p

))
stably−→ N (0,COV) , (39)

with a symmetric p(p + 1)/2 × p(p + 1)/2-dimensional asymptotic covariance matrix COV determined
by Propositions 2.1, 3.1, 4.1 and 5.1, respectively. The rate rn equals

√
n, n =

∑p
l=1 nl, in the non-noisy

experiment and n1/4 under microstructure noise. For linear combinations

Z :=

̂[∑
k

ckX(k)

]n
=
∑
k,l

ckcl
̂[X(k), X(l)]

n

with the consistent estimators

̂AVAR(Z) =
∑
k,k̃,l,l̃

ckck̃clcl̃ÂCOV
(

̂[X(k̃), X(l̃)]
n

, ̂[X(k), X(l)]
n
)
,

if the latter is strictly positive, a feasible central limit theorem holds:

rn

(
Z/

√
̂AVAR(Z)

)
weakly−→ N (0, 1) . (40)

Note that we rescale the entries of the asymptotic covariance matrix COV from Propositions 2.1, 3.1,
4.1 and 5.1, respectively, and its estimates with factors rN/rn

(
(N/n)(1/2) without and (N/n)(1/4) with

noise
)

to obtain (39) and (40), where N denotes the number of refresh times of the involved components.
The multivariate central limit theorem (39) is directly derived from the multi-dimensional version of The-
orem 2–1 by Jacod (1997) which provides the basis for stable limit theorems in this research area. By
virtue of the asymptotic covariance structure deduced in this work, it suffices to check the conditions that
covariations of the componentwise estimation errors with the underlying reference Brownian motion W
driving our efficient process tend to zero, as well as the covariations with all Ft-adapted bounded martin-
gales orthogonal to W . The proof by establishing elementary bounds for the variances of these terms is
along the same lines as the univariate analysis, see Bibinger (2012) and Christensen et al. (2011), among
others. Suppose without loss of generality for notational convenience that we have

(Xn, Yn)
stably−→ (X,Y )

L
= N

(
0,

(
VX CXY
CXY VY

))
.

By continuous mapping we conclude Xn + Yn → X + Y stably. Assume we have at hand consistent
estimators V nX

p−→ VX , V
n
Y

p−→ VY , C
n
XY

p−→ CXY , and set V n = V nX + V nY + 2CnXY which is assumed
to be strictly positive. As V n is a bounded F-measurable random variable, stable convergence implies

(Xn + Yn, V
n)

weakly−→ (X + Y, VX + VY + 2CXY ) and hence also (Xn + Yn)/
√
V n

weakly−→ N (0, 1).

7 An application for conditional independence testing
This section is devoted to the design of a statistical test in order to investigate if the correlation of two assets
is only induced by a third one to which both are correlated. For multi-dimensional portfolio modeling and
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management, information about such relations can provide valuable information and access to a new angle
on the covariance structure. Conclusions in the way that a significant integrated covariance between two
high-frequency assets might be fully explained by their dependence on a joint factor or another asset,
respectively, will be of revealing impact on the used models. One interesting case we may think of is that
two observed asset processes X1 and X2 are listed within one index recorded as high-frequency process
Z. We then ask if X1 and X2 are conditionally on Z independent. To put it the other way round, pairs
which are not conditionally independent given some other asset exhibit some crucial covariance that carries
information about the direct mutual influence between the two assets. We understand independence here
in terms of orthogonal quadratic covariation processes and will further restrict to specific hypotheses as
below where we test for zero integrated covariances – so the term ‘independence’ is misused here for a
simple illustrative phrasing. The role of Z in the model can be also some macro variable that is known or
can be estimated with faster rate. We set up a statistical experiment in which X1 and X2 are orthogonally
decomposed in the sum of Z and a process independent of Z. The constants ρX1 , ρX2 quantify the degree
of dependence on Z.

X1 = ρX1 Z + Z⊥ , X2 = ρX2 Z + Z† with [Z,Z⊥] ≡ 0 , [Z,Z†] ≡ 0 . (41)

With [X1, X2] ≡ 0 for two semimartingales X1, X2 we express that [X1, X2]s = 0 for all s ∈ [0, T ]. For
the conditional independence hypothesis, we set

H0 : [Z⊥, Z†]T = 0 . (42)

Essentially, we do not distinguish between pairs for which the orthogonal parts are uncorrelated on the
whole line and pairs for which this correlation process integrates to zero. Our focus is on a resulting zero
covariance over [0, T ].
A suitable test statistic to decide whether we rejectH0 or not is

T(X1, X2, Z) = [X1, Z]T [X2, Z]T − [X1, X2]T [Z]T , (43)

which is zero under H0. In our high-frequency framework we can estimate the single integrated covari-
ances via the approaches considered in the preceding sections. The vital point is to deduce the asymptotic
distribution of the estimated version

T̂n = ̂[X1, Z]
n

T
̂[X2, Z]

n

T − ̂[X1, X2]
n

T [̂Z]
n

T , (44)

where [̂ · ]
n

T stands for one of the aforementioned estimators satisfying (39) whichever model fits the data
best. This test statistic, though based on the simple function g(x, y, u, v) = xy − uv, is more complex
to analyze than linear combinations, since we face products of our estimators. In lieu of determining the
distribution of the test statistic directly, we find help in the asymptotic covariance structure provided in
this paper and the ∆-method for stable convergence. Here, the methodology is similar to the prominent
propagation of error concept from experimental science. For each quadratic covariation, the estimation
error gets small for large n and hence we can profit when we taylor the underlying function g. Indeed, this
will give us the leading term of the variance of T̂n:

T− T̂n = [X2, Z]T

(
[X1, Z]T − ̂[X1, Z]

n

T

)
+ [X1, Z]T

(
[X2, Z]T − ̂[X2, Z]

n

T

)
(45)

− [X1, X2]T

(
[Z]T − [̂Z]

n

T

)
− [Z]T

(
[X1, X2]T − ̂[X1, X2]

n

T

)
+Op(r−4

n ) .

The asymptotic variance of the test statistic is random as we are familiar with from the usual mixed normal
limits in this field. It is a linear combination of the unknown covariations we estimate and the asymptotic
covariances which are the topic of this article and can be estimated consistently as found in Proposition
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6.1. An elementary calculation yields

AVAR(T̂n) = [X2, Z]2T AVAR( ̂[X1, Z]
n

T ) + [X1, Z]2T AVAR( ̂[X2, Z]
n

T )

+ [X1, X2]2T AVAR([̂Z]
n

T ) + [Z]2T AVAR( ̂[X1, X2]
n

T )

+ 2 [Z]T [X1, X2]TACOV( ̂[X1, X2]
n

T , [̂Z]
n

T ) + 2 [X1, Z]T [X2, Z]TACOV( ̂[X1, Z]
n

T ,
̂[X2, Z]

n

T )

− 2 [X1, Z]T [Z]TACOV( ̂[X1, X2]
n

T ,
̂[X2, Z]

n

T )− 2 [X2, Z]T [Z]TACOV( ̂[X1, X2]
n

T ,
̂[X1, Z]

n

T )

− 2 [X1, X2]T [X1, Z]TACOV( ̂[X2, Z]
n

T , [̂Z]
n

T )− 2 [X1, X2]T [X2, Z]TACOV( ̂[X1, Z]
n

T , [̂Z]
n

T ).

Inserting consistent estimators for the asymptotic covariances above, we finally obtain with (39) that

P0

rn T̂n
̂AVAR(T̂n)

 weakly−→ N (0, 1) , (46)

where P0 denotes the distribution underH0 and an asymptotic distribution free test forH0.
The conditional independence test also provides a tool for investigating dependencies within vast dimen-
sional portfolios in order to choose small blocks, i. e. subportfolios for which covariances of the estimates
are quantified explicitly.

8 An empirical example
We survey our methods in an application study on NASDAQ intra-day trading data, reconstructed from
first-level order book data, from August 2010. We consider a sample portfolio with 5 assets, namely Apple
(AAPL), Microsoft (MSFT), Oracle (ORCL), Exxon Mobil Corporation (XOM) and Pfizer (PFE). We
quantify the complete asymptotic covariance matrix of generalized multi-scale estimates with weights (16)
for the integrated covariance matrix over the whole month (where we discard over-night returns) and for
the first trading day, 2010/08/02. The data provides a good training data set to analyze estimation and test
procedures.
For a p-dimensional portfolio, the number of free entries of the symmetric covariance matrix is given by

1

2

p(p+ 1)

2

(
p(p+ 1)

2
+ 1

)
= p+ 3

(
p

4

)
+ 3 · 2

(
p

3

)
+ 4

(
p

2

)
. (47)

The left-hand illustration is derived by the reasoning that we estimate p(p + 1)/2 different entries of the
symmetric integrated covariance matrix which leads to a (p(p + 1)/2)2-dimensional covariance matrix
which is symmetric again. Since the dimension of the asymptotic covariance matrix increases proportional
to p4, an evaluation of all covariances is tractable only for small values of p (our estimates of risk in a
p-dimensional portfolio have dimension proportional to p2 and the risk of the estimates proportional to p4).
In Table 3, we list the estimates for integrated covariances ± estimated standard deviation. With the esti-
mators (38) and the numbers of refresh times of incorporated components, we quantify covariances of the
generalized multi-scale estimates which are listed in Table 4. The bottom line is that involving asymptotic
covariances is indispensable when facing questions for multivariate portfolio management. The estimated
quadratic variation of a sum of all five assets is (41.57±0.26) ·10−3 for 2010/08 and (129.22±6.88) ·10−5

for 2010/08/02. The estimated asymptotic variances, 6.93 · 10−8 and 47.42 · 10−10, are mainly induced
by estimated covariance terms (6.34/42.91), whereas the trace of the matrix, i. e. the sum of estimates for
asymptotic variances, is smaller. If one would mistakenly act as if the estimators were uncorrelated, this
leads to a tremendous underestimate of the estimation risk. Note that in principle, e. g. for negatively
correlated assets, the risk could sometimes also decrease by adding covariances. For [MSFT+ORCL],
which have the highest correlation in our portfolio, the ratios of the estimated sum of variances to the es-
timated sum of all covariances are 0.14/0.45 and 0.85/3.30, respectively, and for the least correlated pairs,
[AAPL+XOM] and [PFE+XOM], respectively, we have 0.09/0.20 and 0.84/1.59.
We perform the test from Section 7, to investigate three hypotheses: if MSFT and ORCL have a zero co-
variation conditional on PFE; ORCL and PFE conditional on MSFT and MSFT and PFE conditional on
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̂[X1, X2]
multi

T AAPL MSFT ORCL XOM PFE
AAPL 2.82± 0.01 1.23± 0.02 1.66± 0.03 0.63± 0.01 0.99± 0.03
MSFT 2.87± 0.03 2.05± 0.05 0.94± 0.02 1.25± 0.07
ORCL 3.81± 0.06 1.31± 0.03 1.63± 0.10
XOM 2.36± 0.01 1.25± 0.04
PFE 3.83± 0.09

̂[X1, X2]
multi

T AAPL MSFT ORCL XOM PFE
AAPL 8.16± 0.10 3.42± 0.20 3.74± 0.20 2.28± 0.11 2.47± 0.26
MSFT 12.43± 0.38 7.43± 0.37 2.95± 0.20 4.69± 0.47
ORCL 11.90± 0.39 3.73± 0.22 2.90± 0.49
XOM 6.42± 0.12 1.75± 0.29
PFE 19.59± 0.70

Table 3: Estimates for integrated covariances (· 103) 2010/08 (top) and (· 105) 2010/08/02 (bottom).

ORCL. From the higher correlation of MSFT and ORCL, we may expect that the first will probably not
apply. We obtain the following three test results (two-sided test) with p-values p and statistics Q which are
asymptotically standard normal underH0:

Q = −8.10;−2.47;−1.85 p = 0.00; 0.014; 0.064 (2010/08) ,
Q = −10.00;−0.05;−1.24 p = 0.00; 0.96; 0.21 (2010/08/02).

Tests if MSFT and ORCL have zero covariation conditional on the sum of all assets yield p-values 0.13 for
2010/08 and 0.23 for 2010/08/02. Tests for ORCL and PFE conditional on the sum of the three other assets
yield p-values 0.19 and 0.99. In conclusion, this empirical evidence suggests that MSFT and ORCL have
some dependence not explained by a common macro factor influencing all NASDAQ assets. Contrary, we
can not reject this for several other combinations. Some differences between 2010/08 and 2010/08/02 give
an heuristic that the portfolio dependence structure is not completely persistent. Though there are some
limitations where the additive noise model does not perfectly fit the stylized facts of the considered high-
frequency data as discreteness of returns and zero returns, the approaches developed in this research area
and advancements in this article provide reliable tools to quantify risk measures and determine confidence
intervals from high-frequently documented asset prices.

22



[A
,A

]
[A

,M
]

[A
,O

]
[A

,X
]

[A
,P

]
[M

,M
]

[M
,O

]
[M

,X
]

[M
,P

]
[O

,O
]

[O
,X

]
[O

,P
]

[X
,X

]
[X

,P
]

[P
,P

]
[A

,A
]

4.
01

4.
53

5.
47

1.
55

5.
26

6.
97

6.
75

4.
58

6.
92

9.
33

5.
15

8.
28

3.
02

3.
46

10
.8

9
[A

,M
]

4.
91

4.
63

1.
89

2.
72

7.
48

7.
74

3.
33

2.
72

8.
74

2.
88

9.
30

1.
22

2.
88

12
.2

3
[A

,O
]

7.
21

1.
85

4.
50

5.
85

2.
89

2.
91

7.
26

11
.6

2
4.

70
9.

61
2.

03
2.

80
3.

85
[A

,X
]

2.
83

2.
85

6.
15

5.
98

3.
44

6.
71

8.
03

1.
94

7.
49

3.
97

4.
59

2.
96

[A
,P

]
7.

03
4.

30
5.

63
2.

72
8.

96
6.

71
0.

63
11

.3
4

1.
37

4.
71

13
.7

2
[M

,M
]

13
.3

1
12

.2
9

5.
81

8.
18

8.
06

3.
33

6.
72

1.
21

2.
90

5.
33

[M
,O

]
12

.3
6

5.
86

10
.1

8
15

.2
9

5.
71

11
.0

7
1.

35
3.

61
6.

32
[M

,X
]

5.
24

6.
95

6.
03

5.
48

6.
15

2.
72

4.
51

6.
54

[M
,P

]
13

.8
6

6.
82

4.
02

14
.4

2
1.

82
6.

25
12

.4
7

[O
,O

]
21

.0
4

7.
85

12
.9

3
1.

46
3.

98
7.

50
[O

,X
]

6.
67

9.
08

2.
97

4.
74

7.
98

[O
,P

]
17

.2
8

1.
72

7.
63

15
.6

7
[X

,X
]

4.
90

4.
92

13
.1

1
[X

,P
]

8.
20

12
.2

3
[P

,P
]

29
.9

8

[A
,A

]
[A

,M
]

[A
,O

]
[A

,X
]

[A
,P

]
[M

,M
]

[M
,O

]
[M

,X
]

[M
,P

]
[O

,O
]

[O
,X

]
[O

,P
]

[X
,X

]
[X

,P
]

[P
,P

]
[A

,A
]

1.
55

2.
01

1.
75

0.
77

0.
65

1.
52

1.
50

0.
41

0.
62

1.
91

0.
73

1.
01

0.
27

0.
31

2.
05

[A
,M

]
2.

64
2.

32
0.

92
1.

78
5.

67
4.

32
2.

46
4.

27
3.

12
1.

79
2.

89
0.

56
1.

08
3.

05
[A

,O
]

2.
35

1.
12

1.
22

2.
96

4.
05

1.
42

2.
35

5.
21

2.
47

3.
54

0.
70

0.
77

2.
63

[A
,X

]
0.

86
0.

68
1.

84
1.

85
1.

38
0.

95
2.

18
1.

53
1.

05
1.

04
0.

90
2.

14
[A

,P
]

3.
29

2.
52

1.
80

0.
91

5.
57

1.
81

0.
61

5.
64

0.
28

3.
29

7.
99

[M
,M

]
13

.7
8

9.
94

4.
79

11
.0

5
5.

72
2.

73
4.

59
0.

68
1.

74
4.

66
[M

,O
]

7.
27

4.
1

5.
86

9.
65

4.
33

6.
79

0.
84

1.
64

3.
03

[M
,X

]
2.

3
2.

68
3.

15
2.

46
2.

05
1.

35
2.

35
2.

53
[M

,P
]

9.
21

2.
60

0.
90

9.
49

0.
34

4.
56

15
.3

2
[O

,O
]

12
.2

1
5.

63
5.

51
0.

92
1.

14
2.

84
[O

,X
]

2.
63

1.
78

1.
72

3.
17

1.
43

[O
,P

]
9.

88
0.

33
5.

18
7.

03
[X

,X
]

1.
62

1.
08

2.
2

[X
,P

]
3.

84
5.

42
[P

,P
]

34
.1

6
Ta

bl
e

4:
E

st
im

at
ed

as
ym

pt
ot

ic
co

va
ri

an
ce

m
at

ri
x

(·
1
0
8
),

20
10

/0
8

(t
op

)a
nd

(·
1
0
1
0
)2

01
0/

08
/0

2
(b

el
ow

),
A

=A
A

PL
,M

=M
SF

T,
O

=O
R

C
L

,X
=X

O
M

,P
=P

FE
.

23



Acknowledgements
The authors would like to thank Dacheng Xiu, Ruey Tsay and Dan Christina Wang for inspiring discus-
sions. We also thank Johannes Schmidt-Hieber and Till Sabel for a discussion on the relation of estimators
via quadratic forms for noise smoothing who have worked on the transformations between several of these
estimators.
Markus Bibinger was supported by a fellowship within the Postdoc-Programme of the German Academic
Exchange Service (DAAD) and the CRC 649 ‘Economic Risk’ at Berlin, supported by the Deutsche
Forschungsgemeinschaft (DFG), and also from the Stevanovich Center for Financial Mathematics at the
University of Chicago. Per Mykland was supported under National Science Foundation grant SES 11-
24526. We gratefully acknowledge this financial support.
The NASDAQ trading data used in Section 8 has been reconstructed from the order book with LOBSTER
provided by the high-frequency econometrics team at the Chair of Econometrics, School of Business and
Economics, Humboldt-Universität zu Berlin, Germany.

References
Aı̈t-Sahalia, Y., J. Fan, & D. Xiu (2010). High-frequency estimates with noisy and asynchronous financial

data. Journal of the American Statistical Association 105(492), 1504–1516.

Aı̈t-Sahalia, Y., L. Zhang, & P. A. Mykland (2011). Ultra high frequency volatility estimation with depen-
dent microstructure noise. Journal of Econometrics, 160, 160–165.

Andersen, T. G. & T. Bollerslev (1998). Answering the skeptics: Yes, standard volatility models do provide
accurate forecasts. International Economic Review 39, 885–905.

Andersen, T. G., T. Bollerslev, F. X. Diebold, & P. Labys (2000). Great realizations. Risk 13, 105–108.

Andersen, T. G., T. Bollerslev, F. X. Diebold, & P. Labys (2001). The distribution of realized exchange rate
volatility. Journal of the American Statistical Association 96, 42–55.

Andersen, T. G., T. Bollerslev, F. X. Diebold, & P. Labys (2003). Modeling and forecasting realized
volatility. Econometrica 71, 579–625.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, & N. Shephard (2008). Designing realised kernels to
measure the ex-post variation of equity prices in the presence of noise. Econometrica 76(6), 1481–1536.

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, & N. Shephard (2011). Multivariate realised ker-
nels: consistent positive semi-definite estimators of the covariation of equity prices with noise and non-
synchronous trading. Journal of Econometrics 162(2), 149–169.

Barndorff-Nielsen, O. E. & N. Shephard (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and
some of their uses in financial economics. Journal of the Royal Statistical Society, B 63, 167–241.

Barndorff-Nielsen, O. E. & N. Shephard (2002). Econometric analysis of realized volatility and its use in
estimating stochastic volatility models. Journal of the Royal Statistical Society 64(2), 253–280.

Bibinger, M. (2011a). Asymptotics of asynchronicity. Technical Report, Humboldt-Universität zu Berlin,
URL=http://sfb649.wiwi.hu--berlin.de/papers/pdf/SFB649DP2011--033.
pdf.

Bibinger, M. (2011b). Efficient covariance estimation for asynchronous noisy high-frequency data. Scan-
dinavian Journal of Statistics 38, 23–45.

Bibinger, M. (2012). An estimator for the quadratic covariation of asynchronously observed itô processes
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tique, La Manga, 2007: Statistical methods for stochastic differential equations, edited by M. Kessler, A.
Lindner and M. Sørensen.

Jacod, J., Y. Li, P. A. Mykland, M. Podolskij, & M. Vetter (2009). Microstructure noise in the continous
case: the pre-averaging approach. Stochastic Processes and their Applications 119, 2803–2831.

Jacod, J. & P. Protter (1998). Asymptotic error distributions for the euler method for stochastic differential
equations. The Annals of Probability 26, 267–307.

Mykland, P. & L. Zhang (2012). The econometrics of high frequency data. Proceedings of the 7th Séminaire
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APPENDIX: PROOFS

A Proofs

A.1 Preliminaries
The local boundedness condition in Assumption 1 can be strengthened to uniform boundedness on [0, T ]
by a localization procedure carried out in Jacod (2012), Lemma 6. 6 of Section 6 .3. Let C be a generic
constant and denote ∆iW = WiT/n −W(i−1)T/n, i = 1, . . . , n, for the Brownian motion W driving the
SDE with solution X in (1) and ∆iσ = σiT/n − σ(i−1)T/n. Consider some norm ‖ · ‖, e. g. the euclidean
norm, on Rp. Suppose Assumption 1 holds. By several applications of the Burkholder-Davis-Gundy and
Hölder inequality one can obtain the following estimates:

E
[
‖∆iX‖2 + ‖∆iW‖2

∣∣F(i−1)/n

]
≤ Cn−1, E

[
‖∆iσ‖2

∣∣F(i−1)/n

]
≤ Cn−1 , (A.1a)

E
[
‖∆iX −∆iW‖2

∣∣F(i−1)/n

]
≤ Cn−2 , (A.1b)

for equidistant observation schemes. For general synchronous sampling (A.1a) and (A.1b) remain valid
when replacing n by δ−1

n with δn = supi (ti − ti−1). The estimates (A.1a) and (A.1b) are proven in Jacod
(2012), among others. They are used repeatedly in the analysis below. We will as well make use of the
direct extensions for increments with respect to subsampled time lags and the componentwise versions of
(A.1a) and (A.1b).
Recall (6), which is a special case of the result by Isserlis (1918) and used implicitly throughout the proofs
below. For notational convenience we write again an ∼p bn if an = Op(bn) and bn = Op(an).

A.2 Proof of Proposition 2.1
Applying (6) and (A.1b), by the Itô isometry we deduce for the random conditional covariance

CovΣ

(
n∑
i=1

∆iX
(1)∆iX

(2),

n∑
i=1

∆iX
(3)∆iX

(4)

)
∼p

n∑
i=1

Covi−1

(
∆iX

(1)∆iX
(2),∆iX

(3)∆iX
(4)
)

∼p
n∑
i=1

(
σ

(13)
(i−1)T

n

σ
(24)
(i−1)T

n

+ σ
(14)
(i−1)T

n

σ
(23)
(i−1)T

n

)
T 2

n2
,

where we write Covi−1( · ) for Cov( · |F(i−1)T/n) and CovΣ( · ) for the random covariance dependent on
Σ. By convergence of the Riemann sum to the integral, this yields

nCovΣ

(
n∑
i=1

∆iX
(1)∆iX

(2),

n∑
i=1

∆iX
(3)∆iX

(4)

)
p−→ T

∫ T

0

(
σ(13)
s σ(24)

s + σ(14)
s σ(23)

s

)
ds .

�

A.3 Proof of Theorem 3.1
For the proof that(

̂[
X(1), X(2)

](multi)
T

− ̂[
X(1), X(2)

](kernel)
T

)
= −4η12 + Op

(
n−

1/4
)
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if K′′ = h in (10), it suffices to focus on the first-order term of the weights. Transforming (9) yields

Mn∑
i=1

αi
i

n∑
j=i

∆i
jY

(1)∆i
jY

(2) =

Mn∑
i=1

αi

 n∑
j=2

i∧(j−1)∑
l=1

(
1− l

i

)
(∆jY

(1)∆j−lY
(2) + ∆jY

(2)∆j−lY
(1))


+

n∑
j=1

∆jY
(1)∆jY

(2) −Rn

=

Mn∑
l=1

n∑
j=l+1

Mn∑
i=l

αi

(
1− l

i

)
(∆jY

(1)∆j−lY
(2) + ∆jY

(2)∆j−lY
(1))

+

n∑
j=1

∆jY
(1)∆jY

(2) −Rn

where we suppress additional component superscripts on Mn. The term Rn induced by end-effects

Mn∑
i=1

αi

i−1∑
j=1

 i− j
i

∆jY
(1)∆jY

(2) +

(j−1)∧1∑
l=1

i− j
i

(∆jY
(1)∆j−lY

(2) + ∆jY
(2)∆j−lY

(1))


+

n∑
j=n−i+2

 i− n+ j − 1

i

∆jY
(1)∆jY

(2)+

i∧(n−j)∑
l=1

(∆jY
(1)∆j−lY

(2) + ∆jY
(2)∆j−lY

(1))


has an expectation by noise:

η12

Mn∑
i=1

αi

i−1∑
j=1

i− j
i
−

i−1∑
j=2

i− j
i

+

n−1∑
j=n−i+1

i− n+ j

i
−

n−2∑
j=n−i+1

i− n+ j

i

 = 4η12 .

The variance of this term is negligible which can be shown with standard bounds. For the main term above,
we can detach the inner sum and find that

Mn∑
i=l

αi

(
1− l

i

)
=

Mn∑
i=l

i

M2
n

(i− l)
i

K′′
(

i

Mn

)
+ O

(
n−

1/4
)

=

∫ 1

l/Mn

K′′(x)

(
x− l

Mn

)
dx+ O

(
n−

1/4
)

= K

(
l

Mn

)
+ O

(
n−

1/4
)
,

by partial integration under the restrictions made on K. This yields the form (11) of the transformed kernel
estimator and our claim. That the integral approximation does not harm the above equality up to the
O
(
n−1/4

)
-term, can be seen by the estimate∫ (i+1)/Mn

i/Mn

∣∣∣∣f(x)− f
(

i

Mn

)∣∣∣∣ dx ≤ ∫ (i+1)/Mn

i/Mn

C

∣∣∣∣x− i

Mn

∣∣∣∣ dx ≤ CM−2
n

with generic constant C, i ≥ l, for the Lipschitz function

f(x) = K′′(x)

(
x− l

Mn

)
on the compact support [0, 1], where Lipschitz continuity is ensured by the preconditioned continuous
differentiability.
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A.4 Proof of Proposition 3.1
Decompose the multi-scale estimator (9) for [X(k), X(l)]T , (k, l) ∈ {1, 2, 3, 4}2

M(kl)
n∑
i=1

αi
i

n∑
j=i

∆i
jY

(l)∆i
jY

(k) =

M(kl)
n∑
i=1

αi
i

n∑
j=i

∆i
jX

(l)∆i
jX

(k) +

M(kl)
n∑
i=1

αi
i

n∑
j=i

∆i
jε

(l)∆i
jε

(k)

+

M(kl)
n∑
i=1

αi
i

n∑
j=i

∆i
jX

(l)∆i
jε

(k) +

M(kl)
n∑
i=1

αi
i

n∑
j=i

∆i
jε

(l)∆i
jX

(k) ,

with ∆j
i ε

(l) analogously defined as for X(l), in a signal part, a noise part and cross terms which are uncor-
related for each component. We analyze the covariances which stem from covariances of the signal, noise
parts and cross terms consecutively. The elements of the proof of a stable central limit theorem is similar
as in Zhang (2006) and Bibinger (2012), respectively, and hence we restrict ourselves to the evaluation of
the general covariance including possibly different frequencies and weights for equidistant sampling.
We can write the signal part of the addends of [X(1), X(2)]T in the way

1

i12

n∑
j=i12

∆i12
j X(1)∆i12

j X(2) =

n∑
j=1

∆jX
(1)∆jX

(2) +

n∑
l=1

∆lX
(1)

i12∧l∑
j=1

(
1− j

i12

)
∆l−jX

(2)

+

n∑
l=1

∆lX
(2)

i12∧l∑
j=1

(
1− j

i12

)
∆l−jX

(1) .

The first addend is the usual realized covariance and will contribute only asymptotically negligible covari-
ance terms in the noisy setting with slower convergence rate. We derive that

CovΣ

 1

i12

n∑
j=i12

∆i12
j X(1)∆i12

j X(2),
1

i34

n∑
j=i34

∆i34
j X(3)∆i34

j X(4)

 ∼p Γn13 + Γn14 + Γn23 + Γn24 ,

with conditional covariance terms

Γn13 =

n∑
l=1

E
[
∆lX

(1)∆lX
(3)
]min (i12,i34,l)∑

j=1

(
1− j

i12

)(
1− j

i34

)
∆l−jX

(2)∆l−jX
(4)

∼p
n∑
l=1

σ
(13)
(l−1)T

n

1

n

min (i12,i34,l)∑
j=1

(
1− j

i12

)(
1− j

i34

)
σ

(24)
(l−1)T

n

1

n
, (A.2)

and analogously for the other addends. The smoothness of Σ ensured by Assumption 1 giving the bound
in (A.1a) suffices that we can approximately take σ(24)

(l−1)T/n in all addends of the second sum. Hence, for
the equidistant case the analysis boils down to simply evaluating the deterministic inner sum:

m∑
j=1

(
1− j

i12

)(
1− j

i34

)
=
m

2
− m2

6M
− 1

8
+

1

12M
∼ m

6

(
3− m

M

)
,

where m = min (i12, i34) and M = max (i12, i34). For Mn = min
(
M

(12)
n ,M

(34)
n

)
denote the limit of

the following series including weights according to (10)

Dα = lim
n→∞

M−1
n

Mn∑
k=1

k∑
l=1

l

6Mn

(
3− l

k

)
αkαl .

This leads to the result

n

Mn

Mn∑
i12,i34=1

αi12αi34Γn13
p−→ Dα T

∫ T

0

σ(13)
s σ(24)

s ds .
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Similar results hold for Γn14,Γ
n
23,Γ

n
24. Thereby we conclude the signal term of (17). Dα is a constant

showing up in the asymptotic discretization variance depending on the weights, where for the standard
weights (16) or cubic kernel Dα = 13/70. Eventually, we also obtain the general form of the asymptotic
discretization variance of the one-dimensional estimator.
The addend induced by market microstructure noise in the multi-scale estimator (9) is

M(12)
n∑
i=1

αi
i

n∑
j=i

(
ε
(1)
j − ε

(1)
j−i

)(
ε
(2)
j − ε

(2)
j−i

)
=

M(12)
n∑
i=1

αi
i

2

n∑
j=1

ε
(1)
j ε

(2)
j

−
n∑
j=i

(
ε
(1)
j ε

(2)
j−i + ε

(2)
j ε

(1)
j−i

)
−

n∑
j=n−i+1

ε
(1)
j ε

(2)
j −

i−1∑
j=0

ε
(1)
j ε

(2)
j

 .

The last two sums lead for the non-adjusted multi-scale estimator (9) to the negative bias by noise and end-
effects. We have focused on the bias and an adjusted corrected estimator in Section 3 and will concentrate
on the adjusted non-biased version in the sequel. The first inner sum on the right-hand side does not

depend on i and vanishes since
∑M(12)

n
i=1 αi/i = 0. The covariances of the remaining uncorrelated addends

contribute to the total covariance due to noise perturbation. Denote the constant limits

Nα
2 = lim

n→∞
Mn

Mn−1∑
j=1

 Mn∑
i=j+1

αi
i

2

and Nα
1 = lim

n→∞
M3
n

Mn∑
i=1

α2
i

i2

and rewriting

M(12)
n∑
i=1

αi
i

n∑
j=i

ε
(1)
j ε

(2)
j−i =

n∑
j=i

M(12)
n ∧j∑
i=1

αi
i
ε
(1)
j ε

(2)
j−i

and also

M(12)
n∑
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αi
i

i−1∑
j=0

ε
(1)
j ε

(2)
j +

n∑
j=n−i+1

ε
(1)
j ε

(2)
j

 =

M(12)
n −1∑
j=0

(
ε
(1)
j ε

(2)
j + ε

(1)
n−jε

(2)
n−j

) M(12)
n∑

i=j+1

αi
i
,

we obtain with Mn = min
(
M

(12)
n ,M

(34)
n

)
that

√
M3
n

n
Cov

M(12)
n∑
i=1

αi
i

n∑
j=i

ε
(1)
j ε

(2)
j−i,

M(34)
n∑
i=1

αi
i

n∑
j=i

ε
(3)
j ε

(4)
j−i

 −→ Nα
1 η13η24 , (A.3)

and that

√
MnCov

M(12)
n∑
i=1

αi
i

 n∑
j=n−i+1

ε
(1)
j ε

(2)
j +

i−1∑
j=0

ε
(1)
j ε

(2)
j ,

M(34)
n∑
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αi
i

n∑
j=n−i+1

ε
(3)
j ε

(4)
j +

i−1∑
j=0

ε
(3)
j ε

(4)
j


−→ Nα

2 (η13η24 + η14η23) . (A.4)

The analogous implications for all addends contributing to the total covariance by noise lead to the noise
parts in (17). For (16), we have Nα

2 = 6/5 and Nα
1 = 12, which gives the minimum of the variance due to

noise (see Zhang (2006)). Note that for the weights from (10), the respective frequencies M (kl)
n , 1 ≤ k ≤

4, 1 ≤ l ≤ 4, are inserted, but we leave out further indices for a better readability.
Finally, consider the cross terms of (9). They can be decomposed in addends of the form

M(kl)
n∑
i=1

αi
i

n∑
j=0

ζ
(k)
i,j ε

(l)
j (A.5)
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for components (k, l), where

ζ
(k)
i,j =


−∆i

i−jX
(k) , 0 ≤ j ≤ (i− 1)

∆i
jX

(k) −∆i
j+iX

(k) , i ≤ j ≤ (n− i)
∆i
jX

(k) , n− i+ 1 ≤ j ≤ n
.

The asymptotic covariance coming from cross terms, by the martingale structure of the above term can be
deduced by the limit of the sum over j covariances conditionally on FT

∨
σ (εl, l ≤ j − 1). We thus have

CovΣ

M(12)
n∑
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n∑
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M(34)
n∑
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n∑
j=0

ζ
(3)
i,j ε

(4)
j

 =

n∑
j=0

E
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(3)
j

]M(12)
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αi
i
ζ

(2)
i,j

M(34)
n∑
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αi
i
ζ

(4)
i,j .

Now, similarly as in Zhang (2006) and Bibinger (2012), if we assume without loss of generality 1 ≤ i12 ≤
i34 ≤Mn = min

(
M

(12)
n ,M

(34)
n

)
, it holds that

ζ
(k)
i12,j

ζ
(l)
i34,j

=

 j−1∑
r=j−i12

∆rX
(k) −
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∆rX
(k)
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i12
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(l)
i12

+ ζ
(k)
i34

j−i12−1∑
r=j−i34
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∆rX
(l)

 k = 1, 2; l = 3, 4.

The conditional covariances from these addends yield for u, k, l, v ∈ {1, 2, 3, 4}

MnCovΣ
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(u)
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M(34)
n∑
i=1

αi
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ζ
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(v)
j


∼p 2Mnηuv

Mn∑
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(i ∧ r)
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∆
(i∧r)
j X(k)∆

(i∧r)
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p−→Mαηuv

[
X(k), X(l)

]
T
.

For the specific weights (16), the constant takes the value Mα = 6/5. This leads to the total covariance by
cross terms completing the proof and we conclude Proposition 3.1. �

A.5 Proof of Proposition 4.1
Recall the illustration (20) of the Hayashi-Yoshida estimator with refresh times and interpolations. We first
consider the term D12

T D
34
T from the product of the two synchronous-type approximations. Only overlap-

ping increments contribute to the asymptotic covariance:

E
[
D12
T D

34
T

]
=
∑
i,j

1{max (T 12
i−1,T

34
j−1)<min (T 12

i ,T 34
j )}

× E
[(
X

(1)

T 12
i
−X(1)

T 12
i−1

)(
X

(2)

T 12
i
−X(2)

T 12
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)(
X

(3)

T 34
j
−X(3)

T 34
j−1

)(
X

(4)

T 34
j
−X(4)

T 34
j−1

)]
and thus

Cov(D12
T , D

34
T ) =

N∑
i=1

Cov
((
X

(1)
Si
−X(1)

Si−1

)(
X

(2)
Si
−X(2)

Si−1

)
,
(
X

(3)
Si
−X(3)

Si−1

)(
X

(4)
Si
−X(4)

Si−1

))
.

Only on intervals where increments of all four processes coincide, the expectation of the product with four
factors does not equal the product of expectations. For that reason the refresh times Si, i = 0, . . . , N , of all
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processes give the crucial synchronous approximation here. The other remaining addend is the covariance
of the terms due to non-synchronicity for each pair A12

T A
34
T . We have that

E
[
A12
T A

34
T

]
=
∑
i,j

1{max (t−1 (T 12
i−1),t−2 (T 12
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i ),t+2 (T 12

i ),t+3 (T 34
j ),t+4 (T 34

j ))}
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X

(1),+

T 12
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T 12
i

+X
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T 34
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T 34
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))
As explained in Section 3, we can arrange the coinciding interpolation terms using the structuring generated
by the Sis. Consider now the sequence of covariances conditionally on FSi−1

, i = 1, . . . , N , and its sum.
For the first term with the synchronous approximation this is

N∑
i=1
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((
X
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X
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and analogously for Cov(A12
T , A

34
T ) with all interpolations. The difference quotients will converge on

Assumption 3 and the Riemann sums to the corresponding integrals. With all functions from Definition 1
and Assumption 3, we obtain
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N→∞

(
N∑
i=1

(
σ

(13)
Si−1

σ
(24)
Si−1

+ σ
(14)
Si−1

σ
(23)
Si−1

) (G(Si)−G(Si−1))

Si − Si−1
(Si − Si−1)

+

N∑
i=1

σ
(13)
Si−1

σ
(24)
Si−1

(F 13
24 (Si)−F 13

24 (Si−1))+(H13
24 (Si)−H13

24 (Si−1))+(I13
24 (Si)−I13

24 (Si−1))

Si − Si−1
(Si − Si−1)

+

N∑
i=1

σ
(14)
Si−1

σ
(23)
Si−1

(F 23
14 (Si)−F 23

14 (Si−1))+(H23
14 (Si)−H23

14 (Si−1))+(I23
14 (Si)−I23

14 (Si−1))

Si − Si−1
(Si − Si−1)

)

and this limit in probability of the above sum equals (24). �

A.6 Proof of Proposition 5.1
Consider four possibly different observation schemes, but also allowing for subsets of synchronous sam-
pling times. We use the notation from Section 3 for interpolations and refresh times. For the error due to
noise (A.3) becomes
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N
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)
on the assumption that the limits in Definition 3 exist with C24

13 = limN→∞M3
N

∑MN

i,k=1
αiαk

ik over all (i, k)

for which the corresponding indicator functions in the Definition 3 equal one. It holds that max
(
C24

13,C
23
14

)
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≤ Nα
1 by the Cauchy-Schwarz inequality and that each observation point can only equal one of the other

scheme. The generalization of (A.4) incorporating general observation schemes is

√
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Again we have max
(
C̃24

13, C̃
23
14

)
≤ Nα

2 , i. e. constants smaller or equal the ones in the synchronous setting.
For the analysis of cross terms we can build on the findings from above and the rewriting (A.5). Directly
ignoring interpolations we set

ζ̃
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)
for k = 3, 4, here. The

conditional covariance of the cross terms ignoring asymptotically negligible interpolation steps yields
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Compared to the synchronous case this product includes refresh time instants and in general j 6= k, but if
t
(1)
j = t

(3)
k holds, locally ζ̃(2)

i12,j
ζ̃

(4)
i34,k

estimates
∫

∆
σ24
s ds, only that here the interval ∆ is determined by

(j, k) and (i12, i34). Taking the sum for the multi-scale estimates, we end up with the same approximation
as above, but including the limiting function of S′13 to describe the proportion of synchronous times

CovΣ

M
(12)
N∑
i=1

αi
i

n3∑
j=0

ζ̃
(2)
i,j ε

(1)
j ,

M
(34)
N∑
i=1

αi
i

n4∑
j=0

ζ̃
(4)
i,j ε

(3)
j


∼p 2MN

MN∑
i=1

MN∑
r=1

αiαr
ir

(i ∧ r)

 1

(i ∧ r)

n∑
j,k=(i∧r)

∆
(i∧r)
j X(2)∆

(i∧r)
k X(4)η131{t(1)j =t

(3)
k }


p−→ 12

5
η13

∫ T

0

S′13(t)σ24
t dt .

The other addends are treated analogously.
It remains to show (36) for the discretization term, in most situations the only non-vanishing term in the
asymptotic covariance. Proposition 5.1 and Corollary 5.2 state that the asymptotic covariance equals the
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one of the experiment in which we observe all processes synchronously at times Si, 0 ≤ i ≤ N . As a
first step of the proof it can be shown that the discretization error induced by interpolations to refresh times
T 12
i , 0 ≤ i ≤ N12, and T 34

i , 0 ≤ i ≤ N34, for each pair is asymptotically negligible. This is proved
analogously as Proposition A. 10 in Bibinger (2012) and we omit it here. The second step would be to
show that the covariances between an approximation error where refresh times of one pair are interpolated
to the refresh times Si, i = 0, . . . , N , of all four processes and the other multi-scale estimate tends to zero
in probability. As discussed in Section 3 these terms have non-zero expectation, but do not contribute to the
covariance which already gives the result. Alternatively, the conclusion can be thoroughly comprehended
by adapting (A.2) to the two refresh time schemes after the first approximation step. All addends with
overlapping refresh time instants contribute to the sum and by the Itô isometry and approximation (A.1b),
the single addends are of the form(

min (T 12
j , T 34

k )−max (T 12
j−1, T

34
k−1)

)
σ13

max (T 12
j−1,T

34
k−1) .

Indeed, the interpolation terms fall out of the sum and in consequence the proof boils down to the syn-
chronous setup after passing to the refresh times proxy. Yet, we still need to develop the severally interest-
ing asymptotic distribution theory for irregular non-equidistant synchronous sampling. Compared to Zhang
(2006) and Bibinger (2012), we forego the assertion that the observation scheme is close to equidistant such
that the approximation in (A.2) is still valid with an asymptotically negligible approximation error.
Generally, with the limiting function

Dα(t) := lim
N→∞

 N

MN T

∑
Sr≤t

∆Sr

MN∑
i,k=1

αiαk

r∧i∧k∑
q=0

(
1− q

i

)(
1− q

k

)
∆Sr−q

 ,

which exists under Assumption 3 (i) and if the difference quotients also converge uniformly under Assump-
tion 3 (ii), we obtain in place of (A.2):

N

MN

MN∑
i,k=1

αiαkΓ̃N13 ∼p
N

MN

N∆Sl∑
l=1

MN∑
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(13)
Sl−1

σ
(24)
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1− q

i12

)(
1− q

i34

)
∆Sl−q

p−→ T

∫ T

0

σ(13)
s σ(24)

s (Dα)
′
(s) ds .

The existence of

N

(i ∧ k)T

∑
Sr≤t

∆Sr

r∧i∧k∑
q=0

(
1− q

i

)(
1− q

k

)
∆Sr−q

is ensured on Assumption 3 by dominated convergence and the convergence of M−1
N

∑
αiαk(i∧k) on the

conditions for the weights (10). For the weights (16) and the cubic kernel M−1
N

∑
αiαk(i ∧ k) ∼ 38/70.

The above finding is valid in the same fashion in the one-dimensional setting where

Dα(t) := lim
n→∞

 n

Mn T

∑
tr≤t

∆tr

Mn∑
i,k=1

αiαk

r∧i∧k∑
q=0

(
1− q

i

)(
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k

)
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 .

The explicit formula for the weighted local sampling autocorrelation is useful to analyze specific examples:

wLSAr
i,k = n

(
(∆tr)

2 +

(
1− 1

i

)(
1− 1

k

)
∆tr∆tr−1 +

(
1− 2

i

)(
1− 2

k

)
∆tr∆tr−2 + . . .

+
1

i ∧ k

(
1− i ∧ k

i ∨ k

)
∆tr∆tr−i∧k

)
. (A.6)

Since the first addend is negligible as n → ∞, (A.6) has a simple nature for i. i. d. random sampling
independent of Y as for the equidistant setup. Analogous reasoning for the other addends contributing to
the discretization variance leads to (36) which completes the proof of Proposition 5.1. �
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A.7 Proof of Proposition 6.1

Consider the estimator ÂCOV from (37) for the asymptotic covariance (4) of integrated covariances. On
Assumption 1 we have

E
[
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]
∼ n
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s

∫ iT
n
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s
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s ds
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n
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0

(
σ(13)
s σ(24)

s + σ(14)
s σ(23)

s

)
ds

with (A.1a), (A.1b) and Itô’s isometry. The variance is of order n−1, what can be seen e. g. by bounding
the second moment by Burkholder-Davis-Gundy inequality, which implies consistency.
A histogram-wise approach as (38) proposed for the general setup is typical for these kind of methods and
consistency can be proved similar as for the asymptotic variance estimator in Proposition 5. 1 of Bibinger
(2012).
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