Please use this identifier to cite or link to this item: http://hdl.handle.net/10419/70426
Authors: 
Streufert, Peter A.
Year of Publication: 
2003
Series/Report no.: 
Research Report 2003-9
Abstract: 
A dispersion specifies the relative probability between any two elements of a finite domain. It thereby partitions the domain into equivalence classes separated by infinite relative probability. The paper's novelty is to numerically represent not only the order of the equivalence classes, but also the magnitude of the gaps between them. The paper's main theorem is that the many products of two dispersions are characterized algebraically by varying the magnitudes of the gaps between each factor's equivalence classes. An immediate corollary is that the many beliefs consistent with two strategies are characterized by varying each player's steadiness in avoiding various zero-probability options.
Document Type: 
Working Paper
Social Media Mentions:

Files in This Item:
File
Size
296.78 kB





Items in EconStor are protected by copyright, with all rights reserved, unless otherwise indicated.