Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/335170 
Autor:innen: 
Erscheinungsjahr: 
2025
Schriftenreihe/Nr.: 
Working Paper No. 483
Verlag: 
University of Zurich, Department of Economics, Zurich
Zusammenfassung: 
Let X be an arbitrary topological space, and C (X) the convex cone of upper semicontinuous bounded functions on X. Further, let C ∗ (X) be its dual, i.e., the convex cone of functionals that are additive, positively homogeneous, and monotone. On C ∗ (X), we define the weak* topology as the coarsest topology such that, for any f ∈ C (X), the evaluation map µ 7Ç R f dµ is continuous. Then, the unit ball in C ∗ (X) is compact in the weak* topology. However, even if X is compact, (i) functionals in C ∗ (X) need not be representable as integrals, and (ii) the space of regular Borel probability measures on X may fail to be compact in the weak* topology. In sum, these observations correct a misrepresentation in the literature and show that the standard approach to establishing mixedstrategy equilibrium existence cannot be easily extended to the non-Hausdorff case.
Schlagwörter: 
Semicontinuous functions
Positively homogeneous, additive, and monotone functionals
Weak* topology
Alaoglu's Theorem
Compactness in convex cones
Persistent Identifier der Erstveröffentlichung: 
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
513.49 kB





Publikationen in EconStor sind urheberrechtlich geschützt.