Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/323368 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Statistical Methods & Applications [ISSN:] 1613-981X [Volume:] 34 [Issue:] 1 [Publisher:] Springer Berlin Heidelberg [Place:] Berlin/Heidelberg [Year:] 2024 [Pages:] 91-112
Verlag: 
Springer Berlin Heidelberg, Berlin/Heidelberg
Zusammenfassung: 
Abstract An increase in location is typically accompanied by an increase in variability. Subsequently, the heteroscedasticity can indicate a treatment effect. Therefore, it may be appropriate to perform a location-scale test. A common statistic for a location-scale test is the sum of a location and scale statistic. As demonstrated by Neuhäuser (Biometri J 43:809–819, 2001), weighting the sum increases the power. Although weights cannot usually be reasonably selected a priori, a weighting is possible in an adaptive design using the information obtained in an interim analysis. Here, we propose an adaptive statistic that increases and stabilizes the power. The power performance in various situations for continuous and discrete distributions is investigated using Monte Carlo simulations, which reveal that the proposed statistic increases and stabilizes the power, thus rendering it a strong competitor to existing location-scale statistics. The new statistic is illustrated using real data.
Schlagwörter: 
Adaptive procedure
Interim analysis
Lepage statistic
Maximum statistic
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.