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Abstract
An increase in location is typically accompanied by an increase in variability. Sub-
sequently, the heteroscedasticity can indicate a treatment effect. Therefore, it may 
be appropriate to perform a location-scale test. A common statistic for a location-
scale test is the sum of a location and scale statistic. As demonstrated by Neuhäuser 
(Biometri J 43:809–819, 2001), weighting the sum increases the power. Although 
weights cannot usually be reasonably selected a priori, a weighting is possible in an 
adaptive design using the information obtained in an interim analysis. Here, we pro-
pose an adaptive statistic that increases and stabilizes the power. The power perfor-
mance in various situations for continuous and discrete distributions is investigated 
using Monte Carlo simulations, which reveal that the proposed statistic increases 
and stabilizes the power, thus rendering it a strong competitor to existing location-
scale statistics. The new statistic is illustrated using real data.

Keywords Adaptive procedure · Interim analysis · Lepage statistic · Maximum 
statistic

1 Introduction

In randomized clinical trials and other areas, increasing treatment effects are fre-
quently accompanied by increased variability. For example, an observed increase 
of variance in the experimental group compared with the control group (e.g., pla-
cebo group) typically reflects a variation in treatment response among patients in 
the former group; see Senn (2016, p.968). Then, the experimental group generally 
has a larger variance and larger mean when (i) a difference exists between groups 
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and (ii) increasing values indicate better efficacy. In a randomized clinical trial of 
patients with chronic obstructive pulmonary disease, the mean number of exac-
erbations per patient was 1.4 and 2.0 in groups treated with a constant dose and 
gradually reduced dose of prednisone, with standard deviations of 1.5 and 1.9, 
respectively; see Neuhäuser (2001). Additionally, Brunner et  al. (2018,  p.127) 
presented an example of ferritin among children with dwarfism. Furthermore, 
Zar (2010, p.131) reported the blood-clotting times (in min) of male adult rabbits 
treated with two different drugs. In these examples, differences exist in location 
and scale, and the group with the larger mean exhibits greater variability. Fur-
ther examples using non-clinical data can be found in Neuhäuser (2012, p.62 and 
p.119). Thus, the treatment can simultaneously affect both location and variabil-
ity. When homogeneous patients, or in general experimental units, are randomly 
assigned to different treatments, the equality of variances can be considered a 
characteristic of the null hypothesis, and apparent heteroscedasticity may indicate 
treatment differences.

In such a situation, a location-scale test may be appropriate. For instance, non-
parametric location-scale statistics were proposed by Cucconi (1968) and Lep-
age (1971). Various modifications of the Lepage statistic have been proposed, see 
Pettitt (1976); Büning and Thadewald (2000); Neuhäuser (2000); Kössler (2006); 
Murakami (2007, 2016); Mukherjee and Marozzi (2019); Kössler and Mukher-
jee (2020); Mukherjee et al. (2021); Yamaguchi and Murakami (2023). Notably, 
the statistic of Pettitt (1976) is essentially equivalent to that of Cucconi (1968) 
for continuous distributions; see Nishino and Murakami (2019). Marozzi (2013b) 
compared several location-scale statistics, including the Cucconi and Lepage 
statistics.

Lepage’s statistic—the sum of two linear rank statistics—combines the Wil-
coxon rank-sum statistic for a location test with the Ansari–Bradley statistic for 
a dispersion test. When the sum of two linear rank statistics is used, a weighted 
combination of the two statistics is possible to improve the power (Lepage 1975; 
Smit et al. 1987). However, in practical applications, the weights cannot be rea-
sonably selected a priori. Therefore, Neuhäuser (2001) proposed the use of a 
two-stage adaptive design based on Bauer and Köhne (1994). Adaptive designs 
conduct a sequence of experiments and analyze the data from each stage sepa-
rately, allowing for preplanned opportunities to modify the trial’s course based 
on accruing information, if necessary (Bauer and Köhne 1994; Pallmann et  al. 
2018; Dimairo et al. 2020). In our situation, the data from the first stage are ana-
lyzed using an unweighted statistic. Thereafter, using the information gained in 
the interim analysis, weights are selected to analyze the second stage.

The remainder of this paper is organized as follows: In Sect. 2, we revisit the 
two-sample linear rank statistic. In Sect.  3, we consider a modification to the 
adaptive one-sided Lepage statistic proposed by Neuhäuser (2001). In Sect. 4, we 
briefly describe the adaptive designs of Bauer and Köhne (1994) and Lehmacher 
and Wassmer (1999). In Sect. 5, we present the numerical results based on Monte 
Carlo simulations. In Sect. 6, we illustrate the proposed statistic using real data. 
Finally, in Sect. 7, we conclude this study.
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2  Two‑sample linear rank statistic

Let X = (X1,… ,Xm) and Y = (Y1,… , Yn) denote two random samples of sizes m and 
n from populations with cumulative distribution functions F1 and F2 , respectively. The 
total sample size is denoted by N = m + n . Let Vi , i = 1,… ,N be 1 if the ith smallest 
of N observations is from Y; otherwise, it is 0. A one-sided location-scale test is appro-
priate when the direction of change is predicted and the variability increases with an 
increase in means. Subsequently, we are interested in testing the following hypothesis:

against

The general form of the two-sample linear rank statistic with score function a(i) is 
defined as follows:

The best-known nonparametric statistic for testing the location parameter is the 
Wilcoxon rank-sum statistic W (Gibbons and Chakraborti 2021), with score func-
tion a(i) = i . Additionally, among the most famous nonparametric scale statistics 
is the Ansari–Bradley statistic AB (Gibbons and Chakraborti 2021), with score 
function a(i) = (N + 1)∕2 − |i − (N + 1)∕2| . When the locations differ, the use of 
the Ansari–Bradley statistic is strongly discouraged because it may display bizarre 
behavior as in the case when the maximum number of X elements is less than the 
minimum number of Y elements. For example, if m = 6 and n = 5 for all possi-
ble samples, the Ansari–Bradley statistic is invariably 21, irrespective of the scale 
values.

Practically speaking, even when the underlying distributions are continuous, round-
ing frequently results in ties. For example, observations may be rounded to the first 
or second decimal point. Thus, we do not always assume continuous distributions but 
consider discrete distributions. Let Z(1) ≤ Z(2) ≤ ⋯ ≤ Z(N) denote the pooled sample’s 
order statistics. Assumedly, the pooled sample decomposes into d groups of equal 
observations, the ith group (i = 1,… , d) containing ti observations; that is,

Additionally, we define Si =
∑i

h=1
th and S0 = 0 . The number of values associated 

with X and Y in the ith class is denoted by c1i and c2i , respectively, implying that 
c1i + c2i = ti for each i = 1,… , d . Thereafter, a tie-adjusted linear rank statistic 
based on the mid-rank method for score a(⋅) is defined as

H0 ∶ F1(x) = F2(x),

H1 ∶ F2(x) = F1

(
x − 𝜃1

𝜃2

)
, 𝜃1 > 0 or 𝜃2 > 1 or both.

LRS =

N∑
i=1

a(i)Vi.

Z(1) = ⋯ = Z(t1) < Z(t1+1) = ⋯ = Z(t1+t2) < ⋯ < Z(t1+⋯+td−1+1)
= ⋯ = Z(t1+⋯+td)

.
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Subsequently, the expected value and variance of LRS under H0 are given by

see e.g., Yamaguchi and Murakami (2023). Further, let LRS† be another tie-adjusted 
linear rank statistic as follows:

Thereafter, the covariance of LRS and LRS† is given by

see e.g., Yamaguchi and Murakami (2023). We refer to Gibbons and Chakraborti 
(2021) for the formulas for E[LRS] , V[LRS] , and cov(LRS, LRS†) in the absence of 
ties. However, notably, d = N is possible and can be considered a special case. In 
this study, we focused on the midrank method. When using the score based on the 
average score method, another tie-adjusted linear rank statistic is defined as

To evaluate E[LRS] , V[LRS] , and cov(LRS, LRS†) in the presence of ties for cer-
tain statistics, we offer the function of R code in Github (https:// github. com/h- murak 
ami- stat/ One- Sided- Lepage- test/ blob/ main/ Github_ 20240 926_ One- Sided- Lepage- 
Type- Test.R) for some specific scores.

3  One‑sided location‑scale statistic

3.1  One‑sided Lepage and Lepage‑type statistics

The statistic for the location-scale test proposed in Lepage (1971) is

LRS =

d∑
i=1

c2iΨ(i), where Ψ(i) = a

(
Si + Si−1 + 1

2

)
.

E[LRS] =
n

N

d�
i=1

tiΨ(i),

V[LRS] =
mn

N2(N − 1)

⎧
⎪⎨⎪⎩
N

d�
i=1

tiΨ(i)
2 −

�
d�
i=1

tiΨ(i)

�2⎫⎪⎬⎪⎭
,

LRS† =

d∑
i=1

c1iΨ
†(i) where Ψ†(i) = a†

(
Si + Si−1 + 1

2

)
.

cov(LRS, LRS†) =
mn

N2(N − 1)

{
N

d∑
i=1

tiΨ(i)Ψ
†(i) −

d∑
i=1

tiΨ(i)

d∑
i=1

tiΨ
†(i)

}
,

LRS =

d∑
i=1

c2iΨ(i), where Ψ(i) =
1

ti

Si∑
j=Si−1+1

a(j).

https://github.com/h-murakami-stat/One-Sided-Lepage-test/blob/main/Github_20240926_One-Sided-Lepage-Type-Test.R
https://github.com/h-murakami-stat/One-Sided-Lepage-test/blob/main/Github_20240926_One-Sided-Lepage-Type-Test.R
https://github.com/h-murakami-stat/One-Sided-Lepage-test/blob/main/Github_20240926_One-Sided-Lepage-Type-Test.R


95A maximum statistic for the one‑sided location‑scale…

where E[⋅] and V[⋅] are the expected value and variance of W or AB under the 
null hypothesis for the continuous distribution. Further details can be found in 
Gibbons and Chakraborti (2021). Notably, the odd translation invariant statistic 
a(i) + a(N + 1 − i) = “constant” is uncorrelated with the even translation statistic 
a†(i) = a†(N + 1 − i) under the null hypothesis for continuous distributions. This 
sufficient condition is known as the Randles and Hogg condition (Randles and Hogg 
1971). As W and AB are the odd translation invariant statistic and even translation 
statistic, respectively, W and AB are uncorrelated under the assumption of contin-
uous distributions under the null hypothesis. However, LEP is unsuitable for one-
sided alternatives. Therefore, Neuhäuser (2001) proposed the one-sided Lepage sta-
tistic for continuous distributions, as follows:

where STW and STAB are the standardized statistics for W and AB , respectively. 
Notably, LEP1 is asymptotically distributed according to a normal distribution with 
zero mean and unit variance; see Lepage (1971). However, in practice, ties occur 
frequently, for example, by rounding to the first decimal point. Thus, we must con-
sider ties and discrete distributions. In this case, W and AB are not uncorrelated, 
as noted by Rublík (2007). Thereafter, we suggest the one-sided Lepage statistic, 
namely, OLS1 , in the presence of ties, as follows:

where W and AB in OLS1 are based on tie-adjusted scores. For a detailed expres-
sion of E[⋅] and V[⋅] of W and AB for the discrete distribution; see Hollander et al. 
(2013). Furthermore, cov(W,AB) can be easily derived using the code in Github 
(https:// github. com/h- murak ami- stat/ One- Sided- Lepage- test/ blob/ main/ Github_ 
20240 926_ One- Sided- Lepage- Type- Test.R).

The Mood statistic (Gibbons and Chakraborti 2021) is a nonparametric two-sample 
statistic used to test variances. The asymptotic relative efficiencies of the Ansari–Brad-
ley and Mood statistics to the F statistic under the assumption of a normal distribu-
tion are 0.609 and 0.76, respectively. Although the asymptotic relative efficiency of 
the Ansari–Bradley statistic is lower than that of the Mood statistic, the former has 

LEP =

�
W − E[W]√

V[W]

�2

+

�
AB − E[AB]√

V[AB]

�2

,

LEP1 =
w1(W − E[W]) − w2(AB − E[AB])√

w2
1
V[W] + w2

2
V[AB]

, w1 =
|STW|

|STW| + |STAB| , w2 = 1 − w1,

OLS1 =
w3(W − E[W]) − w4(AB − E[AB])√

w2
3
V[W] + w2

4
V[AB] − 2w3w4cov(W,AB)

,

w3 =
STP1

STP1 + STP2
,

w4 =1 − w3,

STP1 =1 − p-value of STW for upper tail,

STP2 =1 − p-value of STAB for lower tail,

https://github.com/h-murakami-stat/One-Sided-Lepage-test/blob/main/Github_20240926_One-Sided-Lepage-Type-Test.R
https://github.com/h-murakami-stat/One-Sided-Lepage-test/blob/main/Github_20240926_One-Sided-Lepage-Type-Test.R


96 H. Murakami, M. Neuhäuser 

widespread applications; see Lahmiri (2023) and Omer et  al. (2023). However, the 
power of the Mood statistic is higher than that of the Ansari–Bradley statistic for vari-
ous distributions. Therefore, Murakami and Neuhäuser (2024) considered another one-
sided location-scale statistic as follows:

where STM is the standardized statistic of M . Notably, M is the even translation 
statistic, and W and M are uncorrelated under the assumption of continuous distri-
butions under the null hypothesis. As M also satisfies the asymptotic normality theo-
rem of Chernoff and Savage (1958), OLS2 is asymptotically distributed according to 
a normal distribution with zero mean and unit variance.

Remark 1 As p-values and test statistics are related one-to-one, we do not have to 
replace the weights w1 and w2 with w3 and w4 or w5 and w6 for OLS1 and OLS2 . 
However, the correlation matrices of OLS1 and OLS2 become a singular matrix 
when STAB = STM = 0 , that is, M = E[M] and AB = E[AB] . Therefore, the weight 
based on the standardized test statistic is not useful for the maximum statistic dis-
cussed in the subsequent subsection.

3.2  Maximum statistic and adaptive procedure

In practical analysis, we must determine whether to use OLS1 or OLS2 before con-
ducting the hypothesis test. This approach, a so-called adaptive procedure (Hogg et al. 
1975), involves employing a selector to select the statistics to use.

3.2.1  Maximum statistic

A simple manner to solve the aforementioned problem is to use the larger of the two 
statistics as the statistic. Therefore, we propose a maximum statistic based on OLS1 and 
OLS2 as follows:

We assume that m, n → ∞ , m∕N ∈ (0, 1) . As OLS1 and OLS2 satisfy the asymptotic 
normality theorem, based on Proposition 5 in Kössler (2010), the limiting distribu-
tion of OLSmax is given by

OLS2 =
w5(W − E[W]) + w6(M − E[M])√

w2
5
V[W] + w2

6
V[M] + 2w5w6cov(W,M)

,

w5 =
STP1

STP1 + STP3
,

w6 =1 − w5,

STP3 =1 − p-value of STM for upper tail,

MAX = max(OLS1, OLS2).
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where

3.2.2  Adaptive procedure

The selector statistic should be a measure of the heaviness of the distribution tail. 
Hogg et al. (1975, 2018) proposed

where L̂𝛾 and Û𝛾 denote the averages of the smallest and largest �N order statistics, 
respectively. When 0.5N and 0.05N are not integers, the fractional items are used. If 
Q̂ is large, the distribution seems heavy-tailed, whereas a small value indicates that 
the distribution is light-tailed. Hogg et al. (2018, pp. 623) indicated that the distribu-
tion tail seems heavy when Q̂ is large (7 or more). Therefore, in this study, we use

4  Two stage designs

4.1  Two stage design of Bauer and Köhne (1994)

The procedure of Bauer and Köhne (1994) combines the p-values of the separate 
statistics of the two stages using Fisher’s combination statistic. Let p1 and p2 be the 
p-values based on the data of the first and second stages, respectively. For Fisher’s 
combination statistic, the null hypothesis can be rejected at the end of the trial if

where �2
4
(1 − �) is the (1 − �)-quantile of the central �2 distribution with four 

degrees of freedom. For the case of a nominal significance level of � = 0.05 , we 
have c0.05 = 0.0087 ; see Bauer and Köhne (1994). In clinical trials, boundaries for 
early stopping after interim analysis should be incorporated for both ethical and 

ℙ(MAX < �) =∫
�

−∞ ∫
�

−∞

1

2𝜋
√�Σ�

exp
�
1

2
x
�Σ−1

x

�
dx1dx2,

Σ =

�
1 �

� 1

�
,

� =
E[OLS1OLS2] − E[OLS1]E[OLS2]√

V[OLS1]V[OLS2]
= E[OLS1OLS2].

Q̂ =
Û0.05 − L̂0.05

Û0.5 − L̂0.5

,

ADP =

{
OLS2 if Q̂ ≤ 7

OLS1 if Q̂ > 7
.

p1p2 ≤ c� = exp
[
−
1

2
�2
4
(1 − �)

]
,
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economic reasons. Let �0 be the lower limit; therefore, the trial is terminated because 
of insufficient effects if p1 ≥ �0 . A suitable boundary for early stopping without 
rejecting H0 could be �0 = 0.5 (Bauer and Köhne 1994). Furthermore, early stop-
ping with the rejection of H0 is possible if the p-value of the first stage is sufficiently 
small, that is, p1 ≤ �1 . For � = 0.05 and �0 = 0.5 , it follows �1 = 0.0233 (Bauer and 
Köhne 1994). Additionally, for � = 0.025 with �0 = 0.5 , we have �1 = 0.0102 and 
c0.025 = 0.0038 . This procedure has been widely applied to testing problems other 
than location and location-scale; see Marozzi (2013a), who proposed and compared 
several procedures for the scale problem. For further details, refer to Wassmer and 
Brannath (2016).

4.2  Two stage design of Lehmacher and Wassmer (1999)

Lehmacher and Wassmer (1999) considered the weighted inverse normal combina-
tion function

where �1 and �2 denote pre-specified positive weights such that �2
1
+ �2

2
= 1 and Φ−1 

denote the inverse of the standard normal cumulative distribution function Φ(⋅) . As 
C(p1, p2) is uniformly distributed, we obtain a level � test when using the decision 
boundaries �0 = 1 , �1 = 0 , and c� = � . Thereafter, we obtain �1 such that:

We can select various �1 and �2 . However, we assume �1 = �2 = 1∕
√
2 . Like 

Sect. 4.1, let �0 be the lower limit, such that the trial is terminated because of insuf-
ficient effects if p1 ≥ �0 . A suitable boundary for early stopping without rejecting 
H0 could be �0 = 0.5 . Furthermore, early stopping with the rejection of H0 is pos-
sible if the p-value of the first stage is sufficiently small, that is, p1 ≤ �1 . Thereafter, 
for � = 0.05 and �0 = 0.5 , it follows �1 = 0.0044 and c0.05 = 0.05 . Additionally, for 
� = 0.025 with �0 = 0.5 , we have �1 = 0.0011 and c0.025 = 0.025.

5  Numerical Results

5.1  Simulation settings

• Aims: A simulation study aims to investigate the validity of statistics for the one-
sided alternative in two-stage designs. We focus on the 5% significance level. For 
results with the 2.5% significance level, see the supplemental material.

• Data-generating mechanisms:
  Simulation studies provide empirical results for specific scenarios. The per-

formance of the proposed statistic was based on Monte-Carlo simulations per-
formed using R. The simulated powers are obtained by conducting 100,000 

C(p1, p2) = 1 − Φ(�1Φ
−1(1 − p1) + �2Φ

−1(1 − p2)),

�1 + �
�0

�1
�

1

0

1{C(p1,p2)≤�}dp2dp1 = �.
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Monte-Carlo simulations for each scenario. We use random numbers for the 
following distributions:

– N(�, �2) : normal distribution with mean � and variance �2.
– U(a, b) : uniform distribution with interval (a, b).
– C(�1, �2) : Cauchy distribution with location parameter �1 and scale param-

eter �2.
– EXP(�) : exponential distribution with rate parameter �.
– Chisq(�) : chi square distribution with � degrees of freedom.
– Gum(�1, �2) : Gumbel distribution with location parameter �1 and scale 

parameter �2.
– RN(�, �2) : rounded normal distribution with mean � and variance �2 . 

Herein, we round the second decimal place.
– NB(�, Prob) : negative binomial distribution with number of success � and 

success probability Prob.
– Pois(�) : Poisson distribution with shape parameter �.

• Target of analysis:
  Let m1 and m2 ( n1 and n2 ) denote the sample sizes of X’s (Y’s) at the 

first and second stages, respectively. For no interim analysis, the sam-
ple sizes are m1 + m2 ( n1 + n2 ) for X’s (Y’s) sample. In Sect.  5.2, we pre-
sent the performance of the type-I error using an asymptotic distribution for 
m1 = m2 = n1 = n2 = 15 and 30. In Sect. 5.3, we investigate the power perfor-
mance when (m1, n1,m2, n2) = (25, 25, 25, 25) and (35, 35, 15, 15).

• Methods:
  We use the following one-sided statistics with a setting similar to Neuhäu-

ser (2001), using asymptotic critical values for all test statistics:

– NO_IA : an unweighted OLS1 , OLS2 , ADP or MAX without an interim 
analysis.

– FIA_UN : an unweighted OLS1 , OLS2 , ADP or MAX for both stages and 
combination per Bauer and Köhne (1994).

– FIA_WE : an unweighted OLS1 , OLS2 , ADP or MAX for the first stage and 
a weighted OLS1 , OLS2 , ADP or MAX for the second stage and combina-
tion per Bauer and Köhne (1994).

– SIA_UN : an unweighted OLS1 , OLS2 , ADP or MAX for both stages and 
combination per Lehmacher and Wassmer (1999).

– SIA_WE : an unweighted OLS1 , OLS2 , ADP or MAX for the first stage and 
a weighted OLS1 , OLS2 , ADP or MAX for the second stage and combina-
tion per Lehmacher and Wassmer (1999).

• Performance measure:
  This describes the numerical quantity used to assess the performance of 

various statistics. Herein, we focused on the type-I error rate and power of test 
statistics. Test statistics should be insensitive to changes in the distributions 
under the null hypothesis. Power is a measure of the ability of the hypothesis-
testing setup to detect a particular effect if it is truly present. Therefore, the 
power performance is used to compare different statistical testing procedures; 
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that is, a test statistic with a higher power is more efficient than that with a 
smaller power.

  We approximate the standard error of the simulated power with the central 
limit theorem as follows: 

 where p̂ denotes estimated power. The maximum error is obtained for p̂ = 0.5 ; 
thus, the maximum standard error is 0.00158 (for 100,000 simulation runs).

5.2  Type‑I error rate

This section presents the type-I error performance using the asymptotic distribution 
in Fig. 1.

Figure 1 indicates that although we carry out asymptotic tests, the type-I error of 
all statistics is close to the significance level for small sample sizes. Therefore, the 
results reveal that we can safely apply the proposed statistic in the scenarios consid-
ered in the simulation study. Very small sample sizes are hardly ever used in studies 
with an interim analysis.

5.3  Power comparison

In this section, we investigate the power performances of the test statistics for vari-
ous distributions. We use normal and Cauchy distributions as examples of sym-
metric distributions. Additionally, we use exponential and chi square distributions 
with positive support and focus on Gumbel distribution with support ℝ as exam-
ples of asymmetric distributions. For the discrete distribution, we use the Poisson 
distribution as an example. Figures 2, 3, 4, 5, 6 and 7 show the power of various 
statistics for normal, Cauchy, exponential, chi square, Gumbel, and Poisson distribu-
tions, respectively. Simulation results depict that the power(s) of (i) FIA_WE and 
SIA_WE are similar to or more powerful than that of FIA_UN and SIA_UN , (ii) 
SIA_WE is similar to or higher than that of FIA_WE in the scenarios considered in 
the simulation study. Then, we describe the simulation results for the test statistics 
based on SIA_WE . For the result of comparison of all test statistics, see the supple-
mental material.

Figures 2, 3, and 6, that is location-scale family of distribution, suggest that the 
power of (i) OLS2 is greater than that of OLS1 for the shifted pure location param-
eter, (ii) OLS1 is greater than that of OLS2 for the changed pure scale parameter 
and location-scale parameter, (iii) MAX is similar to that of the maximum of 
{OLS1, OLS2} for all cases, and (iv) MAX is similar to or higher than that of ADP 
for all cases.

Figures 4 and 5, that is asymmetric distribution with positive support, indicate 
that the power of (i) OLS2 is greater than that of OLS1 for the shifted pure loca-
tion, changed pure scale, and difference of location-scale parameters and (ii) MAX 
is similar to that of the maximum of {OLS1, OLS2} and ADP for all cases.

√
p̂(1 − p̂)

100000
,
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Fig. 1  Simulated type-I error for various distributions with m1 = m2 = n1 = n2 = 15 when � = 0.05 . 
Continued for m1 = m2 = n1 = n2 = 30
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Figure  7 reveals that the power(s) of (i) OLS2 is greater than that of OLS1 for 

Fig. 1  (continued)
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all cases except Case 5, (ii) ADP and MAX are similar to that of the maximum of 
{OLS1, OLS2} , and (iii) determining the critical winner between ADP and MAX is 
critical.

Furthermore, Neuhäuser (2001) investigated the power of �2 distributions with 
different degrees of freedom. We compare the power of the difference of the (i) rate 
parameter for the exponential distribution, (ii) degrees of freedom for �2 distribu-
tion, and (iii) rate parameter for Poisson distribution in Fig. 8.

Fig. 2  Simulated type-I error and power for N(0, 1) vs. N(�2, �
2
2
) when � = 0.05
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According to Figure  8, the power of (i) SIA_WE is higher than that of 
FIA_WE , (ii) SIA_WE is similar to or more powerful than that of SIA_UN , (iii) 
ADP is similar to that of MAX , that is, the differences between these statistics are 
minimal.

Consequently, we recommend using MAX for the one-sided location-scale 
testing problem in the two-stage design in the scenarios considered in the simula-
tion study. Similar patterns were obtained at a significance level of 2.5% (see the 
supplemental material).

Fig. 3  Simulated type-I error and power for C(0, 1) vs. C(�1, �2) when � = 0.05
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6  Example: Familial adenomatous polyposis

In this section, the tests are described using a real-life dataset. Familial Adenoma-
tous Polyposis is an inherited condition caused by mutations in the Adenomatous 
Polyposis Coli gene, which causes early and frequent formation of precancerous pol-
yps in the colon at a young age; it invariably results in the development of colon 
cancer at a young age. As an endpoint, we use the number of colonic polyps, which 
include two treatments, sulindac and placebo, and consider only men. To illustrate, 

Fig. 4  Simulated type-I error and power for EXP(2) vs. �2 ∗ EXP(2) + �1 when � = 0.05
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we consider 3 and 12 months as the two stages of the trial. This data set is pub-
licly available in the R package “medicaldata” and named “polyps”. The sizes of the 
first and second samples in the first stage are (m1, n1) = (6, 7) . Likewise, we obtain 
(m2, n2) = (5, 7) in the second stage.

None of the investigated tests reject the null hypothesis at the 5% signifi-
cance level (Table 1). However, when applying the 10% significance level, the 
tests lead to different decisions, that is, only SIA_UN and SIA_WE with OLS2 , 
ADP and MAX have p-values less than 10%. Moreover, the p-values based on 

Fig. 5  Simulated type-I error and power for Chisq(2) vs. �2 ∗ Chisq(2) + �1 when � = 0.05
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SIA_WE are smaller compared to SIA_UN for OLS2 , ADP and MAX , respec-
tively. It is consistent with the results of the simulation study, that the tests based 
on the weighted inverse normal combination function exhibit smaller p-values 
than those based on Fisher’s combination function.

Fig. 6  Simulated type-I error and power for Gum(0, 1) vs. Gum(�1, �2) when � = 0.05
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7  Concluding remarks

Adaptive designs allow for preplanned opportunities to modify the course of a 
trial based on accruing information. According to Bauer and Köhne (1994) and 
Lehmacher and Wassmer (1999), adaptive designs are highly flexible tools, 
and various modifications are possible after the interim analysis. An approach 
wherein the data from the first stage are utilized to weight a location-scale test 
was proposed by Neuhäuser (2001). However, situations exist wherein the test 

Fig. 7  Simulated type-I error and power for Pois(5) vs. �2 ∗ Pois(5) + �1 when � = 0.05
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Fig. 8  Simulated power for (i) EXP(�1) vs EXP(�2) and (ii) Chisq(�1) vs Chisq(�2) when � = 0.05 . Con-
tinued for (iii) Pois(�1) vs Pois(�2) when � = 0.05
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with the weightings, w1 = |STW|∕(|STW| + |STAB|) and w2 = 1 − w1 , is less 
powerful than the unweighted test, that is w1 = w2 = 1 , where STW and STAB are 
the standardized Wilcoxon rank-sum statistic and the standardized Ansari–Brad-
ley statistic, respectively. In the present study, a new weighting is proposed that 
has, per our simulations, similar or greater power than the unweighted test in 
all scenarios considered in the simulation study. The adaptive test with the new 
weighting based on the weighted inverse normal combination function proposed 
by Lehmacher and Wassmer (1999) exhibits improved and stable power compared 
with the new weighting statistic based on Fisher’s combination function. Indubi-
tably, as the power is increased, one advantage of the proposed test could be the 
reduction in the average sample size required to obtain a pre-specified power.

We investigated the type-I error and power of the considered test statistics 
using Monte Carlo simulations for various distributions. Although the sample 
sizes were small to moderate, the investigated significance level of 5% was not 
breached. Additionally, the power was studied for continuous and discrete dis-
tributions. Noteworthily, discrete distributions were not investigated in Neuhäu-
ser (2001). The simulation results indicated that the proposed statistic with the 
new weighting is a strong competitor to the existing one-sided Lepage statistics. 
Finally, we illustrated the tests using real-life data available in R.

In this study, we investigated statistical tests. Generally, estimation is also a 
significant concern in clinical trials. However, estimation in adaptive designs is 
more challenging. Point estimates computed using methods developed for classi-
cal fixed sample sizes may be biased. For the estimation and confidence intervals 
for adaptive designs, refer to Wassmer and Brannath (2016).
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Table 1  Number of colonic 
polyps. Test statistics and 
p-values of the considered tests

OLS
1

OLS
2

ADP MAX

NO_IA Statistics 1.0108 1.1768 1.1768 1.1768
P-values 0.1561 0.1196 0.1196 0.1377

FIA_UN Statistics 0.0316 0.0254 0.0254 0.0278
P-values 0.1408 0.1187 0.1187 0.1274

FIA_WE Statistics 0.0342 0.0249 0.0249 0.0266
P-values 0.1496 0.1169 0.1169 0.1231

SIA_UN Statistics 0.1088 0.0823 0.0823 0.0904
P-values 0.1088 0.0823 0.0823 0.0904

SIA_WE Statistics 0.1148 0.0808 0.0808 0.0874
P-values 0.1148 0.0808 0.0808 0.0874
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Data availability Familial adenomatous polyposis data set is publicly available in the R package “medi-
caldata” (Higgins 2022) and named “polyps”.
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