Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/323340 
Erscheinungsjahr: 
2025
Quellenangabe: 
[Journal:] Computational Economics [ISSN:] 1572-9974 [Volume:] 65 [Issue:] 2 [Publisher:] Springer US [Place:] New York, NY [Year:] 2025 [Pages:] 1083-1146
Verlag: 
Springer US, New York, NY
Zusammenfassung: 
We apply Polynomial chaos expansion (PCE) to surrogate time-consuming repeated model evaluations for different parameter values. PCE represents a random variable, the quantity of interest (QoI), as a series expansion of other random variables, the inputs. Repeated evaluations become inexpensive by treating uncertain parameters of a model as inputs, and an element of a model’s solution, e.g., the policy function, second moments, or the posterior kernel as the QoI. We introduce the theory of PCE and apply it to the standard real business cycle model as an illustrative example. We analyze the convergence behavior of PCE for different QoIs and its efficiency when used for estimation. The results are promising both for local and global solution methods.
Schlagwörter: 
Polynomial chaos expansion
Parameter inference
Parameter uncertainty
Solution methods
JEL: 
C11
C13
C32
C63
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.