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Abstract

We apply Polynomial chaos expansion (PCE) to surrogate time-consuming repeated
model evaluations for different parameter values. PCE represents a random variable,
the quantity of interest (Qol), as a series expansion of other random variables, the
inputs. Repeated evaluations become inexpensive by treating uncertain parameters
of a model as inputs, and an element of a model’s solution, e.g., the policy function,
second moments, or the posterior kernel as the Qol. We introduce the theory of PCE
and apply it to the standard real business cycle model as an illustrative example.
We analyze the convergence behavior of PCE for different Qols and its efficiency
when used for estimation. The results are promising both for local and global solu-
tion methods.

Keywords Polynomial chaos expansion - Parameter inference - Parameter
uncertainty - Solution methods

JEL Classification C11-C13-C32-C63

P4 Johannes Huber
johannes1.huber@ur.de

Daniel Fehrle
fehrle @economics.uni-kiel.de

Christopher Heiberger
christopher.heiberger @ wiwi.uni-augsburg.de
Department of Economics, Kiel University, Wilhelm-Seelig-Platz 1, 24118 Kiel, Germany

Department of Economics, University of Augsburg, Universititsstrae 16, 86159 Augsburg,
Germany

Department of Economics, University of Regensburg, Universititsstrale 31, 93053 Regensburg,
Germany

@ Springer


http://orcid.org/0009-0004-5194-2257
http://crossmark.crossref.org/dialog/?doi=10.1007/s10614-024-10772-5&domain=pdf

1084 D. Fehrle et al.

1 Introduction

At an abstract level, computational economic models are mappings from inputs
to outputs of the model. The former are the model’s parameters, the latter are
the quantities of interest (Qols) and depend on the research question. Typical
Qols are the economic agents’ policy functions, the second moments of the mod-
el’s variables, or the likelihood implied by a given set of observed data. In all
cases, the model’s parameters are typically unknown, and plausible values must
be derived from observed data or treated as random variables from the Bayesian
perspective. Either way, the uncertainty of parameters translates into uncertainty
regarding the model’s outcomes. Estimation methods, such as minimum distance
estimators or likelihood-based methods as well as a careful study of the sensitiv-
ity of the model’s outcomes for a set of different parameter values require numer-
ous repeated solutions of the model. Depending on the complexity of the model,
estimation and sensitivity analyses can become a time-consuming computational
task or even excessive. We show that PCE offers an elegant way to deal with this
problem and provide MATLAB® code to ease its implementation.

In a nutshell, PCE enables the representation of a random variable—the Qol—
as a series expansion of other random variables—the inputs. Our approach is
to use PCE as a surrogate of the distribution of the model outcome given some
parameter uncertainty. Therefore, we depict different model outcomes as Qols
(e.g., the policy function or the posteriors kernel) in terms of a series expansion
of the model’s uncertain parameters. Given the respective formulae, the required
repeated evaluations are time-efficient compared to repeated solutions of the
entire model. Without limiting the applicability for other purposes, we apply solu-
tion and estimation methods for dynamic stochastic general equilibrium (DSGE)
models as we are familiar with the required techniques.

More to the point, after introducing the theory of PCE and the construction
of a truncated PCE, we apply the method to the benchmark real business cycle
(RBC) model, since this model is suited as an illustrative example due to its well-
known and simplistic nature. We analyze the convergence behavior of the PCE
of various model outcomes including the model’s linear solution, a projection
solution, the variables’ second moments, and the impulse response function. Fur-
ther, we conduct Monte Carlo experiments. We estimate the parameters from a
linearized and non-linearized model using various estimation techniques, namely
generalized method of moments (GMM), simulated method of moments (SMM)),
maximum-likelihood estimation (MLE), and Bayesian estimation (BE).

We document linear convergence behavior. Considering three unknown param-
eters, we find remarkably well approximations with only a few model evalua-
tions. Suppose the model outcome, e.g., the linearized policy function, has to be
evaluated for a sample of 100,000 parameter values. In that case, the PCE with
truncation degree 7 provides an approximation with L? error of 10~ while the
computational time is lower by the factor 30. We extend the analysis to a higher-
dimensional problem where all six model parameters are assumed unknown.
As our construction of the PCE applies a tensor basis quadrature rule, the
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construction suffers from the course of dimensionality. Thus, we compare full-
tensor-grid quadrature rules with two remedies: sparse-grid quadrature rules and
least squares. A comparison of time versus accuracy shows that these long-estab-
lished sparse methods milden the course of dimensionality. Beyond our imple-
mentations, we highlight that the repeated model evaluations required for PCE
are parallelizable because the parameter values are predetermined, distinct from
the recursive nature of most applications. Additionally, we discuss the expanding
literature on sparse PCE.

Our analysis continues with Monte Carlo experiments as in Ruge-Murcia (2007),
where we gauge the quality of the model’s PCE when applied to estimation. Here,
we use the linearized solution of the real business cycle (RBC) model for the data-
generating process and the econometric model since this procedure allows us to cal-
culate the analytic second moments and likelihood functions. Consequently, the dif-
ferences in the estimates towards the benchmark procedure of repeated solutions are
solely based on the PCE approximation. The PCE based method is remarkably effi-
cient and accurate. Estimates deviate only negligibly from the benchmark procedure
and most notable, the computation time can be reduced by 99 percent for BE and by
50 percent for GMM, SMM, and MLE.

In the last step of our analysis, we stress PCE out more by gauging the quality
of the non-linear model’s PCE for likelihood-based estimations. For this purpose,
we replicate the findings of Fernandez-Villaverde and Rubio-Ramirez (2005), who
have shown that non-linearity is already relevant for the estimates of our benchmark
RBC model. We show that the use of PCE for the estimation of the non-linear model
enhances the accuracy of the estimates considerably in comparison to repeated,
linearly-solved model estimation and reduces time up to 97 percent compared to
repeated globally-solved model estimation. Also worth noting, with PCE as a sur-
rogate for the likelihood, the likelihood from a particle filter becomes continuously
differentiable—allowing a gradient-based optimization.

In its general form, the underlying theory of the method rests on the theory intro-
duced by Wiener (1938) and the Cameron and Martin (1947) theorem for a family
of stochastically independent and normally distributed random variables and Her-
mite polynomials. The property does not only hold for Hermite polynomials and
probability measures of normally distributed random variables but also extends to
other commonly used distributions and the corresponding orthogonal polynomials
from the Askey scheme. This extension, initially proposed by Xiu and Karniadakis
(2002), is also known as generalized polynomial chaos expansion. Ghanem and Spa-
nos (1991) provide the first applications of the theory to the problem of uncertain
model parametrization.

There are two pioneer applications in economics. Prohl (2017) uses PCE to dis-
cretize the state-space of the benchmark heterogeneous agent model and Harenberg
et al. (2019) use the polynomial coefficients for global sensitivity analysis of the
RBC model. Gersbach et al. (2021) follow Harenberg et al. (2019) and use PCE
to identify decisive parameters. In finance PCE is e.g., applied by Albeverio et al.
(2019); Dias and Peters (2021); Marconi (2016). The application of PCE in Bayesian
inference was first analyzed by Marzouk et al. (2007) in engineering but to the best
of our knowledge, the method has not yet been studied to estimate computational
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1086 D. Fehrle et al.

economic models. Scheidegger and Bilionis (2019) incorporate parameter uncer-
tainty in their solution of computational economic models by rewriting the param-
eters as states. This way, the model is indirectly solved in the parameter domain.

The remainder of the paper is structured as follows. First, in section 2 we review
the basic theory for the existence of polynomial chaos expansions, present common
practical methods to compute the PCE coefficients, and discuss the application for
a pointwise approximation of the mapping from the parameters to the model out-
come, i.e., the construction of a surrogate. In section 3, we apply our approach to
the benchmark RBC model and discuss our results and potential drawbacks. Sec-
tion 4 concludes. More detailed derivations, applications, etc. can be found in the
appendix.

2 Generalized Polynomial Chaos Expansions

We begin by reviewing the basic idea and theory behind the concept of PCE. While
PCE proved useful for various applications, we focus on their implementation to
efficiently evaluate computationally expensive model outcomes when one or more
of the model’s inputs, i.e., model parameters, are uncertain. Further, we give an ana-
lytically tractable example to outline the concept of PCE in Appendix 1.

Notation and Preliminaries We consider a computational economic model where
9,€0,0,CR,i=1,...,k, denotes an arbitrary selection of k € N parameters of
the model. Moreover, we are interested in some model outcome(s) denoted by a
vector y € R”, m € N. The relation between the input parameters 9; and the model
outcome(s) y is determined deterministically, i.e., repeated computation of y with
the same inputs 9, to the model produces the same result.! This mapping between
the 9; and y is described by

y=hd,,....9)

where
h:© - R™,0=X"_0; CR

Without loss of generality, we consider the case m = 1 in the following and note
that for m > 2 all derivations can be applied separately to each component y; of y,
i=1,...,m, in the same way.

Now further consider the case where the values 9, of the model parameters are sub-
ject to some uncertainty to the researcher. In order to account for this uncertainty, we
switch from the deterministic representation of the parameters to the perspective of

1 E.g., if y denotes some second moments of the model, these are derived either from available analytic
formulae from the (approximated) model solution or are computed from simulations with the same sam-
ple of shocks.

@ Springer



Polynomial Chaos Expansion: Efficient Evaluation and... 1087

describing them by appropriately distributed random variables. Therefore, let (Q, A, P)
denote a sufficiently rich probability space so that any uncertain model input param-
eter can be described by some real-valued random variable 6, : Q — R,i=1,...,k,
where the real line is equipped with the Borel sigma-algebra B(R). Moreover, let
&, ..., & denote a family of stochastically independent random variables chosen by
the researcher as a basis of the desired polynomial expansions, the so-called germs. In
applications, as will be described later, the germs are most commonly either set equal
to the uncertain model parameters 6; or to some natural and convenient transformation
of them. We assume:

1. The germsé,, ..., &, cover the same stochastic information as the uncertain model
1 k
parameters, i.e.,

o(&,....5)=0(0,,...,0,),

where o(-) denotes the sigma-algebra generated by the random variables.
2. All moments of each ¢; exist, i.e., E[|§;|"] < coforalli=1,...,kandn € N,

Moreover, we write @ := (,,...,8,) : Q - R¥and & := (&,,...,&) : Q — R for
the k-dimensional random vector of the uncertain model parameters and for the ran-
dom vector of the germs, respectively, where R* is also equipped with its Borel sigma-

algebra B(RX). Foreachi =1, ...k, let Pé = Pofl.‘1 denote the probability measure
of & on (R, B(R)) and analogously let P, 1= Po&™! = ®f:1 Pé,- denote the product
probability measure of &€ on (R¥, B(R¥)). The Hilbert space (of equivalence classes) of
square-integrable real-valued functions on (R, B(R), P é_) is denoted by

L} := L*(R,B(R),dP,)
= {f : R > R | f is measurable and /szdPéi < oo},
where the inner product is defined by
(f.8)p = /R fzdP, = E[f(£)g(&)] forf.g € AR, BR),Py).

We use the notation || - ||, for the induced norm on Lf. We introduce the analogous

notation, i.e., L* := L*(R¥, B(R¥),dP,), for the space of square integrable real val-
ued functions on (R¥, B(R*), P,) and write (-, -);> and || - ||> for the inner product
and for the induced norm on Z2. If the distributions of the random variables &; pos-
sess probability density functions w; : R — R, the inner products become

G0 = [ FOsm o
R

and
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1088 D. Fehrle et al.

.8 =/.../f(sl,...,sk)g(sl,...,sk)wl(sl)-...-wk(sk)dsl...dsk,
R Jr

so that L? = LA(R, B[R), w;(s)ds) and L? = L*(R¥, B(R¥), w(s)ds) where w is the
joint probability function w(s) := Hle w;(s;). Note that Assumption 2 is equivalent
to the fact that for eachi = 1, ..., k all univariate polynomials are included in Ll.2 or,
again equivalently, that all k-variate polynomials are included in 2.

Since, by Assumption 1, each 6; is o(&)-measurable, there exist measurable

w; : R - R which satisfy
0; = w;°8.

We write y = (yy,...,¥;) : R¥ > RF so that @ = wo&. Moreover, note that
o(&) = ¢(0) also implies the existence of a measurable, inverse mapping w~! with
woy ! =y loy = id. A further assumption we make is that

3. the second moment of each model input parameter exists, i.e., E[Giz] < oo for
i=1,...,k. Equivalently, each y; is square integrable on (R*, B[RY), P,), i.e.,
Y, € [foralli=1,... k>

Moreover, as the model input parameters 6; are now treated as random, the model
outcome of interest is random. We therefore adapt its notation to ¥ : Q — R. Yet,
given any elementary event w € Q and corresponding realization 8;(®), the mapping
between the model parameters and the model outcome is still determined determin-
istically by Y(w) = h(0,(w), ..., 0, (®)), i.e.,

Y = ho@ = hoyof, for some h : RF - R.

The final assumption is that Y is a well-defined random variable with finite second
moments, i.€.,

4. his measurable and hoy is square integrable on (R¥, B(R), Pe),i.e., hoy € L2

2.1 Single Uncertain Parameter and Germ (k=1)

We begin our description with the simplest case with only one single uncertain input
parameter € and one single germ ¢, i.e., k = 1. In general, any arbitrary choice of
the germ that satisfies Assumption 2 implies that all polynomials are included in
L2, and therefore allows the construction of an orthogonal system of polynomials
{dn}nen, C L2, i.e., a family of polynomials where g, is of (exact) degree n and

2 Note that the third assumption is already implied by the second if the germs are set equal to (some
polynomial transformation of) the model input parameters.
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<qn7 qm>L2 = ||Qn||i25m,n for all m,n € NO’

where 6, , denotes the Knonecker delta. This can generally be achieved by applying,
e.g., the Gram-Schmidt process to the sequence of monomials.

In practice, the distribution of the uncertain input parameter is given and one is
free to set the germ. It is then convenient to define the germ in such a way that i) an
easy representation 8 = y(§) of the parameter in terms of the germ arises and ii)
the family of orthogonal polynomials in L? corresponds to some well-known class
of polynomials. Table 1 summarizes the natural choice of the germ and the cor-
responding family of orthogonal polynomials when the input parameter is normal,
uniform, Beta, or (inverse) Gamma distributed. More details for these classes are
given in Appendix 2. Additionally, Xiu and Karniadakis (2002) provide a similar
overview for discrete distributions.

In all of the cases presented in Table 1 the respective families of orthogo-
nal polynomials {g,},e, form a complete orthogonal system, i.e., lie densely in
L? = (R, B(R), P;) = L*(R, B(R), w(s)ds) where w is the corresponding prob-
ability density of & More generally, it follows from Riesz (1924) that {du}tnen, 18 @
complete orthogonal system in L? if and only if there exists no other measure y on
(R, B(R)) which generates the same moments as Pg, i.e., if and only if there is no
other measure y such that

/s”d,u = /s”dP§ = E[£"] for all n € N,,.
R

If completeness of {g, },,en, In L? can be established, then Assumptions 3 and 4 guar-
antee the existence of Fourier series expansions of y and hoy in the orthogonal
polynomials, i.e., there are coefficients {9, Ynen, and {3, }en, - 9.9, € R, so that

w =Y 8,q,inL? = [R,BR),P,),
n=0

hOW = Z ynqn in L2 = LZ(R’ B(R)’Pf)
n=0

Note that identity and convergence is understood in L? which also implies pointwise
convergence i.e., for a subsequence but not pointwise convergence.* Moreover, since
P, = Péoy/‘l, alsoh =", 9,(q,ow D in L2(R, B(R), P,).

Hence, the uncertain model input parameter 8 = yo& as well as our model out-
come Y = hoyof can both be expanded exactly by a polynomial series in the germ,
i.e., by

3 See Szeg6 (1939) for proofs of completeness.
# For conditions for pointwise convergence see e.g., Jackson (1941).
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1090 D. Fehrle et al.

Table 1 Overview: common distributions and corresponding germs and orthogonal polynomials on L2

Distribution of 6 Germ Orthogonal polynomials
Family Parametric & 174 q,
Normal 0 ~N(u,0?) £ % w(s) = u+ \20s (Physicists) Hermite H,
Uniform 6 ~U(,1) E:=20— w(s) = ”1 Legendre L,
Beta 0 ~ Beta(a, f) Ei=20-1 ()= *+1 Jacobi J#~1a=1)
Gamma 0 ~ Gamma(a, f)! &= p0 w(s) = ; General Laguerre La®~"
Inverse Gamma 0 ~ Inv-Gamma(a, f)! ¢ ;= g w(s) = ‘_7 General Laguerre La*™"
¢ We use the scale-rate notation
[so]
A . 9
0=y (&)= 8,q,8 in [(Q AP), (1a)
n=0
o0
o )
Y = h(0) = hw(©) = Y $,4,&) in [XQ,A,P). (1b)
n=0

These series expansions are called the polynomial chaos expansions (PCE) of § and
Y with respect to the germ £. Moreover, orthogonality of {g, },ey, implies that the
Fourier coefficients are determined by

8, = llg, I 7w, q,) = Ilqnllgf/qudPg, (2a)
R

50 = gl hovgy)pe = gl / (hoy)q,dP;. (2b)
R

Now in practice, equations (la, b) justify approximations of the uncertain model
input parameter 6 as well as of the model outcome Y by their truncated PCE, i.e., by

N
Sn(0) = Sy(wog) 1= Y 9,4,(%),

n=0
N
Sy(Y) = Sy(hoyod) := Y 5,4,(8).
n=0

The approximations then converge to the true random variables, Sy(6) — 6 and
Sy¥)—=Y in [? as N > oo. Yet, equations (2a, b) from which the coefficients
are defined can in general not be evaluated analytically. This involves a second
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approximation for the coefficients @n and y,. The literature on PCE provides a vari-
ety of approaches for this task, from which we want to review the most popular ones.

2.1.1 Polynomial Chaos Expansion of the Model Parameters

Since the germ can be chosen in any desired way that satisfies Assumptions 1 and 2,
the following two opposing approaches can be pursued for its specification.

In the first approach, one directly fixes the transformation y between the uncer-
tain model parameter and the germ. The germ’s distribution then follows from the
given distribution of the uncertain input parameter and the chosen definition of y. In
principle any choice of y which satisfies Assumption 2 is possible. One could then
construct the family of orthogonal polynomials from the germ’s distribution and the
expansion coefficients could be derived by numerical integration of (2a) up to any
desired order. However, it is typically far more convenient to choose y as a simple
linear transformation between the uncertain model parameter and the germ which
results in a family of well-known orthogonal polynomials in L2, see e.g., Table 1. In
this case the expansion (1a) collapses to

0=y =139 +9,4,©&

and the expansion coefficients 90 and 1@1 are already known exactly.

Conversely, the second approach fixes the distribution of the germ and constructs
y in such a way that it is compatible with the given distribution of the uncertain
parameter. This can be achieved as follows. Let F denote the desired (cumulative)
distribution function of & and F, the given distribution function of 6. Then setting
the germ to’

¢ = FgloF 00
yields the desired distribution for £. Conversely,
_ -1
v =F P oF .

and the expansion coefficients can again be computed from (2a) by numerical
integration.

2.1.2 Polynomial Chaos Expansion of the Model Outcome

While the expansion of the model’s parameter can be controlled directly by an
appropriate choice of the germ, the expansion of the Qol requires some model
evaluations. We present here two approaches that treat the economic computational
model behind as a black box. An intrusive approach, stochastic Galerkin, can be
found in Appendix 3.

5 We denote by F~! the quantile function.
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1092 D. Fehrle et al.

Spectral Projection

The first approach derives the polynomial chaos coefficients y, by applying
numerical integration methods to (2b). For example, if & possesses a probability
density function w, then (2b) becomes

9, = llgall;? /R h(y (5))g,(s)w(s)ds.

Hence, a Gauss-quadrature with M nodes that corresponds to the weight function w
and to the orthogonal polynomials {g, } .y, yields

M M N
50 % gall? Y hw(s)gu(s); = llg, I72 h< 8Amqm<s,->>qn<s,->w,-, 3)
i=1 1

i=1 m=

where s; and w; denote the quadrature’s nodes and weights, respectively. The Gauss-
quadrature rule with M nodes will require to evaluate the model outcome

h(y(s;) = h<ZN 19Amqm(s,»))> at each of the M nodes. Since the quadrature rule

m=1
with M nodes is exact for polynomials up to degree 2M — 1, the number of nodes
should be chosen appropriately. More specifically, if oy is assumed to be well
approximated by its truncated partial sum Sy(hoy) of degree N, the integrand, i.e.,
h(y(s))g,(s), is well approximated by polynomials of degree not larger than 2N for
eachn =1,...,N. Hence, it should then hold that M > N + 1.

Least Squares

The second approach treats the ignored higher terms ¢ := ZZO:N +1 9n4,(&) of the
truncated PCE as the residual in a linear regression

N
Y =h(y(@) = Y 5,q.8) +e.
n=0

One can then either draw M € Ni.i.d. sample points NS 1, ..., M, from the distri-
bution P; or select them according to regression design principles. After computing

the corresponding model outcomes Y, = h(q/(sj)) o~ h(zjmvzl SAmqm(si))> the expan-

sion coefficients are determined from
M N 2
@O’ ’yn) = %rgmAin Z Yj - Zj\)nqn(sj) .
Yor-IN - j=1 n=0

The number of the sample (design) points is recommended to be set twice or three
times as large as the number of unknown PCE coefficients in the literature, i.e., to
M=2(N+1)orM=3(N+1).
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2.2 Multiple Uncertain Input Parameters (k > 2)

We now turn to the case where more than one input parameter is uncertain and
where more than one germ is used in the polynomial expansions. In brief, the
stochastic independence of the germs allows us to apply the procedure from the
one-dimensional case to each of the finitely many dimensions.

Since Assumption 2 guarantees that all polynomials are included in each Lf,
one can again apply the Gram-Schmidt process to the sequence of monomials and
construct for eachi = 1, ..., k an orthogonal system of polynomials {g;, },en, C Ll.2
where ¢,, is a polynomial of (exact) degree n and

<Qin’ qim>L% = “qin”i?&m,n for all m,n & NO‘

For any multi-index a = (@, ..., ;) € N’é we define the multivariate polynomial

k
2.8 =[] 4, &)-
i=1

Since stochastic independence of the ; implies that P, = ®f,‘=lP€i, the family of mul-
tivariate polynomials {%}aeNg then forms an orthogonal system in 2. Moreover, if
for eachi = 1, ..., k the orthogonal system {g;, },, is complete in Ll.z, then {q, } sent
is also complete in L?. In particular, this is satisfied if each 6, is distributed according
to one of the distributions specified in Table 1 and if the germs &; are set accordingly.
Then, since y; € L? (Assumption 3) and hoy € L* (Assumption 4), there exist coef-
ficients {9, Jaent € Ryi = 1,.... &, and {9, }qent C R such that

wi= Y 8aq, in L* = PR, BRY), Py), (4a)
aeNé ‘
hollf = Z yaqa in L2 = L2(Rka(Rk)’P§)

k
aeNU

(4b)

The second expansion can again be written equivalently as

h= ) $.(q,0w™") in 2RY, BRY), Py).

aGNg

Therefore, the parameters ; and the model outcome Y are again representable in L2
by a PCE in the germs & through

0= w0t = ) 8,4, in (@ AP),

aeNé

(5a)
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Y = hoO = hoyof = Y 9,4,(&) in [X(Q, A,P).

aeNt (5b)
Moreover, the expansion coefficients are determined by
B = Nl = o [ wia.dre (60
R
5o = a2 0w = a2 [ Gowra,ape (6b)
R

where P, = ®_ P, implies that ||, ll,> = T[], 194,12

Equations (6a, b) guarantee that if the parameters 6; and the model outcome Y
are approximated by their truncated PCE, the approximations converge to the true
random variables in L? as the degree of the partial sums is increased. The trunca-
tion is typically introduced either by limiting the total degree of the multivariate
polynomials

tot _ tot .« )
SV'0) = Sy wi08) 1= D i0qa(8), 73)
aeNs |a|<N
S;St(Y) = S;\‘;t(hoq/og) = z $aq(8), (7b)
aENf‘),lalsN
where |a| := Zle a;, or by limiting the maximal degree in each component
SNRO) = Sy wied) 1= D 8. s

aeNé,lla”msN

SURY) = Sy hoyod) i= Y 9,4, (80)

aeN‘(‘),HalleN

where [|a||, 1= max,_; ;.

In order to compute the expansion coefficients from their defining equations
(6a, b), it is straightforward to adapt the methods from section 2.1.2 to the multi-
dimensional case. However, this typically introduces the curse of dimensionality.

First, this issue becomes particularly problematic if Gauss-quadrature rules
compute the integrals. If the mapping hoy can be well approximated by its
truncated series expansion Sy, then the integrands (hoy)g, in (6b) can be well
approximated by multivariate polynomials which rise to degree 2N in each com-
ponent, indifferent from the fact whether |a| < N or |||, < N is assumed. Since
one-dimensional Gauss-quadrature rules with M nodes provide exact integration
rules for polynomials up to degree 2M — 1, it is required to compute (6b) by quad-
rature rules with M = N + 1 nodes in each of the k dimensions. Hence, the model
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outcome must be evaluated for a total of (N + 1)f parameter combinations and the
procedure becomes quickly inefficient as k rises.

However, sparse grid methods, e.g., Smolyak-Gauss or monomial quadrature
rules can help to reduce the computational effort for similar integration quality.
The Smolyak-Gauss quadrature is illustrated in Appendix 4 and analyzed in the
numerical example in section 3. The numerical examples for Monomial rules are
presented in Appendix 5. We put them in the Appendix due to the absence of
suitable rules for practical purposes. Well-performing rules are missing for trun-
cation levels N > 4, dimensions k> 6, or mixed or non-uniform-non-normal
distributions (see Stroud, 1971; Adurthi et al, 2018; Bhusal & Subbarao, 2020)
However, we find remarkable results for the few suitable cases, which motivates
further research to find high-degree, high-dimensional monomial rules for mixed
distributions.

Second, the burden of higher-dimensional parameter vectors appears similarly if
least squares determine the PCE coefficients. However, while the number of coeffi-
cients that must be computed equals (N + 1)¥ in Sy, the number of coefficients
N+k

k
mendation that the number of sample points should be twice or three times as large

grows less extremely in Si* where it is given by . Following the recom-

as the number of unknown coefficients, the model must be evaluated for 2( NZ_ k >

N+k o
or3 < k > parameter combinations in the latter case.

Sparse-grid methods and least squares give fundamentals for a rising number of
more efficient alternatives. Kaintura et al. (2018) and Harenberg et al. (2019) give
short discussions on recent developments of sparse-grid methods in the PCE con-
text, whereas Liithen et al. (2021) provide a full survey of sparse PCE. An example
is an adaptive sparse grid, e.g., by eliminating points with Bayesian shrinkage priors
or non-significant bases of a regression (Biirkner et al., 2023; Cheng and Lu, 2018).

2.3 Using the Expansion as Pointwise Approximation for the Model Outcome

After its construction, the PCE of the model outcome can be used for several use
cases. We present common applications in Appendix 6 and focus here on our appli-
cation, a pointwise approximation for the mapping between model inputs and any
model outcome (e.g., the model solution - in the form of its policy function -, the
second moments or the likelihood function).

More to the point, a truncated version of the Fourier series expansion (4b) can be
used as a pointwise approximation for the mapping /# between model parameters and
a Qol
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@) ~ Sy(hoy)w ™' O = Y. D, w7 (9.

aeN |a|<N

(C))

Note, however, that convergence of the series in L? as N — oo does not imply point-
wise convergence on the support of P, but only pointwise convergence i.e., for a
subsequence.

The partial sum Sy (hoy) is the orthogonal projection of hoy onto the sub-
space of LZ(R",B(Rk),Pg) spanned by multivariate polynomials of total degree
less or equal to N. If the transformation y between germs and parameters is cho-
sen linear, Sy(hoy)oyw ! is also the orthogonal projection of & onto this subspace
in L2(IR",l’:«’(IRk),P(,).6 In the sense of the induced metric, it is, therefore, the best
approximation of s by multivariate polynomials of total degree up to N, i.e., it mini-
mizes the mean-squared error over the support of Py,

Special Case: Surrogate of Model Solution Consider a discretely-timed model
where in any period ¢ € N the vector x, € § C R"x denotes the predetermined vari-
ables from the state space S and y, € R™ is a vector of the non-predetermined vari-
ables of the model. Suppose that 0 is a random vector of unknown parameters of
the model, and for any possible realization d € ® the model solution is computed in
terms of a policy function g(.;9) : S — R"™ so that

()-eon

If, for any arbitrary x € S and a suitable transformation y between parameters and
germs, the mapping 9 — g(x;9) satisfies the sufficient condition in assumption 4,
then there exists a series expansion by orthogonal polynomials {g, } of the form

g9 = ) 2,0, (w () in L (R, BRY), Py),

aENz
8 = llg,ll7 / 8, Y (5))q, ()dP(s).
Rk

Perhaps the most prevalent approach in the literature to determine the model’s pol-
icy function is to compute g from a linearized version of the model. In this case

gx;9) = A(d)x,

and numeric implementation of the methods proposed by Blanchard and Kahn
(1980), Klein (2000) or Sims (2002) allows to solve for the matrix A(9) € R»X+m)
given any arbitrary but fixed 9 € ©. Since the coefficients in the policy’s PCE are
here determined by

6 Otherwise it is the orthogonal projection of / onto the subspace in L*(R¥, B(R¥), P,) spanned by multi-
variate polynomials in y~! of total degree less or equal to N.
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8,(0) = <|Iqall;2 / qa(S)A(w(S))dPg(S)>x=: A,x,
Rk

the series expansion of the linear policy function can be written as

g9 = Y 2,Waq,w @) =| Y A7 @) |

k k
aeNy aeNy

Moreover, the A, coincides with the expansion coefficients from the PCE of the
model outcome A(9). Hence, the PCE of a linear policy is again linear and is repre-
sented by the polynomial expansion of the matrix-valued function 9 — A(9).

A second popular approach to compute the model’s policy function are projection
methods.” In this approach g is constructed as a linear combination of some suitable
basis functions ®; by

d

g(r9) = )\ c(9)®,(x).

i=1
The coefficients in the PCE of g with respect to 9 then satisfy

d d

2= <Ilqallzf /R k qa<s)(c,-<w<s>))dP§<s>>d>,~(x) =1 ) &, ®(),

i=1 i=1
and the expansion of g can therefore be written as

d

g 9) = Y 2, @) = Y| D tua, (v () |0w),

K i=1 k
aeNy l aeN;

Now observe that the ¢;, coincide with the coefficients in the polynomial expansion
of the model outcome c,(9), i.e., with the coefficients in the PCE of the coefficients
of the projection solution. Consequently, the PCE of g is again a linear combina-
tion of the basis functions @, and the coefficients are represented by the polynomial
expansion of 9 — ¢;(9).

3 Numerical Analysis

This section presents the numerical implementation of a PCE for the benchmark RBC
model. First, we analyze the convergence behavior of the series expansion for differ-
ent model outcomes of interest. More specifically, the model outcomes include the
solution, the second moments, and the impulse response functions from the model’s

7 See, for instance, Judd (1996), Chapter 11, Heer and MauBner (2024), Chapter 5, Judd (1992) or
McGrattan (1999).
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linear approximation. Additionally, we consider a global projection solution. Second,
we compare different methods to compute the PCE coefficients regarding accuracy and
efficiency. Lastly, we perform Monte-Carlo experiments, where we evaluate the perfor-
mance of PCE for empirical applications as matching moments and likelihood-based
approaches—both for linear and non-linear solutions.

3.1 The Model

We consider a benchmark RBC model where the social planner solves the following
maximization problem

& 1 = Nyri-m
. t Tt 1
Yrvg}l\%?;r+l UO ‘_[EO ; ﬁ 1 -n
st.C =Y, — K, +(1-0K,
Y, =¢“KSN, ¢,

given K, ),

)

where Y,, C,, N,, and K, denote output, consumption, working hours, and the capital
stock, respectively. Moreover, the log of total factor productivity, z,, evolves accord-
ing to the AR(1) process

Zi1 = P2+ €415 € ~ 11dN(0, 07).

The predetermined state variables x, and the non-predetermined control variables y,

are
K
X, = < ’) and y, 1=
Z

3.2 Convergence Behaviour

=Zzax

First, to study the basic convergence behavior of the PCE for various model out-
comes in the benchmark RBC model, we consider an example where we set the
uncertain parameters to 6 := (C n p). Moreover, we assume the following probabil-
ity distributions for the (stochastically independent) unknown parameters

¢ ~0.15+0.3-Beta(5,7), n ~ 1 +7 - Beta(3,7), p ~ 0.85+0.14 - U(0, 1).

The probability density functions with support® := [0.15;0.45] X [1;8] x [0.85;0.99]
are illustrated in Fig. 1.

The transformations y; between unknown parameters and germs are fixed as in
Table 1 and the remaining parameters are calibrated as summarized in Table 2.
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w(()

w(p)

(a) Prior of ¢ (b) Prior of 7 (c) Prior of p

Fig. 1 Distributions of uncertain parameters I

Table 2 Calibration I

Parameter Description Value
B Discount factor 0.994
1) Rate of capital depreciation 0.014
N Steady state labor supply' 0.300
c Standard deviation 0.010

! Instead of pinning down the value of y we set the steady state value of N = 0.3 and the model’s steady
state determines y

Linear Policy Function
The first model outcome that we consider is the model’s linear solution which is

of the form
M) = A9)x
( Vi > @) !

Given any parameter values deB the matrix
A = (a,;,-(&)), withi=1,...,6andj=1,2 € R®2 can be easily computed
numerically from available methods. As described in section 2.3, the expansion of
the linear policy function is again linear and is represented by the polynomial expan-
sion of A(9). Hence, our task is to construct for each mapping a; : 9 = a;(9) the
truncated PCE®

a9 1= S\ @) = Y, gl 9).

aENS,IalsN

(10)

Moreover, we first want to abstract from errors in the computation of the expansion
coefficients a,, and to focus on the convergence behavior of al(;v) - aq; in L? as
N — oo. Therefore, we compute the coefficients from full-grid Gauss-quadrature

rules with a sufficiently large number of nodes which should guarantee that

8 We only discuss the mappings 9 — a;(9) for i=1,3,...,6 and j= 1,2 since the expansion of the
exogenous AR(1)-process (i = 2) w.r.t. p is trivial.
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integration errors in (5b) (where now 2 = a;;) remain insignificant. More concretely,
we apply N + 5 nodes in each of the three one-dimensional quadrature rules. We
compute the coefficients from the quadrature rules and determine the L? error from

) ) 2 1/2
N _ (0} .
la — ayll,» = </R (a"® - a,®) dP9>
L | NG
~ <— ) <a§jN)(19<’>)—aU(8<’>)> )

i=1

(an

where we draw M = 10’ iid sample points 9 from the distribution of 6.

The results are presented in Fig. 2a in log;-base for N = 1to N = 19 and suggest
linear convergence of the series expansions for each a;;. The L? error for all compo-
nents of the matrix already falls to the order of magmtude of =3 for N = 7 and is as
low as —6 for N = 19. Moreover, Fig. 2b also shows the time needed for all compu-
tations. In case of the PCE, the total time reported includes i) the computation of
expansion coefficients a;, from the full-grid quadrature rules which require (V + 5)°
model evaluations and ii) the subsequent (trivial) evaluation of the truncated PCE

(N)(19(’>) at the 100,000 sample points. For comparison, we also show the computa-

tlonal time that is required to determine the model solution a; (8(’)) repeatedly at all
100,000 sample points. Most importantly, since even for N = 19 the number of
model evaluations for the construction of the PCE is significantly smaller at 13824
than the number of evaluation points, the time required by the PCE remains less
than one-third of the time needed for repeatedly solving the model.

Second Moments

The second model outcomes we consider are the model’s second moments. More
specifically, we consider the variables’ standard deviations and the correlations
obtained from the model’s linear policy. Instead of relying on simulations, we
employ available formulae for moments of first-order autoregressive processes to the
linear solution. We proceed the same way as in the preceding paragraph and com-
pute for each moment, say x, a series expansion xV) := ZaeNg,|a| Xl ().
Importantly, note that we directly construct the PCE of the second moments, i.e., of
the mapping 9 — x(J). An alternative approach to employ PCE for the second
moments would be to first construct the PCE of the linear policy and subsequently
use this PCE of the linear policy to compute the second moments.

Figure 2c again shows linear convergence of the PCEs for each second moment.
The L? error in the approximation of the model’s moments has fallen to the order
of magnitude of —3 by N =7 and further declines to —6 by N = 19. Moreover,
the computation time of the PCE versus the time for repeated computations of the
model’s moments is illustrated in Fig. 2d. For the same reasons as before, the time
needed by the PCE remains throughout significantly lower than the time required for
repeated calculations.
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Fig.2 L?convergence of PCE and computation time on an Intel® Core™i7-7700 CPU @ 3.60GHz
Impulse Response Function

The next model outcomes we discuss are the variables’ impulse response func-
tions in response to a one-time shock to TFP by one conditional standard deviation.

For the sake of exposition, we only consider the variables’ outcomes for the next
four periods after the shock hits the economy and add the remark that the series
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expansions become more trivial for later periods where the variables converge back
to their stationary values. Hence, we construct PCEs for all variables’ outcomes,
say X,,,, for periods s = 0, ..., 4. Note again that the PCE is constructed directly for
each mapping 9 — X, (9).

We show the L? errors over the unknown parameters’ support in Fig. 2e. Conver-
gence is again linear as N — oo and the L? errors for all variables’ outcomes fall to
the order of magnitude of —5 by N = 19. Furthermore, the computation time of the
PCE remains far below the time required for repeated computations of the model’s
IRFs.

Projection Solution

The last model outcome for which we want to illustrate the convergence behavior
is the model’s projection solution computed from Chebyshev polynomials as basis
functions. More specifically, we define k, := In(K,/K*(9)) where K*(9) is the capi-
tal stock’s stationary solution and approximate the policy function for working hours
by

k,—k 4~z
s = T om(gg ()

i+j<4

where we further introduce the transformation n, :=1In(N,/(1 — N,)). The T; are

Chebyshev polynomials of degree i and
[k;k] X [z;Z] = [In(0.8); — In(0.8)] X [—3\/1—_7;3\/?,)2] is the domain of the approxi-

mation g. The remaining variables are computed analytically from k,,n, and z, and
the coefficients c; j(9) are determined in such a way that the model’s Euler equation
holds exactly at 13 appropriately selected collocation points.”

We discussed in section 2.3 that the expansion of the projection solution is again

a linear combination of the same basis functions, i.e., of Ti. Ti2 with i; + i, <4, and

the coefficients are given by the series expansions of the mappings d — ¢, ;(9).

Hence, we construct truncated PCEs, CE',,N) = ZaeNg,|a| N Eijaqa(w‘lw)) from full-
grid quadrature rules with N +35 nodes in each dimension. The L? error,
||cl(.1;.[) — ¢;ll 2, in logl0-basis is again decreasing linearly as N — oo as displayed in
Fig. 2g and the time for construction and evaluation of the PCEs in Fig. 2h remains

throughout significantly smaller than the time for repeated computations of the
global solution.

° The collocation points are combinations of the zeros of the Chebyshev polynomials in the approxima-
tion.
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(a) Prior of g8 (b) Prior of § (c) Prior of v

Fig.3 Distributions of uncertain parameters II

3.3 Computation of PCE Coefficients

In the previous subsection, our focus was on the convergence behavior of the PCE
when the degree of truncation N was increased. We therefore abstracted from pos-
sible errors in the computation of the PCE coefficients and employed a full-grid
quadrature rule with sufficiently many nodes. While full-grid quadrature rules have
the favorable property that the number of nodes can be easily chosen in such a way
that they provide exact integration rules for polynomials up to the desired degree,
the number of nodes grows exponentially in the dimension of the parameter vec-
tor. Hence, they may provide the most convenient way for computation of the PCE
coefficients when the number of unknown parameters is not too large, but they
become quickly ineffective in higher dimensional problems. If the PCE coefficients
are determined from alternative methods, the approximation error of the feasible
PCE does not only include the error from truncation of the series expansion but also
from a potentially less accurate approximation of the PCE coefficients that becomes
necessary.

In this section, we now switch perspective and analyze the convergence behavior
of the PCE when its coefficients are computed from different methods. Next to the
benchmark full-grid quadrature rule, the PCE coefficients are additionally approxi-
mated by a sparse-grid Smolyak quadrature rule and by least squares.

We apply our analysis to the PCE of the model’s linear solution but now con-
sider a higher dimensional problem. The vector of unknown parameters expands to
0 .= (C nppé y).l() The assumed distributions for £, # and p remain as before in
Fig. 1, and the distributions of the additional unknown parameters are chosen as

B ~ 0.9 +0.09 - Beta(7,4), 8 ~ 0.01 +0.01 - Beta(3,3), y ~ 1.5 + 1 - Beta(5.,4).

The probability densities for f, 6 and y are visualized in Fig. 3.

We compute the truncated PCE (10) for each mapping a; : 9 = a;(9) in the
linear policy A(9) = (aij(&)), withi=1,...,6andj = 1,2 € R, The PCE coeffi-
cients are now determined either by i) a full-grid Gauss quadrature rule with N + 1

10 These are all of the model’s parameters except the standard deviation ¢ which does not affect the
model’s linear policy.
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Fig.4 L?> Convergence of PCE with approximated coefficients and computation time on an Intel®

Core™i7-7700 CPU @ 3.60GHz I

nodes for each parameter (FGQ), ii) a sparse-grid Smolyak-Gauss quadrature rule
with linear growth where the level is set in such a way that the one-dimensional
quadrature rules include the nodes up to degree N + 1 (SGQ), iii) least squares
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where the number of sample point is set either twice (LSMC1) or iv) three times as
large as the number of unknown PCE coefficients (LSMC2). After construction of
the truncated PCE by each of the four methods, we compute the PCE’s L? error as
in (11) from a draw of M = 107 iid sample points from the parameter’s distribution.

Figure 4 shows the convergence of the truncated (approximated) PCEs with
approximated coefficients for increasing N. As expected, the PCE constructed from
a full-grid quadrature rule, which should provide the most accurate determination
of the coefficients, also shows the fastest convergence. It is followed by the PCE
constructed from the sparse-grid Smolyak quadrature rule while the PCEs where
the coefficients are computed by least squares perform worst. Since inaccuracies in
the coefficients of higher degree polynomials may have large impact on the L? error
of the PCE,!! the PCEs computed from least squares even show increasing errors
for larger N. Yet, the necessary computations for the full-grid quadrature method
also require by far the most time. Figure 4k shows that by N = 5 the construction
and evaluation of the PCE already consumes more time than 100,000 repeated com-
putations of the model solution. In comparison, the sparse-grid quadrature rule is
already significantly less computationally costly while the least-squares methods are
least expensive to compute and remain less time-consuming than repeated computa-
tions of the model solution up to N = 10.

Finally, Fig. 5 provides a more convenient illustration of the different methods’
efficiency and plots the PCEs’ L? error versus the required computation time, both
in log,,-basis. According to this metric the full-grid quadrature method already
performs worst and requires the most computation time to reach the same quality
of approximation as the other methods. The most efficient method is the sparse-
grid Smolyak quadrature rule. In the present case with six unknown parameters, it
reaches an approximation with L2 error of the order of magnitude of —4 before the
required time for the PCE’s construction exceeds the time for 100,000 repeated com-
putations of the model solution.

3.4 Monte Carlo experiments for empirical methods
3.4.1 Estimation Based on Linearized Models

Design

Our Monte Carlo study for linearized models follows Ruge-Murcia (2007) and
analyzes the performance of PCE when applied to different estimation methods. We
set the vector of uncertain parameters to 8 := (f, p, o) and choose the following prob-
ability distributions with support ® := [0.97;0.999] x [0.75;0.995] x [0.004;0.012]
for the unknown parameters:

p ~097+0.029 - Beta(2,2), p ~ 0.75 + 0.245 - Beta(2,2), ¢ ~ 0.004 4+ 0.009 - U(0, 1).

! Note that the norm of the orthogonal polynomials, |1g4 |l 2, is increasing in |a/.
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Fig.5 L2 Convergence of PCE with approximated coefficients and computation time on an Intel®
Core™j7-7700 CPU @ 3.60GHz II

Figure 6 illustrates the uncertain parameters’ probability densities and the remaining
parameters are calibrated as summarized in Table 3.

The simulated data and the subsequent estimation of the parameters are both from
a linearized model. While the advantage of PCE increases with more sophisticated
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Fig. 6 Distributions of uncertain parameters III

Table 3 Calibration II

Fixed-parameter Description Value

¢ Capital share 0.37

1) Rate of capital depreciation 0.014

N Steady-State labor supply 0.3

n Risk aversion 2

Uncertain parameters Description Distribution

p Discount factor p ~ 097 +0.029 - Beta(2,2)
p Persistence p ~0.75 4+ 0.245 - Beta(2,2)
o Standard deviation o ~ 0.004 +0.009 - U(0, 1)

solution techniques, i.e., non-linear solutions, there is a reason to consider linear
solutions: the existence of analytical representations of second moments and the
likelihood function. Thus, differences in the estimated parameters between PCE and
the benchmark (solving the model repeatedly) can be solely attributed to the approx-
imation with PCE.

Matching Moments

To estimate the parameters by matching moments, we choose the following
5 targets: i) the variance of output and working hours, ii) the autocovariance
(lag 1) of output and working hours, and iii) the covariance between output and
working hours. We draw a sample 99,i=1,...,M, of size M = 1,000 from
the distribution of the unknown parameters. In a first step, we compute the lin-
ear approximation of the policy function and the second moments for each 9¢
in the sample. Subsequently, we feed the computed second moments as targets
to an optimizer and (point) estimate the unknown parameters by the method of
matching moments. When minimizing the objective function, we distinguish
the following three cases to evaluate the model’s second moments for different
parameter values: i) repeatedly solving the model and computing the second
moments (benchmark), ii) constructing the PCE of the linear approximation of
the policy function which we then evaluate and use to compute the variables’
second moments (h(@) = g(x;@)) or iii) constructing the PCE of the model’s sec-
ond moments which we then evaluate (4(¢) becomes directly the five mentioned
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Table 4 Monte Carlo Results - GMM

Benchmark (repeated solution)

Time Total average
00:01.25

PCE policy function

Time Total average PCE Estimation average
00:00.5 00:00.05 00:00.45

J B p c

& 0.04 0.01 0.02

€ 05 0.00 0.00 0.00

€5 0.03 0.01 0.01

€ 05 0.11 0.03 0.06

PCE second moments

Time Total average PCE Estimation average
00:03.44 00:03.11 00:00.33

J B p o

& 0.16 0.02 0.02

€05 0.02 0.00 0.00

€ s 0.13 0.02 0.01

€ 05 0.43 0.06 0.09

Observable moments: variance of output, variance of hours, covariance between output and hours, auto-
covariance of output (lag 1), autocovariance of hours (lag 1). €;: mean error, €; os: 5 percentile of error,
€; 5 median of error, €; ¢5: 95 percentile of error. Errors of PCE-based methods are expressed as devia-
tions from the benchmark method of repeatedly solving the policy function in percent of the range of the
parameter’s distribution. Time: mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation
degree and quadrature level of the expanded policy function is 9 and of the second moments 19

targets). We compute the second moments either from analytic formulae for the
linear solution (GMM) or from a simulation with 7 = 10,000 periods (SMM).
We adapt the truncation degree and quadrature level manually to achieve suffi-
cient accuracy to demonstrate the capabilities.'? After obtaining the parameters’
estimate 9@, we define the PCE error by the deviation between the realized point
estimate 8. from a PCE based method and the estimate ﬁgvl obtained from the

PCE '
benchmark method, i.e.,

q(® q®

; i,PCE ~ VjBMI . .
€€[) = 100%’ .] € {ﬂ’/’90'}a 1= 1”"’M’
J 19j,max - 19j,min
where j indicates the estimator of the particular parameter and 9, and 9, .,

denote the upper and lower bound of 6,’s prior support.

12 We discuss heuristics for the choice of the truncation level below.
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Table 5 Monte Carlo Results - SMM

Benchmark (repeated solution)

Time Total average
01:12.82

PCE policy function

Time Total average PCE Estimation average
00:34.67 00:00.03 00:34.63

J B p c

& 0.10 0.02 0.03

€ 05 0.01 0.00 0.00

€5 0.08 0.01 0.01

€ 05 0.25 0.04 0.16

PCE second moments

Time Total average PCE Estimation average
00:58.03 00:57.73 00:00.31

J B p o

& 1.01 0.13 0.10

€05 0.10 0.01 0.01

€ s 0.78 0.09 0.06

€ 05 2.62 0.35 0.30

Observable moments: variance of output, variance of hours, covariance between output and hours, auto-
covariance of output (lag 1), autocovariance of hours (lag 1). €;: mean error, €; os: 5 percentile of error,
€; 5 median of error, €; ¢5: 95 percentile of error. Errors of PCE-based methods are expressed as devia-
tions from the benchmark method of repeatedly solving the policy function in percent of the range of the
parameter’s distribution. Time: mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation
degree and quadrature level of the expanded policy function is 7 and of the second moments 13

Table 4 presents the results for GMM. We provide the computation time, the
mean, the median, the 5 percentile, and the 95 percentile of the PCE error €
from M = 1,000 estimations. We find that the policy function’s PCE provides a
remarkably good approximation which results in deviations from the benchmark
mostly smaller than one permille in comparison to the range of the parameter’s
distribution. The errors increase once PCE directly approximates the second
moments. However, the average relative errors remain below two permille for all
parameters and are almost always less than half a percent, again relative to the
parameter’s range. Using the PCE of the policy function reduces the computa-
tion time on average by 60 percent while the PCE of the second moments is more
time-consuming than the benchmark. Nevertheless, the pure estimation procedure
of the second moments’ PCE is on average more than 25 percent faster than the
estimation procedure of policy function’s PCE.

Since analytic formulae for the model’s moments are only available for the linear
solution, GMM can only be employed for a linear approximation where computation
time is rarely a limiting factor. If the model demands non-linear solutions, one has
to resort to simulations to derive the model’s moments. However, the computation
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Table 6 Monte Carlo Results - Maximum Likelihood Estimation

Benchmark (repeated solution)

Time Total average
00:20.60

PCE policy function

Time Total average PCE Estimation average
00:18.79 00:00.20 00:18.59

J B p c

€ 0.07 0.08 0.01

€ 05 0.00 0.00 0.00

€5 0.00 0.00 0.00

€ 05 0.00 0.01 0.02

PCE likelihood-function

Time Total average PCE Estimation average
00:10.81 00:10.36 00:00.44

J B p o

& 0.08 0.40 0.05

€05 0.00 0.00 0.00

€ s 0.00 0.08 0.01

€ 05 0.03 0.75 0.09

Observable: Output ¥,. &: mean error, €; os: 5 percentile of error, €; 5: median of error, €; os: 95 percen-
tile of error. Errors of PCE-based methods are expressed as deviations from the benchmark method of
repeatedly solving the policy function in percent of the range of the parameter’s distribution. Time:
mm:ss.f on an Intel® Core™:i7-7700 CPU @ 3.60GHz. The truncation degree and quadrature level of the
expanded policy function is 9 and of the likelihood function 13

of non-linear solutions and the simulation of model outcomes increase the computa-
tional effort significantly. Working with the PCE of the policy function reduces the
former burden while working with the PCE of the second moments helps to reduce
both burdens. The results for our Monte-Carlo experiment with SMM are summa-
rized in Table 5.

We find again that the policy function’s PCE provides a remarkably good approx-
imation which results in errors mostly smaller than 2.5 permille in comparison to
the range of the parameter’s distribution. Similar to GMM, errors rise if the model’s
second moments are directly approximated by PCE. However, the average relative
errors remain around or below one percent for all parameters and are almost always
less than 2.5 percent. Using the PCE of the policy function reduces the computation
time on average by 50 percent while the PCE of the second moments reduces them
only by 20 percent. However, the pure estimation procedure of the second moments’
PCE is on average more than 99 percent faster than the estimation procedure of pol-
icy function’s PCE. This illustrates the efficiency of expanding the Qol with PCE.
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Table 7 Monte Carlo results - Bayesian estimation I

Benchmark (Repeated Solution)

Time: Total average
08:36.11

PCE Policy Function

Time: Total average PCE Estimation average
07:56.38 00:00.05 07:56.33
Mean: Quantile:
Jj X: 5% 10% 25% 50% 75% 90% 95%
p €;(x) 0.05 0.12 0.08 0.05 0.04 0.05 0.07 0.10
€;(x) os 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01
€;(x) 5 0.04 0.09 0.05 0.03 0.03 0.04 0.05 0.06
€;(x) o5 0.15 0.33 0.23 0.15 0.15 0.14 0.22 0.33
p &(x) 0.23 0.32 0.28 0.25 0.25 0.30 0.37 0.45
€;(x) os 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03
€x) 5 0.19 0.24 0.24 0.20 0.21 0.25 0.30 0.35
€(x) o5 0.59 0.87 0.71 0.64 0.63 0.77 0.99 1.22
o () 0.09 0.11 0.10 0.09 0.09 0.11 0.15 0.20
€;(x) s 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
€(x) 5 0.07 0.09 0.08 0.07 0.07 0.09 0.12 0.15

€(x) o5 0.24 0.24 0.29 0.25 0.26 0.28 0.41 0.59

Observable: Output ¥,. &: mean error, €; os: 5 percentile of error, €; 5: median of error, €; os: 95 percen-
tile of error. Errors of PCE-based methods are expressed as deviations from the benchmark method of
repeatedly solving the policy function in percent of the range of the parameter’s distribution. Time:
mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadrature level of the
expanded policy function is 9 and of the second moments 13

Likelihood-based Estimation

We proceed to analyze the performance of PCE in MLE and BE. More pre-
cisely, we now draw a sample of size M = 500 from the distribution of the unknown
parameters. We approximate linearly the policy function and simulate a time series
of output ¥, for T = 200 periods for each 9@ in the sample.'> We treat the simulated
time series as observations from which we either (point) estimate the parameters by
MLE or conduct BE.

In the case of MLE, we distinguish the following three methods to evaluate the obser-
vations’ likelihood for different parameter values: i) repeatedly solving the model and
computing the likelihood (benchmark), ii) constructing the PCE of the linear approxi-
mation of the policy function which we then evaluate and use to compute the likelihood
(h(@) = g(x;@)) or iii) constructing the PCE of the likelihood which we then evaluate
(h(p) = L(Y,.7;9)). In order to avoid problems with weak identification and to focus on

13 More precisely, we generate a sample of size T = 300 and burn the first 100 observations.
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Table 8 Monte Carlo Results - Bayesian Estimation II

PCE Posterior-Kernel

Time: Total average PCE Estimation average
00:16.82 00:11.00 00:05.82
Mean: Quantile:
J X: 5% 10% 25% 50% 75% 90%  95%
p &) 0.05 0.13  0.09 0.05 0.04 0.05 0.07  0.09
€(x) s  0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
gxs 004 0.08 0.06 0.03 0.03 0.03 0.04 0.06
€(x) o5 0.16 0.40 0.25 0.15 0.13 0.14 0.19 0.30
p €;(x) 0.21 032 0.27 0.24 0.24 0.27 0.36 0.44
€;(x) o5 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.03
)5 016 025 021 0.20 0.19 0.20 027 0.33
€(x)gs 059 0.86 0.69 0.59 0.60 0.72 1.01 1.19
o () 0.09 0.12  0.11 0.09 0.09 0.11 0.15 0.19
€;(x) s 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
gxs 007 0.09 0.08 0.07 0.07 0.09 0.12  0.13
€(x) o5 024 032 0.30 0.25 0.24 0.29 042 0.55

Observable: Output ¥,. &: mean error, €; os: 5 percentile of error, €; 5: median of error, €; os: 95 percen-
tile of error. Errors of PCE-based methods are expressed as deviations from the benchmark method of
repeatedly solving the policy function in percent of the range of the parameter’s distribution. Time:
mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadrature level of the
expanded policy function is 9 and of the second moments 13

the quality of PCE in the estimation procedure, here MLE is unusually applied to data in
levels instead of the relative deviation from steady state.

For BE, the priors remain the same as in Table 3. Moreover, we again consider
three methods to evaluate the posterior where the first two are analogous to i) and ii)
above while iii) now involves constructing the PCE of the posterior’s kernel
(h(p) = L(Y,;0)p(@), where p(g) is the prior of ¢). For each of the three methods,
we derive the posterior’s mean as well as several quantiles of the posterior distribu-
tion from a standard random walk Metropolis Hasting (RWMH) algorithm with
100,000 draws from the posterior kernel.'* We measure the accuracy of the PCE-
based methods for each statistic of the posterior, say x, by computing the deviation

between the statistic 2”2 _ obtained from the PCE based method and the statistic

’ 'j,PCE
2 from the benchmark method by
j,BM
NO) ~(0)
0 — X
0} | j,PCE j,BM
€ nx)=100———m-7--——
PCE
’ 9 max = Ojmin

Again, we adapt the truncation degree and quadrature level manually to achieve suf-
ficient accuracy.

14 For the results we burn the first 50,000 draws.
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Table 6 displays the results from MLE. First, deviations between the estimates
from the method based on the policy function’s PCE, the likelihood function’s PCE,
and the benchmark version remain remarkably small. The average error concerning
the policy function’s PCE estimation is smaller than one permille compared to the
benchmark and relative to the range of the parameter. Furthermore, as the 95 per-
centile is smaller than the average, the error is mostly smaller than on average. The
same holds for the estimation with the likelihood function’s PCE. The average error
is less than a half percent and the median is less than one permille. Using the PCE
of the policy function does not reduce the computation time significantly, because
the evaluation of the likelihood function is the time-consuming part. For this reason,
using the PCE of the likelihood function is much more efficient. The total procedure
is about 50 percent faster than the benchmark on average and the pure maximization
procedure takes less than half a second on average.

Finally, Table 7 and Table 8 summarize the results from the PCE-based meth-
ods—approximation of the policy function or the kernel of the posterior—in BE.
First, the errors between the two approximations are virtually the same. The average
errors of the means and the medians are less than or equal to one-fourth of a percent.
While deviations slightly increase for estimates of the posterior’s lower and upper
quantiles, they remain almost always less than 1.25 percent. Recognizing that errors
may be partly caused by the RWMH algorithm itself, the deviations between the
methods are negligible. Using the PCE of the policy function does not reduce the
computation time significantly, because the evaluation of the likelihood function is
likewise the time-consuming part. For this reason, the PCE of the likelihood func-
tion is much more efficient and nearly 99 percent faster than the benchmark.'

3.4.2 Estimation Based on the Global Solution

We proceed with our analysis by conducting the previous likelihood-based esti-
mation for global, i.e., non-linear model solutions. On the one hand, the model’s
linear solution allowed an analytical derivation of the objective function of the
estimations and, consequently, an exact assessment of the goodness of their PCE
approximation. On the other hand, the solution and the derivation of the objective
functions are fast by themselves. Consequently, time is not critical. Non-linear
solutions and likelihood function evaluation with particle filters rely on numeri-
cal, partly Monte Carlo, methods, which makes the assessment vague. However,
these methods are time-consuming, making PCE an interesting method to over-
come these burdens.

We follow Fernandez-Villaverde and Rubio-Ramirez (2005). The authors show
that the non-linearities are crucial for parameter inference, even for our benchmark
RBC model. We deviate from our previous study and follow Fernandez-Villaverde
and Rubio-Ramirez (2005) by considering only one true value for the parameters 6°
and the prior distribution choice, which is now uniform in all dimensions. The latter
allows us to focus on the effects of the non-linear solution. The former is to evaluate

15 It must be mentioned that a higher number of parameters leads to a decrease in efficiency.
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our estimators by comparing the estimated average with the true values, as an exact
objective function for the assessment is missing. We set the true parameter values
0° = {p°, p°,w°} = {0.985,0.9725,0.0085} and the priors

f~098+0.01-U@,1), p~0.7540.245- U(0,1), 6 ~ 0.004 4+ 0.009 - U(0, 1).

Note that the domain of the priors for p and @ remains while for g, the domain
shrinks. The latter is because f is well-identified. Outside this domain, the likeli-
hood is too small (< exp(—1000)) for an accurate particle filter evaluation. In the
discussion below, we devote ourselves to cases where the model outcome is not
well-defined or cannot be computed in a numerically stable way at all nodes of the
quadrature rules.

Lastly, some information on the non-linear solution and the particle filter: we

apply the projection solution described above with
[k:k] X [z;Z] = [In(0.9); — In(0.9)] X [—2\/1—_7;2\/?,)2] and use a generalized boot-

strap particle filter with 2,000 particles (see Herbst & Schorfheide, 2016 Algo-
rithm14). We conduct the exercises for M = 96 different datasets, each simulated
using the globally solved model. If not otherwise stated, we still observe 7' = 200
periods of Y,

Maxmimum Likelihood

In the maximum likelihood analysis, we can only compare the maximum of the
likelihood from the Kalman filter using a linear solution and of the PCE approxi-
mated likelihood as the likelihood directly from the particle filter is not differenti-
able—ruling out gradient-based optimizer. The literature refers to the use of differ-
entiable likelihood surrogates or non-gradient-based optimizers. While the latter is a
research topic itself, we contribute to the former idea by assessing the possibility of
surrogate the likelihood with PCE.'®

Figure 7 presents the results dependent on the truncation level (N € {8,9, ..., 14}).
The upper three panels ((a)—(c)) display the bias of the estimators relative to the true
parameter values, and the middle three panels ((d)—(f)) the relative standard devi-
ations of the estimators. The last two panels ((g) and (f)) indicate the amount of
a successful PCE approximation, i.e., inner maxima (g), and the time differences
(). It turns out that both approximations (linear solution and PCE surrogated likeli-
hood) estimate on average § well. Both are on average within the range of +0.02%.
The estimates for p are more biased. Yet, for truncations N > 10, the PCE estimator
becomes noticeably less biased. The biggest difference between the estimation strat-
egies is concerning o. While for N > 10 the PCE estimates fluctuate close around
the true value, the estimate from the linear solutions deviates on average by 3.25%
from the parameter’s true value. The analysis shows, that the estimators of the PCE
surrogate are less or equal biased. Yet, the estimator’s fluctuation is higher. However,

16 Note that in our example the PCE likelihood surrogate MLE is on average more accurate than the
average posterior modes from the repeated global solution sampler.
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Fig.7 ML from various likelihood approximations (M = 96). PCE: PCE approximated likelihood from a
particle filter, SPCE: Only successful PCE approximations (My), i.e., exclusion of maxima at the param-
eter bounds. LinRep: Repeated likelihood evaluation using the Kalman Filter from the linear model solu-
tion. N equals the truncation level, the quadrature level equals N+1. Computation time on one core of an
AMD® EPYC™7313 (Milan) CPU @ 3.00GHz

the estimator’s standard deviation converges with N to the standard deviation of the
linear solution estimates and is already similar for f and ¢ for N > 13.

The amount of successful PCE, i.e., likelihood maxima at the bounds, increases
from 85% for N = 8 above 95% for N > 8 and equals 100% for N = 14. One maxi-
mization with the PCE approximation takes on average between 9 min (N = 8) and
40 min (N = 14) and takes much longer than with the use of the linear solution (14
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Fig.8 Observable: Output ¥,. €: mean error. Errors are expressed as deviations from the benchmark
method of repeatedly solving the (global) policy function in percent of the range of the parameter’s dis-
tribution. N = 13 equals the truncation level, the quadrature level equals N + 1. Performed on one core of
an AMD® EPYC™7313 (Milan) CPU @ 3.00GHz

Table 9 Computational time comparison

linear repeated posterior PCE policy fct. PCE non-linear repeated

hh:mm:ss 00:05:45 00:32:27 17:45:11 18:17:37

N = 13 equals the truncation level, and the quadrature level equals N + 1. Performed on one core of an
AMD® EPYC™7313 (Milan) CPU @ 3.00GHz
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sec). However, the duration of the likelihood evaluation of the non-linear model is
still quick and can be reduced easily and drastically via parallelization.'”

Finally, the problem arises in whether the estimator’s standard deviation and the
remaining bias arise generally from the maximum likelihood method and the parti-
cle filter or from limitations of the PCE approximation. We can identify the reasons
by improving the properties of the true MLE and the particle filter. To decrease the
bias and standard deviation of the true MLE, we increase the number of observa-
tions (T=500) c.p., and to decrease the noise in the particle filter, we increase the
number of particles to 10,000 c.p. Appendix 7 presents the results (Fig. 12 and 13).
The additional information (T=500) leads to a similar decreasing standard devia-
tion of both estimators the PCE surrogate likelihood and the likelihood from the
model’s linear approximation. However, while the bias of the MLE from the PCE
surrogate likelihood shrinks further, the bias of the MLE from the linear solution
only decreases for p. The bias for § and o remain or even increase. Further, with
more information, the PCE approximation becomes more stable. Regarding the
higher amount of particles, there is unsurprisingly no improvement in the bias of the
estimates from the PCE approximated likelihood. However, the estimator’s stand-
ard deviation decreases for all considered truncation levels. With these two results,
we conclude that PCE approximation errors are neither the drivers of the remaining
inaccuracies nor limits a higher accuracy.

Bayesian Estimation

Note that in a Bayesian context besides the mode, we cannot observe the true
statistics of the posterior distribution. Since the posterior statistics obtained from
the global projection solution and the generic bootstrap particle filter should be at
least unbiased (see Fernandez-Villaverde & Rubio-Ramirez, 2005) we use them as
a benchmark case and compare it with three other methods to evaluate the poste-
rior: i) the linear approximate solution combined with a likelihood obtained from
the Kalman-Filter, ii) the PCE surrogate of the posterior kernel, iii) and the PCE
approximation of the global projection solution together with the likelihood from
the generic particle filter. For both Qols, we set the truncation and the quadrature
level to N = 13and M = N + 1, respectively.

As in the linear setup, we use the RWMH algorithm to generate 100,000 draws
from the posterior distribution. However, since initializing the algorithm at the pos-
terior mode is difficult when the likelihood is approximated by a particle filter (see
the discussion above), we depart from the linear setup and specify the algorithm’s
proposal density using estimates of the posterior mean and variance. We obtain
these estimates from 10,000 additional draws from a RWMH algorithm based on a
proposal density pinned down by the prior’s mean and variance.

Figure 8 displays the mean absolute deviations (relative to the range of the
parameter’s distribution) of the three competing methods to the benchmark case for

7 We use here only one core. Hence the computational time for the PCE approximation can be roughly
divided by the amount of available cores, e.g., with > 160 cores, the N = 14 approximation should
become faster than the linear approximation, ignoring workers’ allocation time.
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various posterior statistics and Table 9 gives an overview over the average computa-
tional time for one estimation.'®

For all three estimation parameters and all displayed statistics of the posterior,
the PCE extension of the global projection solution yields the estimation results that
come closest to the benchmark case. While the average absolute deviation is well
below half a percent for all parameters, the average time required for one estima-
tion (17h:45m:11s) is only around half an hour less compared to the benchmark
(18h:17m:37s). However, this difference depends on the fraction of computational
time of the solution on the total time. Note that the solution becomes quickly more
time-consuming than the filter with an increasing number of states.

For f, the deviations between the PCE expansion of the posterior kernel and the
benchmark case are similar to those of the linear approximation of the model solu-
tion. However, for p and in particular o, the results are significantly closer to the
benchmark method, with about one and almost two percentage points lower devia-
tion. This, together with the fact that the computational time required (00h:32m:27s)
is significantly lower, makes the PCE surrogate of the Posterior kernel a promising
alternative to the benchmark method.

In contrast, the estimates based on the linear approximation of the model solution
are computationally much more favorable (00h:05m:45s) but also deviate the most
from the benchmark case with an average absolute deviation from just under two
to almost four percent. In line with the results by Fernandez-Villaverde and Rubio-
Ramirez (2005), we document that for the parameter o the deviations vary system-
atically for different percentiles of the posterior, as the mean absolute deviations
between the linear and the global benchmark estimation method decrease by more
than one and a half percentage points from the 5-th to the 95-th percentile.

Discussion

Our study of PCE for estimating a standard RBC model shows that the PCE-based meth-
ods deliver sufficient accurate surrogates to reproduce the results of estimates from the
benchmark procedure—repeatedly solving the model. Gains in efficiency are larger than
50 percent for matching moments if the PCE of the policy function is used and for MLE
if the PCE of the likelihood function is used. Additionally, the PCE of the likelihood
from a particle filter is differentiable and, thus, enables a gradient-based optimization.
Gains in efficiency are larger than 95 percent for BE with the chosen numbers of param-
eters, truncation degree, and quadrature level if the PCE of the posterior’s kernel is used.

In our specification of the prior distributions we shape and shift the distribu-
tions to achieve compactness of the support. This procedure is unconventional in
the Bayesian estimation of DSGE Models but helps for PCE. First and foremost, the
compactness of the support helps to create a setting where the mapping from param-
eters to the model outcome is square-integrable. Second, it is indispensable for the
construction of the PCE coefficients that the model outcome is well-defined and can

18 We provide the complete estimation results (incl. various error percentiles) in Tables 12, 13 and 14 in
Appendix 7.
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be computed in a numerically stable way at all nodes of the quadrature rules.'® Here,
importance sampling for least squares, adaptive sparse grids, or grid domain reduc-
tions produces a remedy.>”

In non-Bayesian approaches, the application of PCE demands the otherwise
unnecessary specification of prior distributions. As L? convergence of the series
expansion is achieved w.r.t. this prior distribution of the parameters, estimation
results become less accurate if the true parameter value is at odds with the choice of
priors, especially if the true parameter is outside the prior domain.>!

Similarly, Lu et al. (2015) show that using PCE for BE may be inaccurate in two
cases. First, the Qol is represented poorly by a low-order polynomial. Second, the
posterior mass is in other regions than the prior mass. To solve these problems, they
suggest an adaptive increasing polynomial order by verifying the accuracy at the
next evaluation point. As our manual adaption is usually not feasible as it requires
the benchmark results, this is also a practical method for determining the truncation
level in general. In addition, a small magnitude of the Nth Fourier coefficient indi-
cates a sufficiently high truncation level.

As PCE is a spectral decomposition approximated with a truncated polynomial
expansion, generally, Runge’s and Gibbs’ phenomena could arise. Both result in spuri-
ous oscillation. Yet, using Gaussian quadratures and nodes prevents the former phe-
nomenon, and the latter phenomenon only appears in the presence of discontinuity
jumps. Problems with the approximation of a flat function are unknown. Thus, the
frequent lack of identification of DSGE models does not challenge PCE itself.

Concerning time, the success of PCE is determined by the ratio of the number of
model evaluations necessary to compute the coefficients and the number of model
evaluations for the exercise at hand. Hence, PCE works best in cases with a small
number of unknown parameters where the exercise demands many model evalua-
tions. On the one hand, PCE loses efficiency in higher dimensional problems. On
the other hand, most exercises are recursive (Monte Carlo sampler, gradient-based
optimizer, etc.), where the model evaluations are independent of each other for con-
structing PCE. This independence makes the costly evaluations parallelizable—
reducing the curse of dimensionality drastically with cluster or cloud computing. In
addition, Soize and Desceliers (2010) develop tools to reduce the evaluation time of
the constructed PCE.

Finally, our analysis is limited to an ergodic, stable stochastic process. However,
Ozen and Bal (2016) show that, with some adaptions, PCE becomes suitable for
time-dependent solutions and Jacquelin et al. (2015) for models with deterministic
eigenfrequencies.

19 For example, larger values of the capital share quickly result in numerical problems for the compu-
tation of the linear approximation of the policy function, and too large distances to the true parameter
result in minus infinity log-likelihood values.

20 For the latter, note that the priors must not change as otherwise information from the data would enter
the prior.

21 To put it simply, the prior distribution in such cases is only a guess that determines the accuracy of the
solution in different ranges of parameter values.
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4 Conclusion

The present article discusses the suitability of PCE for computational models in eco-
nomics. For this purpose, we first provide the theoretical framework for PCE, review the
basic theory, and give an overview of common distributions and corresponding orthogo-
nal polynomials. We show how to use the expansion as a pointwise approximation for
the Qol, e.g., to surrogate the linearized policy function or a policy function based on
projection methods.

Second, we analyze PCE when applied to a standard RBC model and provide
practical insights. We study convergence behavior for various Qols and compare the
most common methods to compute the PCE coefficients for a lower dimensional
and a higher dimensional problem. Monte Carlo experiments for different empiri-
cal methods show that the PCE-based methods can accurately reproduce the results
of the benchmark method of repeatedly solving the model. Gains in efficiency are
large, especially for Bayesian inference.

Our discussion addresses potential drawbacks of the method. First, the efficiency
of PCE suffers from the curse of dimensions in problems with numerous unknown
parameters. Further, poorly chosen priors may affect the accuracy of the estimates.

PCE is a powerful tool for a broad set of applications and the recent literature
addresses the highlighted drawback. We hope this article can encourage applications
of PCE in economics. Especially, for parameter inference in complex models where
numerous repeated solutions are infeasible or when time is critical as in real-time
analysis of high-frequency data.

5 Supplementary information

MATLAB® code and replication file are available at www.johanneshuber.de/PCE.
Appendix 1 A Simple Example

Here, we want to outline the concept at a simple but analytically tractable construc-
tion of a PCE. Since our numerical analysis focuses on discretely-timed models, our

example considers the following system of linear first-order difference equations in
two real-valued variables x; , and x, ,,

Iy 1 + Xy = Xy
X1 T X = X

for all € N, and given x, ; and x, 5. Moreover, 9 € (0, 1) is an unknown parameter.
While the variables’ explicit recursion can be derived straightforwardly here by

fia\ o (510 (1 ® O _ (5

the mapping 9 — H(J) from the unknown parameter to the (linearized) policy can
typically not be derived analytically, but can only be computed numerically if the
system of difference equations is non-linear and stochastic. In consequence, if H(J)
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needs to be computed for different parameter values, the underlying numerical meth-
ods must eventually be applied repeatedly. PCE, on the other hand, aims to represent
the mapping 9 — H(9) as a truncation from the Fourier series

h(®) = Y 1 q, (07 ),

n=0

where g, is the n-th polynomial from a family of orthogonal polynomials, y~!(9) is
a transformation of the parameter space into the space of the polynomial orthogonal
counterpart’s argument, and ﬁf.j’.ﬂ is the corresponding Fourier coefficient of the poly-

nomial. The truncated series expansion is constructed from a limited number of
numerical evaluations of the mapping as follows.

First, the uncertainty about the parameter is taken into account by describing it by
a random variable 6 with suitable probability distribution P,. For the present example,
suppose that 6 is uniformly distributed over the interval (0, ), 0 < b < 1. Second, the
series expansion is constructed in a well-known family of orthogonal polynomials, which
satisfies orthogonality w.r.t. some weighting function w. Thereby, the appropriate family
of orthogonal polynomials is most conveniently chosen in such a way that the weight-
ing function w coincides with the probability density function of the unknown parameter.
However, in order to achieve conformity between the weighting function and the density
function, a (linear) transformation of the parameter typically becomes necessary. In the
present case, Legendre polynomials {L,},. are orthogonal w.r.t. the weighting function
w(s) = 1_ 1y(5), i.e., they satisfy

/L()L()()d {0’ Lz
()L, (s)w(s)ds = 22 e
R ”Ln” = o if n =m.
Hence, transformation of the unknown parameter 6 to the so-called germ & by
_ 0 &+ Db
fi=y@ =20 -1 s 0=y = E8

yields the desired result, and Legendre polynomials are orthogonal w.r.t. the proba-
bility distribution P, of &. Given that b < 1, the mapping s — h;(y (s)) for each entry
hy; of the matrix H is square integrable w.r.t. P, and can be represented by a Fourier
series of the form??

hyw(s) = Y AL, (). (12)
n=0

ij

Moreover, orthogonality implies that the Fourier coefficients fzfln) satisfy

22 The details in which sense convergence of the series can be established are discussed in the next sec-
tion.
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Table 10 Example

i ®; S; 9; hy(9;)

1 0.2369 —0.9062 0.0422 —1.0441
2 0.4786 —0.5385 0.2077 —1.2621
3 0.5689 0 0.4500 —1.8182
4 0.4786 0.5385 0.6923 —3.2500
5 0.2369 0.9062 0.8578 —7.0314

1
izg” =L, 72 / hyi(w ()L, (s)ds.
-1

Finally, numerical integration methods are generally required to compute the coeffi-
cients flﬁ}'). For example, using Gauss-Legendre-quadrature with M nodes s; and
weights w, yields®

M
B 2 L7 Y by ()L, (s
i=1

Table 10 shows for b = 0.9 and M = 5 the quadrature weights w;, the nodes s;, the

corresponding retransformed parameter values &; := y(s;), and for the matrix entry
hy the evaluation h,(9,) = -
Together with Ly(s;) = 1, L,(s;) = s;, |1 Lyl|* = 2, and ||L, ||> = %, one can therefore

compute, e.g.,>*

23 If we additionally write the transformation y between parameter and germ in terms of the Legendre
polynomials, i.e.,

b
Ly(s) + 3 L(s),
——

=19, =:

y(s) =

){le
=3

0

we equivalently arrive at

M
R &1L, 17 Z By (9oLo(s) + Ly (5)) L, (s);.

i=1
Note that this expression is identical to the more general form in (3).

24 For comparison, exact integration yields

1
s _ 1 -1 _In(1-0)
hyy = 2/_1 PRI ds = 5 = -2.56,
2

1
XU =S _6-3b 6
hy) == /4 P (ﬁ;)b ds = W In(1 —b) + 7= —2.71.
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exact PCE

Fig. 9 Example: Exact Evaluation and PCE (numerical integration)

5 5
X 1 A 3
h?zzzm&%@zﬂﬁimdhszZMﬁwWF—NQ

i=1 i=1

In this case, the computation of the Fourier coefficients fl(l';) requires M = 5 (numer-
ical) evaluations of the mapping 9 — h,;(9). After computation of the first N + 1
Fourier coefficients, one can use the truncated series expansion of (12), i.e.,

N
h9) ~ YL AL, (™ (9),
n=0

to (approximately) evaluate h,(89) for arbitrary parameter values without further
need for direct numerical evaluations.” Figure 9 shows a comparison between the
exact evaluation of 4, (9) and the truncated PCE with truncation level N = 5.

Finally, note already here that an important restriction of the methods is the
requirement that the mapping s — hij(y/(s)) is square integrable w.r.t. P, or equiva-
lently w.r.t. the weighting function w corresponding to the family of orthogonal pol-
ynomials. In the present example, this condition is fulfilled for b < 1. Yet, if b =1,
the integrals from which the coefficients are defined are not finite, e.g.,

1
jo_ 1 1 o= —
h“_z/_11—ﬂds_ 0.
2

25 Of course, an appropriate choice of the number M of quadrature nodes and, therefore, of the number
of numerical evaluations is necessary to derive the Fourier coefficients depending on the truncation level
N. More details on this topic are provided in the next section.
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Appendix 2 Orthogonal Polynomials

We give a short overview of the families of orthogonal polynomials summarized in
Table 1. More details, in particular regarding their completeness in the respective
Hilbert spaces L? of square-integrable functions, can be found in Szegé (1939).

Hermite polynomials

Hermite polynomials are defined by the recurrence relation
Hyx) =1, H(x) =2x, H, (x) = 2xP,(x) = 2nP,_;(x),n > 2

and form a complete orthogonal system on L*(R,B(R),Ww(x)dx) with weighting
function
e

w(x) 1=
More specifically,
/ H,(0)H,,()w(x)dx = 2"(n)\/76,,,
R
The probability density function of a normal distributed random variable

6 ~ N(u, 6?) with mean y and variance ¢? is given by

1 _0=w?
e 2w,

f9(19) =

2ro
Fixing the transformation between the germ and 0 in this case to

w(s) i(=u+ \/Eas
so that the germ ¢& is defined by

Ei=yTlO) =

V2o

implies that & has probability density function

w(s) = fH(w ()’ (s) = - = L ).
\/_ Vz

Since w differs from W only by a constant factor, it follows that
L*(R, B[R),dP,) = LA([R, BR), w(s)ds) = L*(R, B(R), w(s)ds),

and that Hermite polynomials also form a complete orthogonal system in
L*(R, B(R), dP,) with
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/ H,(s)H,,(s)dP:(s) = / H,(s)H,,(s)w(s)ds
R R

- % /R H, ()H, (s)#(s)ds
= 2'(n)3, .

Moreover, given the nodes s; and weights @; from the common Gauss-Hermite-
quadrature rule for weighting function W, the Gauss-quadrature rule in terms of

&
vz

weighting function w has the same nodes while the weights are scaled by w; =

Legendre polynomials

Legendre polynomials are defined by the recurrence relation
Lix)=1, Lix)=2x, (m+ 1L, x)=QCn+ DxL,(x)—nL,_;(x), n>2

and form a complete orthogonal system in L*([-1,11,B(-1,1]),dx), i.e.,

1
2
L ()L (x)dx= ——6 .
/_1 n(0Ly () 2n+1 """

The probability density function of an uniformly distributed random variable
0 ~ UI[0, 1] over [0, 1] is given by

[ 1itde[o1]
Jo(®) = Loy () := { 0,if9eR\[0,1]

Fixing the transformation between the germ and 6 in this case to

s+1
2

y(s) i=
so that the germ ¢ is defined by
=yl @) =20-1
implies that & has probability density function
W) = fiG W) = 7114
Hence, it follows that
L*(R, B(R),dP;) = L*(R, B(R), w(s)ds) = L*([—1,1], B(~1, 1]),ds),

and consequently the Legendre polynomials also form a complete orthogonal sys-
tem in L*(R, B(R), dP,) with
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/ L,(s)L,,(s)dPs(s) = / L,(s)L, (s)w(s)ds
R R

1 /!
= 3 /_ 1 L,(s)L,,(s)ds

1
=—95 .
2n41 ™"

Moreover, given the nodes s; and weights @; from the common Gauss-Legendre

quadrature rule for weighting function W, the Gauss-quadrature rule in terms of

weighting function w has the same nodes while the weights are scaled by w; = %

Jacobi polynomials

Jacobi polynomials are defined by the recurrence relation
(@) —
Jo () =1,
(@) 1
JP @) = S(a =+ @+ f+2m,

al’nJ'(l’:’f)(x) = (ay,, + a3, )P (x) - a4’nJr(la_’f)(x), n>2

where
aj, =2+ Dn+a+p+DC2n+a+p),
ay, =Qn+a+p+ D - ),
a3, =Cn+a+pRn+a+f+D2n+a+f+2),
a4, =2+ )+ P)2n+a+ f+2).

They form a complete orthogonal system on L*([—1, 1], B([—1,1]), W(x)dx) with
weighting function

Wi, f) 1= (1 = 0% +x)°.
More specifically,

1
/ T@P ()T @ () (e, f)dx

1
_ Qo+f+l I'n+a+DIn+p+1)
T 2n+a+pf+1 Tm+a+p+ Dn!

nm*

The probability density function of a Beta-distributed random variable
0 ~ Beta(a, ) with shape parameters « and f is given by 2

26 We denote by B(x, y) the beta function.
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. 1 -1 -1
SO, ) = g9 (1= 9 iy (9)
Fixing the transformation between the germ and 6 in this case to
_s+1
w(s) 1= 7

so that the germ ¢ is defined by
=y (@) =20-1
implies that £ has probability density function
wissa, f) = fy(w(s)sa, Py’ (s)
__ 1 <s+ 1 )”‘1<1 s+l >ﬂ_111[_1’1](5)

B, p\ 2 2 2
= 2 e =
" B@p) VT

21—a—ﬂ

= 5 ﬁ)W(s;ﬁ ~La— DI ().

Since w(s;a, p) differs from w(s;f — 1, — 1) only by a constant factor, it follows
that

L*(R,B(R),dP,) = L*(R, B(R), w(s;a, f)ds) ~
~ LA([—1, 10, B(~1, 1]), w(s;f — 1,a — 1)ds),

and that the Jacobi polynomials {J/~1%~D} _y “also form a complete orthogonal
system in L*(R, B(R), dP;) with

/ JP=LamD ()] =D ()dPy(s) =
R

:/Jr(lﬁ‘l"”‘U(s)Jr(f_l’“_l)(s)w(s;a, pds
R

270 g -l Dy
~ B, p) Sy T w(sf = 1 a = Dds
’ -1
L T(n+ A(n+a)

TB@pntatf-DI(mtatp—Dulm

Moreover, given the nodes s; and weights @; from the common Gauss-Jacobi-quad-
rature rule for weighting function w(., f — 1,a — 1), the Gauss-quadrature rule in

terms of weighting function w(., @, §) has the same nodes while the weights are
zl—a—ﬁ

Bap

scaled by w; =
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Generalized laguerre polynomials

Generalized Laguerre polynomials are defined by the recurrence relation
() —
Lay (x) =1,
La(]")(x) =l4+a-—x
(n+ I)Lafzr)l(x) =2n+1l+a- x)LafZ“)(x) —(n+ a)La(a_)l(x), n>2

n

They form a complete orthogonal system on L2([0, o0), B([0, 00)), W(x)dx) with
weighting function

wa) 1= x%e™.
More specifically,

© r 1
/ La® (x)La'® (x)w(x;a)dx = wam.
0 n!

The probability density function of a Gamma-distributed random variable, denoted
by 8 ~ Gamma(a, ), with shape parameter « and rate parameter f is given by

B e -
Jo®:a.p) = ps 9 e g (9).

27 Fixing the transformation between the germ and 6 in this case to

=5
y(s) =3

so that the germ & is defined by
&=y '(0)=po

implies that £ has probability density function

a a—1
wissa, B) = fr(w(s)a, Py’ (s) = F/ga) (;-;) e_séﬂ[o,oo)(s)

1 .
= mw(s;a - 1)]1[0’00)(s).

Since w(s;a, f) differs from Ww(s;a@ — 1) only by a constant factor, it follows that

L*(R,B(R),dP,) = L*(R, B(R), w(s;a, f)ds)
= ([0, 00), B([0, 00)), w(s;a — 1)ds),

27 We denote by I'(x) the gamma function.
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and that the generalized Laguerre polynomials {La{*""}, oy, also form a complete
orthogonal system in L?(R, B(R), dP;) with

/ La*D($)La'*D(5)dPy(s) =
R
= / La® ()T D (s)w(s;a, f)ds
R

= %/@ La;a—l)(s)La(a —1),,(s)W(s;a — 1)ds

_Th+a)
T D(a)n! ™

Moreover, given the nodes s; and weights @; from the common Gauss-Laguerre-

quadrature rule for weighting function Ww(., @ — 1), the Gauss-quadrature rule in

terms of weighting function w(., @, §) has the same nodes while the weights are
@

scaled by w; = T

Appendix 3 Intrusive model expansion

Stochastic Galerkin

For both methods discussed in section 2.1.2, the computation of the expansion
coefficients is detached from the underlying procedure from which the model out-
come is computed. This is different from the third method. Instead of a more general
discussion, we therefore only illustrate this method for the case where the PCE of a
model’s policy function is constructed. To simplify the notation, suppose that the
equations defining the model’s solution can be reduced to a sole Euler equation in a
single variable. Let § C R* denote the model’s state space and let g : S — R denote
the variable’s policy function. The Euler equation is typically translated into a func-
tional (integral) equation for g, say

R(g,x) =0 forallx € S.

If the functional equation can not be solved analytically, a common approach is to
construct an approximation ¢ from linear combinations of some basis functions,’®
say (Dj,j =1,...,d,1.e.,

d
2 = ) y,®,).
j=1

In order to determine the coefficients y; in the approximation, which now serves
as our model outcome of interest and should not be confused with the Fourier

28 Most commonly these are selected either as (tensor products of) Chebyshev polynomials or as piece-
wise linear or cubic polynomials.
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coefficients of the PCE, one can, for example, select d appropriate collocation points
Xy, ..., Xx; € S and solve the non-linear system of equations given by

d
R(Zyj(l)j,xl) =0foralli=1,....d
j=1

for y,, ...,y

Now consider the case where one parameter is uncertain and hence described by
the random variable 6. If the model’s (reduced) Euler equation involves 6, then so
does the functional equation for g, i.e., we now write

R(g,x;0) =0 forallx € S.

Moreover, if one employs the above-mentioned solution method, the coefficients Y
will typically also depend on 0, i.e., we have, in slight abuse of notation, ¥; = h,(6).
In particular, the mappings h; between the Y; and ¢ arise implicitly from the non-
linear system of equations

d
R<2 qu>j,xi;9> =0 foralli=1,....d. (13)
j=1

In order to avoid the necessity for repeated and potentially computationally expen-
sive solutions of this system of equations for different values of , one may want to
find for each ¥; a PCE in terms of some chosen germ &»

0=w@ =2 9,4,

n=0
Y, = 1(0) = iw@) = Y. 9,u4,().
n=0

The PCE of the model’s (approximated) policy function with respect to the germ &
is then given by

d o
2e) = Zycb(x =ZZ 00 (E)P,(5).

Moreover, the Fourier coefficients yjn in the PCE can be derived by a Galerkin
method if we substitute the Y; in their implicit definition in (13) with their PCE and
impute the corresponding conditions

2 Note that in this case we have d model outcomes of interest, namely the coefficients Y, = hi(0)in §.

@ Springer



Polynomial Chaos Expansion: Efficient Evaluation and... 1131

o

y]nqn(§)¢]5 X,QW(§)> = 0 in Lza Vl = 1’ L] d
=0

d
R(Z
j=1l n
d o
©<R<2 > Ajnqn(.f)@j,xi;w(:)) qm(§)> =0Vi=1,....d, Vm € N,
Jj=1 n=0

L2

Hence, we can solve for the d(N + 1) unknown coefficients jzjn in the truncated PCE

Y, ~ ZLV:() $inq,(&) from the system of equations

d N
0 <R<Z 9,-,,qn(<:>d>,-,x,»;w(§)>,qm(6>>
=0 12

j=1n
d N
= / R<Z Z&jnqn<<f>c1>j,x,-;w@))qm(é)d&(f:)
R j=1 n=0
fori=1,...,d and m=0,...,N. The integral is computed numerically, either

from Monte-Carlo draws or from an appropriate Gauss quadrature. Moreover,
w (&) can be substituted by its truncated series expansion as previously described in
subsection 2.1.1.

Appendix 4 Smolyak-Gauss-Quadrature

Suppose that for every i =1, ...,k the distribution P, of & possesses a probability
density function w;, so that w := Hi;l w; is the probability density of P,. Then (6b)
becomes

N )
ya = ”qa”LZ X

14
/.../h(l//(sl,...,sk))qlal(sl)...qkak(sk)wl(sl)...wk(sk)dsl...dsk. (14)
R R

Further, suppose that one-dimensional Gauss-quadrature rules corresponding to
weighting functions w; and orthogonal polynomials {g,,},cy, are available. For
i=1,...,k let Q;(M,) denote this one-dimensional Gauss-quadrature rule with M,

/) . i) .
nodes {ng[ }i=1....m, and weights {ng, Vet 1€

Ml
0:M)g := Z ng)wig(sl({j)ui) forg e L?.
=

Then choose for each i=1,...,k an increasing sequence of natural numbers
{M;}jen €N, M;,, > M; and define the difference operator by

Ay 1=0,M;) and Ay 1= QM) — O;(My_y), j = 2.
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The Smolyak-Gauss-quadrature rule of order / € N and with growth rules given by
{M};} e is defined by

k
Q[ = Z ®Aivi'
veNt =l
v| <k+1

or equivalently taking care of duplicate terms in the difference operators
=1\ &
— 1)kl - .

v e N
max{k, [+ 1} < |v|<k+1

Applying the Smolyak-Gauss-quadrature rule to (14) in particular yields the
approximation

& -1

N _ k-1

5= (T, ) o e ()
i=1 !

ve N
max{k,[+ 1} <|v|<k+1

M, My,
U1 ()
2 2O, P,
v Vi
Ji=1 J=1

U1 Ui)
X h(l//(sL‘MMl sk;lw ))
Gv) Ui)
X q1q, <s1"MH1 ) - <Sk,ka )

This procedure requires to evaluate the model outcome of interest

h(”’( (lllM] . i’;} ))at all sparse-grid points.

Appendix 5 Monomial rules
Stroud (1971) introduces sparse numerical integration with monomial rules and pre-

sents various rules to integrate in different spaces. In this section, we present some
numerical results for the calculation of the PCE coefficients.

Rosenbrock function

To show the general functioning of the monomial quadrature rules, we first replicate
the exercise of Bhusal and Subbarao (2020), i.e., approximate the Rosenbrock function
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Table 11 Rosenbrock PCE approximation

5-d Rosenbrock PCEapproximation

Trunc. 1vl 4 5 6

log,, L*Brror  Ngig log,y L*Error  Ngiq log,, L*Brror  Ngig
Tensor Grid —10.98 3,125 —10.87 7,776 —11.15 16,807
Sparse Grid —9.74 781 —9.70 781 —9.37 2,203
Least Squares —10.91 252 —10.81 504 —10.58 924
CUT-6 1.90 155 2.49 155 3.20 155
CUT-8 —10.44 425 —10.45 425 1.45 425

6-d Rosenbrock PCE approximation

Trunc. 1vl 4 5 6

log, L? Error Ngria log,, L? Error Ngria log, L? Error Ngria

Tensor Grid —10.87 15,625 —10.72 46,656 —10.84 117,649
Sparse Grid —9.31 1,433 —9.28 1,433 —8.71 4,541
Least Squares —10.94 420 —10.77 924 —10.60 1,848
CUT-6 2.07 301 2.61 301 3.35 301
CUT-8 —6.93 973 —6.89 973 1.79 937

Tensor grid 1vl. = Trunc. Ivl.=4 +1, Smolyak, min N,,,, given log;, L? Error<-5, Least Squares, twice
PCE coefficients

d-1

F@) =Y 100(x0; —2)" + (1 = x))?
i=1

with PCE. We consider the cases where x; ~ U(=2,2) and d € {5,6}. As Bhusal
and Subbarao (2020), we consider the CUT-8 and CUT-6 rules from Adurthi et al.
(2018) and full tensor grid, sparse grid, and least squares from the main body of
the paper. We consider a truncation at levels 4, 5, and 6. Lastly, note that for those
dimensions (d € {35, 6}), we could not find any monomial rules presented by Stroud
(1971) higher degree 5 that have solely non-negative weights and are in the vari-
ables space, e.g., the first weight of the fifth-degree rule presented in Judd (1998) (
Stroud (1971) C,5 — 5) becomes —60.44 for d = 5. Further, the degree 5 rules with
solely positive weights approximate the Rosenbrock function poorly. Lastly, the
CUT-8 rule nodes leave the boundaries of space of x; for d > 6 and has already one
negative weight for d = 6.

Table 11 presents the results. The CUT-8 rule performs well for d = 5. How-
ever, the CUT-8 rule is outperformed by Least Squares. The performance of the
CUT-8 becomes worse with d = 6, where one weight becomes negative (= —.5),
yet the approximation seems still good.
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Fig. 10 L? Convergence of PCE with approximated coefficients and computation time on an Intel®
Core™j7-7700 CPU @ 3.60GHz

Now we replicate the integration analysis of the main paper (Figure 4 and 5 there)
for the CUT rules. Given the results of the previous section on monomial rules, we
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Fig. 11 L2 Convergence of PCE with approximated coefficients and computation time on an Intel®
Core™i7-7700 CPU @ 3.60GHz

reduce the space to 5 dimensions (f is now fixed) and assume
%% — y(s) ~ B(1,1) = U(0, 1) for all 6.
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Figures 10 and 11 illustrate the analyses. It turns out that the monomial rule CUT8
outperforms all other sparse methods for truncation at N = 5 and all methods in time at
this truncation level. However, a higher truncation leads to more imprecise approxima-
tions. The problem is the lack of high-degree, high-dimensional monomial rules for dif-
ferent distributions. However, suitable cases for existing monomial rules seem to work
well, which motivates further research to find high-degree, high-dimensional monomial
rules for mixed distributions.

Appendix 6 Further applications of Generalized Polynomial Chaos
Expansions

We present here additional applications of PCE. First, we show how to use PCE as
surrogates for the gradients. Further, statistical properties of the model outcome, as
induced by the predefined distribution of the uncertain input parameters, can be derived
directly from the PCE. Additionally, in somewhat other contexts, PCE can be used to
discretize the space of cross-sectional distributions.

Surrogate for Gradients

The truncated PCE in (9) may also be used to approximate the derivatives of the
mapping /& between parameter values and model outcomes. More specifically, the PCE
provides the approximation

%(S)N 3 yaZ q"(w-‘w)

aEN Ja| <N J=1

This approximation can be useful if such derivatives must be evaluated at a poten-
tially large number of points. One example may be the method proposed by Iskrev
(2010) for conducting local identification analysis which requires differentiation of
the linearized policy function concerning the parameters.

Evaluation of Statistical Properties

Convergence in L*(Q, A, P) of the series expansion in (5b) implies that the distribu-
tion of the model outcome Y can be equivalently characterized by its polynomial
expansion. In particular, the mean and variance of Y follow directly from the fact
that convergence in L? also implies convergence of the mean and variance so that
orthogonality of the polynomials (and gy = 1for 0 := (0, ...,0) € N’é) yields

E[Y]= ) 5,E(4,(O] = Y 5.E(4, (O] = Y, 9uldud0)iz = Doy

k k k
aENy aeNg aeNy

and
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2 2
VarlY1 = E|[ Y 9.4, 5| [=F|| D $.0.0] |=
aENé aENS\{O]
= Y 9w = Y, Slal
a.fENK\ {0} aeNk\ (0}

Moreover, other statistical properties can be computed by Monte Carlo methods.
Large samples of Y can be efficiently constructed by drawing from the germ’s dis-
tribution and inserting the sample into the expansion of Y. Compared to traditional
methods, repeated and costly model evaluations can thus be avoided.

Sobol’s indices for global variance-based sensitivity analysis The decomposition
of the model’s outcome variance from above also lays the foundation for the sensi-
tivity analyses of Harenberg et al. (2019). More specifically, consider a truncated
PCE St]f]’t(Y) or Sy*(Y) of the model outcome Y as in (7b) or (8b). By reordering, one
can then equivalently write the truncated PCE as

Sy =y > 9444(8),

Ic{l,...k} o c NS, |C(| <N
o #F0Viel
a;=0Vigl
ie., for any collection {&;},c; where I C {1,...,k} we now explicitly group the

polynomials ¢,(&) with non-zero degree in each &;,i € I but zero-degree in all
&,i ¢ I. Orthogonality of the polynomials then implies for any nonempty collection
Ic{l,...,k},I # @ that

V; := Var| D $ed,(8)] = > 2llaallz,
aENé,|a|§N aeN’(‘),|a|$N
o #0Viel @ #0Viel
o =0Vigl a=0Vigl
and
V 1= Var[S9(Y)] = > v,
Ic{l,... k),
I#0

The Sobol indices then describe the shares of the variance that are explained by a
collection {&;},¢; of germs for I C {1,... .k}, I # @

Vi
S, = —.
1 1%

The first order Sobol indices S, for single germs ¢&; are interpreted as the fraction of
the total variance which would disappear when &; would be perfectly known. On the
other hand, the total contribution indices are defined by
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1c{l,... k),
o ) iel Vi

! vV

and describe the germ’s total contribution to the outcome’s variance.

Relevance for (Bayesian) estimation As Harenberg et al. (2019) note, a sufficient
size of the total Sobol’ index of the parameter J; is a necessary condition for the
identifiability of 9; using Y. In terms of Bayesian estimation, PCE also facilitates the
comparison of the model outcome’s prior and posterior distribution. Once we have
obtained the parameters’ posterior distribution, PCE enables the representation of
the corresponding posterior distribution of the model’s outcome. We can then com-
pare the PCE implied variances and the contribution of an arbitrary set of param-
eters, which delivers an indicator for the reduced uncertainty of the model outcome
Y subject to this set of parameters.

Discretizing space of cross-sectional distributions

Here, we briefly present the possibility of using PCE to discretize the state space in mod-
els where a cross-sectional distribution over heterogeneous agents becomes a state vari-
able for individual decision rules as suggested by Prohl (2017). Her examples are mod-
els that combine idiosyncratic income risk with aggregate productivity risk as Aiyagari
(1994). In such models, households need to know the decision rules of other households
to form rational expectations about future aggregates and prices for their own decisions.
Yet, since the decisions of other households depend on their respective individual states,
households need to factor in the whole cross-sectional distribution over individual states
for their own decision. In consequence, the cross-sectional distribution of individual
states becomes an argument for the individuals® policy function in such models.

The literature offers different approaches in order to discretize the state space.
Krusell and Smith (1998) suggest a bounded rationality approach and base the
individuals’ policy function only on partial information from the cross-sectional
distribution, e.g., a finite number of moments, and a parametric law of motion for
these measures. The method of Reiter (2009) discretizes the state space by piece-
wise uniform distributions over a finite number of histogram bins. Differently, Prohl
(2017) replaces the cross-sectional distribution as an argument of the decision rule
by the coefficients of its (truncated) PCE given a choice of germs. More precisely,
if £ denotes the germ with cumulative distribution function F and , is the cross-
sectional distribution over individual states in period ¢, then the random variable

0, = y;loF§o§

is distributed according to y,.>” One can then compute the coefficients 9,1’, of its PCE

30 Note that 6, does not denote a model parameter in this context as in the rest of the present paper.
Instead, 0, is a random variable that is distributed according to the cross-sectional distribution g, and that
is a function of the germ. Hence, 6, can be interpreted as the random variable constructed from the basis
& that describes a random draw from the mass of heterogenous agents in period .

@ Springer



Polynomial Chaos Expansion: Efficient Evaluation and... 1139

0, = (Fa&) =Y 9,4,
n=0
analog to the methods described in section 2 from
1§n,[ = ”qn“222<”l_1oFf7 qn>L2 = ”anZZ2 /(/’lt_loFg)q”dpg'
R

Instead of the cross-sectional distribution y,, one can then use a finite number of
the PCE coefficients 1@,” as arguments of the individual policy function. On the one
hand, the PCE coefficients 3,” then allow to recover the cross-sectional distribution
i, and aggregate variables in period ¢. On the other hand, the individual decision
rules imply the law of motion of the cross-sectional distribution, y, — u,,, and the
PCE coefficients @n’t +1 of ;| can be derived as above. Hence, the method of Prohl
(2017) does not need a parametric assumption about the law of motion for the cross-
sectional distribution. Prohl (2017) shows that this approach provides more precise
solutions and thereby, brings new economic characteristics of those well-known
models.

Appendix 7 Supplementary Results
Figure 12 contain the supplement MLE results for a sample size of 7' = 500 and
a particle filter with 10000 particles, respectively. Analogously, to Tables 7 and 8

the Tables 12, 13 and 14 in this appendix contains the full BE results based on the
global projection solution.
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maxima at the parameter bounds. LinRep: Repeated likelihood evaluation using the Kalman Filter from
the linear model solution. N equals the truncation level, the quadrature level equals N+1. Computation
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Table 12 Monte Carlo results - Bayesian estimation (global) I

Benchmark (repeated solution)

Time: Total average
18:17:37

Linear policy function

Time: Total average
00:05:45
Mean: Quantile:
Jj x: 5% 10% 25% 50% 75% 90% 95%
p €;(x) 1.70 2.30 2.01 1.75 1.62 1.70 1.92 2.17
€;(x) os 0.14 0.08 0.09 0.15 0.10 0.15 0.09 0.10
€;(x) 5 1.46 1.77 1.69 1.66 1.40 1.46 1.55 1.84
€;(x) o5 3.63 5.87 4.98 4.06 3.44 4.12 5.03 5.83
) &(x) 3.68 3.57 3.66 3.80 3.87 3.86 3.78 3.71
€;(x) os 0.19 0.13 0.07 0.32 0.25 0.19 0.28 0.29
€x) 5 3.64 2.96 3.21 3.62 3.77 353 3.25 3.29
€(x) o5 9.07 8.81 8.80 9.14 9.61 8.82 8.56 8.35
c () 2.56 3.51 3.35 3.08 2.70 2.21 1.80 1.63
€;(x) os 0.72 2.03 1.90 1.58 0.87 0.37 0.24 0.21
€(x) 5 2.49 3.47 3.31 3.05 2.69 2.12 1.67 1.57
€/(x) g5 4.57 5.18 5.05 4.88 4.66 4.40 4.12 3.75

Observable: Output ¥,. &: mean error, €; os: 5 percentile of error, €; 5: median of error, €; os: 95 percen-
tile of error. Errors are expressed as deviations from the benchmark method of repeatedly solving the
(global) policy function in percent of the range of the parameter’s distribution. Time: hh:mm:ss on one
core of an AMD® EPYC™7313 (Milan) CPU @ 3.00GHz
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Table 13 Monte Carlo results - Bayesian estimation (global) II
PCE Posterior-Kernel

Time: Total average PCE Estimation average
00:32:27 00:32:24 00:00.03
Mean: Quan-
tile:
j X: 5% 10% 25% 50% 75% 90% 95%
p €;(x) 1.63 2.04 1.98 1.86 1.75 1.68 1.64 1.71
€,(X) o5 0.09 0.09 0.06 0.19 0.06 0.06 0.15 0.12
€;(x) 5 0.80 0.90 1.01 0.81 0.99 0.90 0.89 0.86
€;(x) o5 3.08 431 4.10 3.95 3.51 3.38 3.53 3.64
p €,(x) 2.56 2.85 3.07 3.03 3.09 2.71 2.70 2.58
€;(x) os 0.11 0.28 0.22 0.25 0.16 0.10 0.14 0.09
€(x) 5 1.75 1.96 241 1.94 2.31 1.70 1.99 1.88
€(x) o5 7.17 6.79 7.90 8.55 8.46 7.65 7.44 6.75
c €,(x) 0.70 0.77 0.76 0.75 0.77 0.73 0.75 0.78
€;(X) o5 0.02 0.05 0.08 0.06 0.04 0.03 0.07 0.06
€;(x) 5 0.51 0.56 0.50 0.54 0.57 0.49 0.51 0.49
€;(x) o5 2.10 1.82 1.98 2.07 2.21 2.30 2.64 2.38

Observable: Output Y,. €;: mean error, €; 5: 5 percentile of error, €; 5: median of error, €; o5: 95 percen-
tile of error. Errors are expressed as deviations from the benchmark method of repeatedly solving the
(global) policy function in percent of the range of the parameter’s distribution. Time: hh:mm:ss on one
core of an AMD® EPYC™7313 (Milan) CPU @ 3.00GHz. The truncation degree and quadratur level of
the expanded Qol are 14 and 13, respectively
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Table 14 Monte Carlo results - Bayesian estimation (global) III

PCE policy function(global)

Time: Total average PCE Estimation average
17:45:11 00:00.27 17:44:44
Mean: Quantile:
J X: 5% 10% 25% 50% 75% 90% 95%
p &) 0.09 0.25 0.15 0.09 0.06 0.07 0.13 0.21
€;(X) s 0.00 0.02 0.02 0.01 0.00 0.00 0.01 0.01
€(x) 5 0.05 0.18 0.12 0.07 0.05 0.06 0.11 0.16
€;(x) o5 0.26 0.71 0.35 0.22 0.14 0.20 0.32 0.67
p €;(x) 0.20 0.32 0.28 0.24 0.23 0.27 0.31 0.43
€;(x) os 0.01 0.03 0.02 0.01 0.01 0.04 0.00 0.03
€(x) s 0.17 0.24 0.23 0.22 0.18 0.23 0.28 0.37
€(x) o5 0.48 0.95 0.64 0.57 0.58 0.66 0.78 1.08
o () 0.05 0.11 0.09 0.08 0.07 0.08 0.11 0.15
€;(x) os 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03
€(x) 5 0.04 0.10 0.07 0.07 0.06 0.06 0.10 0.13
€(x) o5 0.14 0.25 0.21 0.16 0.18 0.20 0.27 0.35

Observable: Output ¥,. &: mean error, €; os: 5 percentile of error, €; 5: median of error, €; os: 95 percen-
tile of error. Errors are expressed as deviations from the benchmark method of repeatedly solving the
(global) policy function in percent of the range of the parameter’s distribution. Time: hh:mm:ss on one
core of an AMD® EPYC™7313 (Milan) CPU @ 3.00GHz. The truncation degree and quadratur level of
the expanded Qol are 14 and 13, respectively
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