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Abstract
We apply Polynomial chaos expansion (PCE) to surrogate time-consuming repeated 
model evaluations for different parameter values. PCE represents a random variable, 
the quantity of interest (QoI), as a series expansion of other random variables, the 
inputs. Repeated evaluations become inexpensive by treating uncertain parameters 
of a model as inputs, and an element of a model’s solution, e.g., the policy function, 
second moments, or the posterior kernel as the QoI. We introduce the theory of PCE 
and apply it to the standard real business cycle model as an illustrative example. 
We analyze the convergence behavior of PCE for different QoIs and its efficiency 
when used for estimation. The results are promising both for local and global solu-
tion methods.
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1  Introduction

At an abstract level, computational economic models are mappings from inputs 
to outputs of the model. The former are the model’s parameters, the latter are 
the quantities of interest (QoIs) and depend on the research question. Typical 
QoIs are the economic agents’ policy functions, the second moments of the mod-
el’s variables, or the likelihood implied by a given set of observed data. In all 
cases, the model’s parameters are typically unknown, and plausible values must 
be derived from observed data or treated as random variables from the Bayesian 
perspective. Either way, the uncertainty of parameters translates into uncertainty 
regarding the model’s outcomes. Estimation methods, such as minimum distance 
estimators or likelihood-based methods as well as a careful study of the sensitiv-
ity of the model’s outcomes for a set of different parameter values require numer-
ous repeated solutions of the model. Depending on the complexity of the model, 
estimation and sensitivity analyses can become a time-consuming computational 
task or even excessive. We show that PCE offers an elegant way to deal with this 
problem and provide MATLAB® code to ease its implementation.

In a nutshell, PCE enables the representation of a random variable—the QoI—
as a series expansion of other random variables—the inputs. Our approach is 
to use PCE as a surrogate of the distribution of the model outcome given some 
parameter uncertainty. Therefore, we depict different model outcomes as QoIs 
(e.g., the policy function or the posteriors kernel) in terms of a series expansion 
of the model’s uncertain parameters. Given the respective formulae, the required 
repeated evaluations are time-efficient compared to repeated solutions of the 
entire model. Without limiting the applicability for other purposes, we apply solu-
tion and estimation methods for dynamic stochastic general equilibrium (DSGE) 
models as we are familiar with the required techniques.

More to the point, after introducing the theory of PCE and the construction 
of a truncated PCE, we apply the method to the benchmark real business cycle 
(RBC) model, since this model is suited as an illustrative example due to its well-
known and simplistic nature. We analyze the convergence behavior of the PCE 
of various model outcomes including the model’s linear solution, a projection 
solution, the variables’ second moments, and the impulse response function. Fur-
ther, we conduct Monte Carlo experiments. We estimate the parameters from a 
linearized and non-linearized model using various estimation techniques, namely 
generalized method of moments (GMM), simulated method of moments (SMM), 
maximum-likelihood estimation (MLE), and Bayesian estimation (BE).

We document linear convergence behavior. Considering three unknown param-
eters, we find remarkably well approximations with only a few model evalua-
tions. Suppose the model outcome, e.g., the linearized policy function, has to be 
evaluated for a sample of 100,000 parameter values. In that case, the PCE with 
truncation degree 7 provides an approximation with L2 error of 10−3 while the 
computational time is lower by the factor 30. We extend the analysis to a higher-
dimensional problem where all six model parameters are assumed unknown. 
As our construction of the PCE applies a tensor basis quadrature rule, the 
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construction suffers from the course of dimensionality. Thus, we compare full-
tensor-grid quadrature rules with two remedies: sparse-grid quadrature rules and 
least squares. A comparison of time versus accuracy shows that these long-estab-
lished sparse methods milden the course of dimensionality. Beyond our imple-
mentations, we highlight that the repeated model evaluations required for PCE 
are parallelizable because the parameter values are predetermined, distinct from 
the recursive nature of most applications. Additionally, we discuss the expanding 
literature on sparse PCE.

Our analysis continues with Monte Carlo experiments as in Ruge-Murcia (2007), 
where we gauge the quality of the model’s PCE when applied to estimation. Here, 
we use the linearized solution of the real business cycle (RBC) model for the data-
generating process and the econometric model since this procedure allows us to cal-
culate the analytic second moments and likelihood functions. Consequently, the dif-
ferences in the estimates towards the benchmark procedure of repeated solutions are 
solely based on the PCE approximation. The PCE based method is remarkably effi-
cient and accurate. Estimates deviate only negligibly from the benchmark procedure 
and most notable, the computation time can be reduced by 99 percent for BE and by 
50 percent for GMM, SMM, and MLE.

In the last step of our analysis, we stress PCE out more by gauging the quality 
of the non-linear model’s PCE for likelihood-based estimations. For this purpose, 
we replicate the findings of Fernández-Villaverde and Rubio-Ramírez (2005), who 
have shown that non-linearity is already relevant for the estimates of our benchmark 
RBC model. We show that the use of PCE for the estimation of the non-linear model 
enhances the accuracy of the estimates considerably in comparison to repeated, 
linearly-solved model estimation and reduces time up to 97 percent compared to 
repeated globally-solved model estimation. Also worth noting, with PCE as a sur-
rogate for the likelihood, the likelihood from a particle filter becomes continuously 
differentiable—allowing a gradient-based optimization.

In its general form, the underlying theory of the method rests on the theory intro-
duced by Wiener (1938) and the Cameron and Martin (1947) theorem for a family 
of stochastically independent and normally distributed random variables and Her-
mite polynomials. The property does not only hold for Hermite polynomials and 
probability measures of normally distributed random variables but also extends to 
other commonly used distributions and the corresponding orthogonal polynomials 
from the Askey scheme. This extension, initially proposed by Xiu and Karniadakis 
(2002), is also known as generalized polynomial chaos expansion. Ghanem and Spa-
nos (1991) provide the first applications of the theory to the problem of uncertain 
model parametrization.

There are two pioneer applications in economics. Pröhl (2017) uses PCE to dis-
cretize the state-space of the benchmark heterogeneous agent model and Harenberg 
et  al. (2019) use the polynomial coefficients for global sensitivity analysis of the 
RBC model. Gersbach et  al. (2021) follow Harenberg et  al. (2019) and use PCE 
to identify decisive parameters. In finance PCE is e.g., applied by Albeverio et al. 
(2019); Dias and Peters (2021); Marconi (2016). The application of PCE in Bayesian 
inference was first analyzed by Marzouk et al. (2007) in engineering but to the best 
of our knowledge, the method has not yet been studied to estimate computational 
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economic models. Scheidegger and Bilionis (2019) incorporate parameter uncer-
tainty in their solution of computational economic models by rewriting the param-
eters as states. This way, the model is indirectly solved in the parameter domain.

The remainder of the paper is structured as follows. First, in section 2 we review 
the basic theory for the existence of polynomial chaos expansions, present common 
practical methods to compute the PCE coefficients, and discuss the application for 
a pointwise approximation of the mapping from the parameters to the model out-
come, i.e., the construction of a surrogate. In section 3, we apply our approach to 
the benchmark RBC model and discuss our results and potential drawbacks. Sec-
tion 4 concludes. More detailed derivations, applications, etc. can be found in the 
appendix.

2 � Generalized Polynomial Chaos Expansions

We begin by reviewing the basic idea and theory behind the concept of PCE. While 
PCE proved useful for various applications, we focus on their implementation to 
efficiently evaluate computationally expensive model outcomes when one or more 
of the model’s inputs, i.e., model parameters, are uncertain. Further, we give an ana-
lytically tractable example to outline the concept of PCE in Appendix 1.

Notation and Preliminaries We consider a computational economic model where 
𝜗i ∈ Θi,Θi ⊂ ℝ, i = 1,… , k, denotes an arbitrary selection of k ∈ ℕ parameters of 
the model. Moreover, we are interested in some model outcome(s) denoted by a 
vector y ∈ ℝ

m,m ∈ ℕ . The relation between the input parameters �i and the model 
outcome(s) y is determined deterministically, i.e., repeated computation of y with 
the same inputs �i to the model produces the same result.1 This mapping between 
the �i and y is described by

where 

.

 Without loss of generality, we consider the case m = 1 in the following and note 
that for m ≥ 2 all derivations can be applied separately to each component yi of y, 
i = 1,… ,m , in the same way.

Now further consider the case where the values �i of the model parameters are sub-
ject to some uncertainty to the researcher. In order to account for this uncertainty, we 
switch from the deterministic representation of the parameters to the perspective of 

y = h(�1,… , �k)

1  E.g., if y denotes some second moments of the model, these are derived either from available analytic 
formulae from the (approximated) model solution or are computed from simulations with the same sam-
ple of shocks.
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describing them by appropriately distributed random variables. Therefore, let (Ω,A,P) 
denote a sufficiently rich probability space so that any uncertain model input param-
eter can be described by some real-valued random variable �i ∶ Ω → ℝ, i = 1,… , k, 
where the real line is equipped with the Borel sigma-algebra B(ℝ) . Moreover, let 
�1,… , �k denote a family of stochastically independent random variables chosen by 
the researcher as a basis of the desired polynomial expansions, the so-called germs. In 
applications, as will be described later, the germs are most commonly either set equal 
to the uncertain model parameters �i or to some natural and convenient transformation 
of them. We assume: 

1.	 The germs �1,… , �k cover the same stochastic information as the uncertain model 
parameters, i.e., 

 where �(⋅) denotes the sigma-algebra generated by the random variables.
2.	 All moments of each �i exist, i.e., �[|𝜉i|n] < ∞ for all i = 1,… , k and n ∈ ℕ0.

Moreover, we write � ∶= (�1,… , �k) ∶ Ω → ℝ
k and � ∶= (�1,… , �k) ∶ Ω → ℝ

k for 
the k-dimensional random vector of the uncertain model parameters and for the ran-
dom vector of the germs, respectively, where ℝk is also equipped with its Borel sigma-
algebra B(ℝk) . For each i = 1,… , k, let P�i

∶= P◦�−1
i

 denote the probability measure 
of �i on (ℝ,B(ℝ)) and analogously let P� ∶= P◦�−1 =

⨂k

i=1
P�i

 denote the product 
probability measure of � on (ℝk,B(ℝk)) . The Hilbert space (of equivalence classes) of 
square-integrable real-valued functions on (ℝ,B(ℝ),P�i

) is denoted by

where the inner product is defined by

We use the notation ‖ ⋅ ‖L2
i
 for the induced norm on L2

i
 . We introduce the analogous 

notation, i.e., L2 ∶= L2(ℝk,B(ℝk), dP�) , for the space of square integrable real val-
ued functions on (ℝk,B(ℝk),P�) and write ⟨⋅, ⋅⟩L2 and ‖ ⋅ ‖L2 for the inner product 
and for the induced norm on L2 . If the distributions of the random variables �i pos-
sess probability density functions wi ∶ ℝ → ℝ+ , the inner products become

and

�(�1,… , �k) = �(�1,… , �k),

L2
i
∶= L2(ℝ,B(ℝ), dP𝜉i

)

∶=

{
f ∶ ℝ → ℝ || f is measurable and ∫

ℝ

f 2dP𝜉i
< ∞

}
,

⟨f , g⟩L2
i
∶= ∫

ℝ

fgdP�i
= 𝔼[f (�i)g(�i)] for f , g ∈ L2(ℝ,B(ℝ),P�i

).

⟨f , g⟩L2
i
= ∫

ℝ

f (s)g(s)wi(s)ds,



1088	 D. Fehrle et al.

so that L2
i
= L2(ℝ,B(ℝ),wi(s)ds) and L2 = L2(ℝk,B(ℝk),w(s)ds) where w is the 

joint probability function w(s) ∶=
∏k

i=1
wi(si) . Note that Assumption 2 is equivalent 

to the fact that for each i = 1,… , k all univariate polynomials are included in L2
i
 or, 

again equivalently, that all k-variate polynomials are included in L2.
Since, by Assumption 1, each �i is �(�)-measurable, there exist measurable 

�i ∶ ℝ
k
→ ℝ which satisfy

We write � ∶= (�1,… ,�k) ∶ ℝ
k
→ ℝ

k so that � = �◦� . Moreover, note that 
�(�) = �(�) also implies the existence of a measurable, inverse mapping �−1 with 
�◦�−1 = �−1

◦� = id . A further assumption we make is that 

3.	 the second moment of each model input parameter exists, i.e., �[𝜃2
i
] < ∞ for 

i = 1,… , k . Equivalently, each �i is square integrable on (ℝk,B(ℝk),P�) , i.e., 
�i ∈ L2 for all i = 1,… , k.2

Moreover, as the model input parameters �i are now treated as random, the model 
outcome of interest is random. We therefore adapt its notation to Y ∶ Ω → ℝ . Yet, 
given any elementary event � ∈ Ω and corresponding realization �i(�) , the mapping 
between the model parameters and the model outcome is still determined determin-
istically by Y(�) = h(�1(�),… , �k(�)) , i.e.,

The final assumption is that Y is a well-defined random variable with finite second 
moments, i.e., 

4.	 h is measurable and h◦� is square integrable on (ℝk,B(ℝk),P�) , i.e., h◦� ∈ L2.

2.1 � Single Uncertain Parameter and Germ (k=1)

We begin our description with the simplest case with only one single uncertain input 
parameter � and one single germ � , i.e., k = 1 . In general, any arbitrary choice of 
the germ that satisfies Assumption 2 implies that all polynomials are included in 
L2 , and therefore allows the construction of an orthogonal system of polynomials 
{qn}n∈ℕ0

⊂ L2 , i.e., a family of polynomials where qn is of (exact) degree n and

⟨f , g⟩L2 = ∫
ℝ

…∫
ℝ

f (s1,… , sk)g(s1,… , sk)w1(s1) ⋅… ⋅ wk(sk)ds1 … dsk,

�i = �i◦�.

Y = h◦� = h◦�◦�, for some h ∶ ℝ
k
→ ℝ.

2  Note that the third assumption is already implied by the second if the germs are set equal to (some 
polynomial transformation of) the model input parameters.



1089Polynomial Chaos Expansion: Efficient Evaluation and…

where �m,n denotes the Knonecker delta. This can generally be achieved by applying, 
e.g., the Gram-Schmidt process to the sequence of monomials.

In practice, the distribution of the uncertain input parameter is given and one is 
free to set the germ. It is then convenient to define the germ in such a way that i) an 
easy representation � = �(�) of the parameter in terms of the germ arises and ii) 
the family of orthogonal polynomials in L2 corresponds to some well-known class 
of polynomials. Table  1 summarizes the natural choice of the germ and the cor-
responding family of orthogonal polynomials when the input parameter is normal, 
uniform, Beta, or (inverse) Gamma distributed. More details for these classes are 
given in Appendix 2. Additionally, Xiu and Karniadakis (2002) provide a similar 
overview for discrete distributions.

In all of the cases presented in Table  1 the respective families of orthogo-
nal polynomials {qn}n∈ℕ0

 form a complete orthogonal system, i.e., lie densely in 
L2 = L2(ℝ,B(ℝ),P�) = L2(ℝ,B(ℝ),w(s)ds) where w is the corresponding prob-
ability density of �.3 More generally, it follows from Riesz (1924) that {qn}n∈ℕ0

 is a 
complete orthogonal system in L2 if and only if there exists no other measure � on 
(ℝ,B(ℝ)) which generates the same moments as P� , i.e., if and only if there is no 
other measure � such that

If completeness of {qn}n∈ℕ0
 in L2 can be established, then Assumptions 3 and 4 guar-

antee the existence of Fourier series expansions of � and h◦� in the orthogonal 
polynomials, i.e., there are coefficients {𝜗̂n}n∈ℕ0

 and {ŷn}n∈ℕ0
, 𝜗̂n, ŷn ∈ ℝ , so that

Note that identity and convergence is understood in L2 which also implies pointwise 
convergence i.e., for a subsequence but not pointwise convergence.4 Moreover, since 
P� = P�◦�

−1 , also h =
∑∞

n=0
ŷn(qn◦𝜓

−1) in L2(ℝ,B(ℝ),P�).
Hence, the uncertain model input parameter � = �◦� as well as our model out-

come Y = h◦�◦� can both be expanded exactly by a polynomial series in the germ, 
i.e., by 

⟨qn, qm⟩L2 = ‖qn‖2L2�m,n for all m, n ∈ ℕ0,

∫
ℝ

snd� = ∫ sndP� = 𝔼[�n] for all n ∈ ℕ0.

𝜓 =

∞∑
n=0

𝜗̂nqn in L2 = L2(ℝ,B(ℝ),P𝜉),

h◦𝜓 =

∞∑
n=0

ŷnqn in L
2 = L2(ℝ,B(ℝ),P𝜉).

3  See Szegő (1939) for proofs of completeness.
4  For conditions for pointwise convergence see e.g., Jackson (1941).
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 These series expansions are called the polynomial chaos expansions (PCE) of � and 
Y with respect to the germ � . Moreover, orthogonality of {qn}n∈ℕ0

 implies that the 
Fourier coefficients are determined by 

 Now in practice, equations (1a, b) justify approximations of the uncertain model 
input parameter � as well as of the model outcome Y by their truncated PCE, i.e., by

The approximations then converge to the true random variables, SN(�) → � and 
SN(Y) → Y  in L2 as N → ∞ . Yet, equations (2a, b) from which the coefficients 
are defined can in general not be evaluated analytically. This involves a second 

(1a)𝜃 = 𝜓(𝜉) =

∞∑
n=0

𝜗̂nqn(𝜉) in L2(Ω,A,P),

(1b)Y = h(𝜃) = h(𝜓(𝜉)) =

∞∑
n=0

ŷnqn(𝜉) in L2(Ω,A,P).

(2a)𝜗̂n = ‖qn‖−2L2 ⟨𝜓 , qn⟩L2 = ‖qn‖−2L2 ∫
ℝ

𝜓qndP𝜉 ,

(2b)ŷn = ‖qn‖−2L2 ⟨h◦𝜓 , qn⟩L2 = ‖qn‖−2L2 ∫
ℝ

(h◦𝜓)qndP� .

SN(𝜃) = SN(𝜓◦𝜉) ∶=

N∑
n=0

𝜗̂nqn(𝜉),

SN(Y) = SN(h◦𝜓◦𝜉) ∶=

N∑
n=0

ŷnqn(𝜉).

Table 1   Overview: common distributions and corresponding germs and orthogonal polynomials on L2

a We use the scale-rate notation

Distribution of � Germ Orthogonal polynomials

Family Parametric � � qn

Normal � ∼ N(�, �2) � ∶=
�−�√
2�

�(s) = � +
√
2�s (physicists) Hermite Hn

Uniform � ∼ U(0, 1) � ∶= 2� − 1 �(s) =
s+1

2
Legendre Ln

Beta � ∼ Beta(�, �) � ∶= 2� − 1 �(s) =
s+1

2
Jacobi J(�−1,�−1)

n

Gamma � ∼ Gamma(�, �)1 � ∶= �� �(s) =
s

�
General Laguerre La(�−1)

n

Inverse Gamma � ∼ Inv-Gamma(�, �)1 � ∶=
�

�
�(s) =

�

s
General Laguerre La(�−1)

n
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approximation for the coefficients 𝜗̂n and ŷn . The literature on PCE provides a vari-
ety of approaches for this task, from which we want to review the most popular ones.

2.1.1 � Polynomial Chaos Expansion of the Model Parameters

Since the germ can be chosen in any desired way that satisfies Assumptions 1 and 2, 
the following two opposing approaches can be pursued for its specification.

In the first approach, one directly fixes the transformation � between the uncer-
tain model parameter and the germ. The germ’s distribution then follows from the 
given distribution of the uncertain input parameter and the chosen definition of � . In 
principle any choice of � which satisfies Assumption 2 is possible. One could then 
construct the family of orthogonal polynomials from the germ’s distribution and the 
expansion coefficients could be derived by numerical integration of (2a) up to any 
desired order. However, it is typically far more convenient to choose � as a simple 
linear transformation between the uncertain model parameter and the germ which 
results in a family of well-known orthogonal polynomials in L2 , see e.g., Table 1. In 
this case the expansion (1a) collapses to

and the expansion coefficients 𝜗̂0 and 𝜗̂1 are already known exactly.
Conversely, the second approach fixes the distribution of the germ and constructs 

� in such a way that it is compatible with the given distribution of the uncertain 
parameter. This can be achieved as follows. Let F� denote the desired (cumulative) 
distribution function of � and F� the given distribution function of � . Then setting 
the germ to5

yields the desired distribution for � . Conversely,

and the expansion coefficients can again be computed from (2a) by numerical 
integration.

2.1.2 � Polynomial Chaos Expansion of the Model Outcome

While the expansion of the model’s parameter can be controlled directly by an 
appropriate choice of the germ, the expansion of the QoI requires some model 
evaluations. We present here two approaches that treat the economic computational 
model behind as a black box. An intrusive approach, stochastic Galerkin, can be 
found in Appendix 3.

𝜃 = 𝜓(𝜉) = 𝜗̂0 + 𝜗̂1q1(𝜉)

� ∶= F−1
�
◦F�◦�

� = F−1
�
◦F�

5  We denote by F−1 the quantile function.
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Spectral Projection

The first approach derives the polynomial chaos coefficients ŷn by applying 
numerical integration methods to (2b). For example, if � possesses a probability 
density function w, then (2b) becomes

Hence, a Gauss-quadrature with M nodes that corresponds to the weight function w 
and to the orthogonal polynomials {qn}n∈ℕ0

 yields

where si and �i denote the quadrature’s nodes and weights, respectively. The Gauss-
quadrature rule with M nodes will require to evaluate the model outcome 
h(𝜓(si)) ≈ h

�∑N

m=1
𝜗mqm(si))

�
 at each of the M nodes. Since the quadrature rule 

with M nodes is exact for polynomials up to degree 2M − 1 , the number of nodes 
should be chosen appropriately. More specifically, if h◦� is assumed to be well 
approximated by its truncated partial sum SN(h◦�) of degree N, the integrand, i.e., 
h(�(s))qn(s) , is well approximated by polynomials of degree not larger than 2N for 
each n = 1,… ,N . Hence, it should then hold that M ≥ N + 1.

Least Squares

The second approach treats the ignored higher terms 𝜖 ∶=
∑∞

n=N+1
ŷnqn(𝜉) of the 

truncated PCE as the residual in a linear regression

One can then either draw M ∈ ℕ i.i.d. sample points sj, j = 1,… ,M, from the distri-
bution P� or select them according to regression design principles. After computing 
the corresponding model outcomes Yj = h(𝜓(sj)) ≈ h

�∑N

m=1
𝜗mqm(sj))

�
 the expan-

sion coefficients are determined from

The number of the sample (design) points is recommended to be set twice or three 
times as large as the number of unknown PCE coefficients in the literature, i.e., to 
M = 2(N + 1) or M = 3(N + 1).

ŷn = ‖qn‖−2L2 ∫
ℝ

h(𝜓(s))qn(s)w(s)ds.

(3)ŷn ≈ ‖qn‖−2L2
M�
i=1

h(𝜓(si))qn(si)𝜔i ≈ ‖qn‖−2L2
M�
i=1

h

�
N�

m=1

𝜗mqm(si)

�
qn(si)𝜔i,

Y = h(𝜓(𝜉)) =

N∑
n=0

ŷnqn(𝜉) + 𝜖.

(ŷ0,… , ŷn) = argmin
ŷ0,…,ŷN

M∑
j=1

(
Yj −

N∑
n=0

ŷnqn(sj)

)2

.



1093Polynomial Chaos Expansion: Efficient Evaluation and…

2.2 � Multiple Uncertain Input Parameters ( k ≥ 2)

We now turn to the case where more than one input parameter is uncertain and 
where more than one germ is used in the polynomial expansions. In brief, the 
stochastic independence of the germs allows us to apply the procedure from the 
one-dimensional case to each of the finitely many dimensions.

Since Assumption 2 guarantees that all polynomials are included in each L2
i
 , 

one can again apply the Gram-Schmidt process to the sequence of monomials and 
construct for each i = 1,… , k an orthogonal system of polynomials {qin}n∈ℕ0

⊂ L2
i
 

where qin is a polynomial of (exact) degree n and

For any multi-index � = (�1,… , �k) ∈ ℕ
k
0
 we define the multivariate polynomial

Since stochastic independence of the �i implies that P� = ⊗k
i=1

P𝜉i
 , the family of mul-

tivariate polynomials {q�}�∈ℕk
0
 then forms an orthogonal system in L2 . Moreover, if 

for each i = 1,… , k the orthogonal system {qin}n∈ℕ0
 is complete in L2

i
 , then {q�}�∈ℕk

0
 

is also complete in L2 . In particular, this is satisfied if each �i is distributed according 
to one of the distributions specified in Table 1 and if the germs �i are set accordingly. 
Then, since �i ∈ L2 (Assumption 3) and h◦� ∈ L2 (Assumption 4), there exist coef-
ficients {𝜗̂i𝛼}𝛼∈ℕk

0
⊂ ℝ, i = 1,… , k , and {ŷ𝛼}𝛼∈ℕk

0
⊂ ℝ such that 

 The second expansion can again be written equivalently as

Therefore, the parameters �i and the model outcome Y are again representable in L2 
by a PCE in the germs � through 

⟨qin, qim⟩L2
i
= ‖qin‖2L2

i

�m,n for all m, n ∈ ℕ0.

q�(�) ∶=

k∏
i=1

qi�i(�i).

(4a)𝜓i =
∑
𝛼∈ℕk

0

𝜗̂i𝛼q𝛼 in L
2 = L2(ℝk,B(ℝk),P�),

(4b)h◦𝜓 =
∑
𝛼∈ℕk

0

ŷ𝛼q𝛼 in L2 = L2(ℝk,B(ℝk),P�).

h =
∑
𝛼∈ℕk

0

ŷ𝛼(q𝛼◦𝜓
−1) in L2(ℝk,B(ℝk),P�).

(5a)𝜃i = 𝜓i◦� =
∑
𝛼∈ℕk

0

𝜗̂i𝛼q𝛼(�) in L2(Ω,A,P),
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 Moreover, the expansion coefficients are determined by 

 where P� = ⊗k
i=1

P𝜉i
 implies that ‖q�‖L2 = ∏k

i=1
‖qi�i‖L2i .

Equations (6a, b) guarantee that if the parameters �i and the model outcome Y 
are approximated by their truncated PCE, the approximations converge to the true 
random variables in L2 as the degree of the partial sums is increased. The trunca-
tion is typically introduced either by limiting the total degree of the multivariate 
polynomials 

 where ��� ∶= ∑k

i=1
�i , or by limiting the maximal degree in each component 

 where ‖�‖∞ ∶= maxi=1,…,k �i.
In order to compute the expansion coefficients from their defining equations 

(6a, b), it is straightforward to adapt the methods from section 2.1.2 to the multi-
dimensional case. However, this typically introduces the curse of dimensionality.

First, this issue becomes particularly problematic if Gauss-quadrature rules 
compute the integrals. If the mapping h◦� can be well approximated by its 
truncated series expansion SN , then the integrands (h◦�)q� in (6b) can be well 
approximated by multivariate polynomials which rise to degree 2N in each com-
ponent, indifferent from the fact whether |�| ≤ N or ‖�‖∞ ≤ N is assumed. Since 
one-dimensional Gauss-quadrature rules with M nodes provide exact integration 
rules for polynomials up to degree 2M − 1 , it is required to compute (6b) by quad-
rature rules with M = N + 1 nodes in each of the k dimensions. Hence, the model 

(5b)Y = h◦� = h◦𝜓◦� =
∑
𝛼∈ℕk

0

ŷ𝛼q𝛼(�) in L2(Ω,A,P).

(6a)𝜗̂i𝛼 = ‖q𝛼‖−2L2 ⟨𝜓i, q𝛼⟩L2 = ‖q𝛼‖−2L2 ∫
ℝk

𝜓iq𝛼dP� ,

(6b)ŷ𝛼 = ‖q𝛼‖−2L2 ⟨h◦𝜓 , q𝛼⟩L2 = ‖q𝛼‖−2L2 ∫
ℝk

(h◦𝜓)q𝛼dP� ,

(7a)Stot
N
(𝜃i) = Stot

N
(𝜓i◦�) ∶=

∑
𝛼∈ℕk

0
,|𝛼|≤N

𝜗̂i𝛼q𝛼(�),

(7b)Stot
N
(Y) = Stot

N
(h◦𝜓◦�) ∶=

∑
𝛼∈ℕk

0
,|𝛼|≤N

ŷ𝛼q𝛼(�),

(8a)Smax
N

(𝜃i) = Smax
N

(𝜓i◦�) ∶=
�

𝛼∈ℕk
0
,‖𝛼‖∞≤N

𝜗̂i𝛼q𝛼(�),

(8b)Smax
N

(Y) = Smax
N

(h◦𝜓◦�) ∶=
�

𝛼∈ℕk
0
,‖𝛼‖∞≤N

ŷ𝛼q𝛼(�),
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outcome must be evaluated for a total of (N + 1)k parameter combinations and the 
procedure becomes quickly inefficient as k rises.

However, sparse grid methods, e.g., Smolyak-Gauss or monomial quadrature 
rules can help to reduce the computational effort for similar integration quality. 
The Smolyak-Gauss quadrature is illustrated in Appendix 4 and analyzed in the 
numerical example in section 3. The numerical examples for Monomial rules are 
presented in Appendix 5. We put them in the Appendix due to the absence of 
suitable rules for practical purposes. Well-performing rules are missing for trun-
cation levels N > 4 , dimensions k > 6 , or mixed or non-uniform-non-normal 
distributions (see Stroud, 1971; Adurthi et  al, 2018; Bhusal & Subbarao, 2020) 
However, we find remarkable results for the few suitable cases, which motivates 
further research to find high-degree, high-dimensional monomial rules for mixed 
distributions.

Second, the burden of higher-dimensional parameter vectors appears similarly if 
least squares determine the PCE coefficients. However, while the number of coeffi-
cients that must be computed equals (N + 1)k in Smax

N
 , the number of coefficients 

grows less extremely in Stot
N

 where it is given by 
(
N + k

k

)
 . Following the recom-

mendation that the number of sample points should be twice or three times as large 

as the number of unknown coefficients, the model must be evaluated for 2
(
N + k

k

)
 

or 3
(
N + k

k

)
 parameter combinations in the latter case.

Sparse-grid methods and least squares give fundamentals for a rising number of 
more efficient alternatives. Kaintura et al. (2018) and Harenberg et al. (2019) give 
short discussions on recent developments of sparse-grid methods in the PCE con-
text, whereas Lüthen et al. (2021) provide a full survey of sparse PCE. An example 
is an adaptive sparse grid, e.g., by eliminating points with Bayesian shrinkage priors 
or non-significant bases of a regression (Bürkner et al., 2023; Cheng and Lu, 2018).

2.3 � Using the Expansion as Pointwise Approximation for the Model Outcome

After its construction, the PCE of the model outcome can be used for several use 
cases. We present common applications in Appendix 6 and focus here on our appli-
cation, a pointwise approximation for the mapping between model inputs and any 
model outcome (e.g., the model solution - in the form of its policy function -, the 
second moments or the likelihood function).

More to the point, a truncated version of the Fourier series expansion (4b) can be 
used as a pointwise approximation for the mapping h between model parameters and 
a QoI
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Note, however, that convergence of the series in L2 as N → ∞ does not imply point-
wise convergence on the support of P� but only pointwise convergence i.e., for a 
subsequence.

The partial sum SN(h◦�) is the orthogonal projection of h◦� onto the sub-
space of L2(ℝk,B(ℝk),P�) spanned by multivariate polynomials of total degree 
less or equal to N. If the transformation � between germs and parameters is cho-
sen linear, SN(h◦�)◦�−1 is also the orthogonal projection of h onto this subspace 
in L2(ℝk,B(ℝk),P�).6 In the sense of the induced metric, it is, therefore, the best 
approximation of h by multivariate polynomials of total degree up to N, i.e., it mini-
mizes the mean-squared error over the support of P�.

Special Case: Surrogate of Model Solution Consider a discretely-timed model 
where in any period t ∈ ℕ the vector xt ∈ S ⊂ ℝ

nx denotes the predetermined vari-
ables from the state space S and yt ∈ ℝ

ny is a vector of the non-predetermined vari-
ables of the model. Suppose that � is a random vector of unknown parameters of 
the model, and for any possible realization � ∈ Θ the model solution is computed in 
terms of a policy function g(.;�) ∶ S → ℝ

nx+ny so that

If, for any arbitrary x ∈ S and a suitable transformation � between parameters and 
germs, the mapping � ↦ g(x;�) satisfies the sufficient condition in assumption 4, 
then there exists a series expansion by orthogonal polynomials {q�} of the form

Perhaps the most prevalent approach in the literature to determine the model’s pol-
icy function is to compute g from a linearized version of the model. In this case

and numeric implementation of the methods proposed by Blanchard and Kahn 
(1980), Klein (2000) or Sims (2002) allows to solve for the matrix A(�) ∈ ℝ

nx×(nx+ny) 
given any arbitrary but fixed � ∈ Θ . Since the coefficients in the policy’s PCE are 
here determined by

(9)h(𝜗) ≈ SN(h◦𝜓)(𝜓−1(𝜗)) =
∑

𝛼∈ℕk
0
,|𝛼|≤N

ŷ𝛼q𝛼(𝜓
−1(𝜗)).

(
xt+1
yt

)
= g(xt;�).

g(x, 𝜗) =
�
𝛼∈ℕk

0

ĝ𝛼(x)q𝛼(𝜓
−1(𝜗)) in L2(ℝk,B(ℝk),P�),

ĝ𝛼(x) = ‖q𝛼‖−2L2 ∫
ℝk

g(x,𝜓(s))q𝛼(s)dP�(s).

g(x;�) = A(�)x,

6  Otherwise it is the orthogonal projection of h onto the subspace in L2(ℝk,B(ℝk),P�) spanned by multi-
variate polynomials in �−1 of total degree less or equal to N.
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the series expansion of the linear policy function can be written as

Moreover, the Â𝛼 coincides with the expansion coefficients from the PCE of the 
model outcome A(�) . Hence, the PCE of a linear policy is again linear and is repre-
sented by the polynomial expansion of the matrix-valued function � ↦ A(�).

A second popular approach to compute the model’s policy function are projection 
methods.7 In this approach g is constructed as a linear combination of some suitable 
basis functions Φi by

The coefficients in the PCE of g with respect to � then satisfy

and the expansion of g can therefore be written as

Now observe that the ĉi𝛼 coincide with the coefficients in the polynomial expansion 
of the model outcome ci(�) , i.e., with the coefficients in the PCE of the coefficients 
of the projection solution. Consequently, the PCE of g is again a linear combina-
tion of the basis functions Φi and the coefficients are represented by the polynomial 
expansion of � ↦ ci(�).

3 � Numerical Analysis

This section presents the numerical implementation of a PCE for the benchmark RBC 
model. First, we analyze the convergence behavior of the series expansion for differ-
ent model outcomes of interest. More specifically, the model outcomes include the 
solution, the second moments, and the impulse response functions from the model’s 

ĝ𝛼(x) =

�
‖q𝛼‖−2L2 ∫

ℝk

q𝛼(s)A(𝜓(s))dP�(s)

�
x =∶ Â𝛼x,

g(x, 𝜗) =
�
𝛼∈ℕk

0

ĝ𝛼(x)q𝛼(𝜓
−1(𝜗)) =

⎛
⎜⎜⎝
�
𝛼∈ℕk

0

Â𝛼q𝛼(𝜓
−1(𝜗))

⎞
⎟⎟⎠
x.

g(x;�) =

d∑
i=1

ci(�)Φi(x).

ĝ𝛼(x) =

d�
i=1

�
‖q𝛼‖−2L2 ∫

ℝk

q𝛼(s)
�
ci(𝜓(s))

�
dP�(s)

�
Φi(x) =∶

d�
i=1

ĉi𝛼Φ(x),

g(x, 𝜗) =
�
𝛼∈ℕk

0

ĝ𝛼(x)q𝛼(𝜓
−1(𝜗)) =

d�
i=1

⎛⎜⎜⎝
�
𝛼∈ℕk

0

ĉi𝛼q𝛼(𝜓
−1(𝜗))

⎞⎟⎟⎠
Φ(x),

7  See, for instance, Judd (1996),  Chapter  11, Heer and Maußner (2024),  Chapter  5, Judd (1992) or 
McGrattan (1999).
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linear approximation. Additionally, we consider a global projection solution. Second, 
we compare different methods to compute the PCE coefficients regarding accuracy and 
efficiency. Lastly, we perform Monte-Carlo experiments, where we evaluate the perfor-
mance of PCE for empirical applications as matching moments and likelihood-based 
approaches—both for linear and non-linear solutions.

3.1 � The Model

We consider a benchmark RBC model where the social planner solves the following 
maximization problem

where Yt,Ct,Nt, and Kt denote output, consumption, working hours, and the capital 
stock, respectively. Moreover, the log of total factor productivity, zt , evolves accord-
ing to the AR(1) process

The predetermined state variables xt and the non-predetermined control variables yt 
are

3.2 � Convergence Behaviour

First, to study the basic convergence behavior of the PCE for various model out-
comes in the benchmark RBC model, we consider an example where we set the 
uncertain parameters to � ∶=

(
� � �

)
 . Moreover, we assume the following probabil-

ity distributions for the (stochastically independent) unknown parameters

The probability density functions with support Θ ∶= [0.15;0.45] × [1;8] × [0.85;0.99] 
are illustrated in Fig. 1.

The transformations �i between unknown parameters and germs are fixed as in 
Table 1 and the remaining parameters are calibrated as summarized in Table 2.

max
Yt ,Ct ,Nt ,Kt+1

U0 ∶=�0

[
∞∑
t=0

� t
C
1−�
t (1 − Nt)

�(1−�)

1 − �

]
,

s.t.Ct =Yt − Kt+1 + (1 − �)Kt,

Yt =e
ztK

�

t N
1−�
t ,

givenK0, z0,

zt+1 = �zt + �t+1, �t ∼ iidN(0, �2).

xt ∶=

�
Kt

zt

�
and yt ∶=

⎛⎜⎜⎝

Yt
Ct

Nt

⎞⎟⎟⎠
.

� ∼ 0.15 + 0.3 ⋅ Beta(5,7), � ∼ 1 + 7 ⋅ Beta(3,7), � ∼ 0.85 + 0.14 ⋅ U(0, 1).
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Linear Policy Function
The first model outcome that we consider is the model’s linear solution which is 

of the form

Given any parameter values � ∈ Θ the matrix 
A(�) =

(
aij(�)

)
, with i = 1,… , 6 and j = 1, 2 ∈ ℝ

6×2, can be easily computed 
numerically from available methods. As described in section 2.3, the expansion of 
the linear policy function is again linear and is represented by the polynomial expan-
sion of A(�) . Hence, our task is to construct for each mapping aij ∶ � ↦ aij(�) the 
truncated PCE8

Moreover, we first want to abstract from errors in the computation of the expansion 
coefficients âij𝛼 and to focus on the convergence behavior of a(N)

ij
→ aij in L2 as 

N → ∞ . Therefore, we compute the coefficients from full-grid Gauss-quadrature 
rules with a sufficiently large number of nodes which should guarantee that 

(
xt+1
yt

)
= A(�)xt.

(10)a
(N)

ij
(𝜗) ∶= Stot

N
(aij◦𝜓)(𝜓−1(𝜗)) =

∑
𝛼∈ℕ3

0
,|𝛼|≤N

âij𝛼q𝛼(𝜓
−1(𝜗)).

Fig. 1   Distributions of uncertain parameters I

Table 2   Calibration I

1 Instead of pinning down the value of � we set the steady state value of N = 0.3 and the model’s steady 
state determines �

Parameter Description Value

� Discount factor 0.994
� Rate of capital depreciation 0.014
N Steady state labor supply1 0.300
� Standard deviation 0.010

8  We only discuss the mappings � ↦ aij(�) for i = 1, 3,… , 6 and j = 1, 2 since the expansion of the 
exogenous AR(1)-process ( i = 2 ) w.r.t. � is trivial.
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integration errors in (5b) (where now h = aij ) remain insignificant. More concretely, 
we apply N + 5 nodes in each of the three one-dimensional quadrature rules. We 
compute the coefficients from the quadrature rules and determine the L2 error from

where we draw M = 105 iid sample points �(i) from the distribution of �.
The results are presented in Fig. 2a in log10-base for N = 1 to N = 19 and suggest 

linear convergence of the series expansions for each aij . The L2 error for all compo-
nents of the matrix already falls to the order of magnitude of −3 for N = 7 and is as 
low as −6 for N = 19 . Moreover, Fig. 2b also shows the time needed for all compu-
tations. In case of the PCE, the total time reported includes i) the computation of 
expansion coefficients âij𝛼 from the full-grid quadrature rules which require (N + 5)3 
model evaluations and ii) the subsequent (trivial) evaluation of the truncated PCE 
a
(N)

ij
(�(i)) at the 100,000 sample points. For comparison, we also show the computa-

tional time that is required to determine the model solution aij(�(i)) repeatedly at all 
100,000 sample points. Most importantly, since even for N = 19 the number of 
model evaluations for the construction of the PCE is significantly smaller at 13824 
than the number of evaluation points, the time required by the PCE remains less 
than one-third of the time needed for repeatedly solving the model.

Second Moments

The second model outcomes we consider are the model’s second moments. More 
specifically, we consider the variables’ standard deviations and the correlations 
obtained from the model’s linear policy. Instead of relying on simulations, we 
employ available formulae for moments of first-order autoregressive processes to the 
linear solution. We proceed the same way as in the preceding paragraph and com-
pute for each moment, say x, a series expansion x(N) ∶=

∑
𝛼∈ℕ3

0
,�𝛼�≤N x̂𝛼q𝛼(𝜓

−1(𝜗)) . 
Importantly, note that we directly construct the PCE of the second moments, i.e., of 
the mapping � ↦ x(�) . An alternative approach to employ PCE for the second 
moments would be to first construct the PCE of the linear policy and subsequently 
use this PCE of the linear policy to compute the second moments.

Figure 2c again shows linear convergence of the PCEs for each second moment. 
The L2 error in the approximation of the model’s moments has fallen to the order 
of magnitude of −3 by N = 7 and further declines to −6 by N = 19 . Moreover, 
the computation time of the PCE versus the time for repeated computations of the 
model’s moments is illustrated in Fig. 2d. For the same reasons as before, the time 
needed by the PCE remains throughout significantly lower than the time required for 
repeated calculations.

(11)

‖a(N)
ij

− aij‖L2 =
�
∫
ℝ3

�
a
(N)

ij
(�) − aij(�)

�2

dP�

�1∕2

≈

�
1

M

M�
i=1

�
a
(N)

ij
(�(i)) − aij(�

(i))
�2

�1∕2
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Impulse Response Function

The next model outcomes we discuss are the variables’ impulse response func-
tions in response to a one-time shock to TFP by one conditional standard deviation. 
For the sake of exposition, we only consider the variables’ outcomes for the next 
four periods after the shock hits the economy and add the remark that the series 

Fig. 2   L2 convergence of PCE and computation time on an Intel® Core™i7-7700 CPU @ 3.60GHz
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expansions become more trivial for later periods where the variables converge back 
to their stationary values. Hence, we construct PCEs for all variables’ outcomes, 
say Xt+s , for periods s = 0,… , 4 . Note again that the PCE is constructed directly for 
each mapping � ↦ Xt+s(�).

We show the L2 errors over the unknown parameters’ support in Fig. 2e. Conver-
gence is again linear as N → ∞ and the L2 errors for all variables’ outcomes fall to 
the order of magnitude of −5 by N = 19 . Furthermore, the computation time of the 
PCE remains far below the time required for repeated computations of the model’s 
IRFs.

Projection Solution

The last model outcome for which we want to illustrate the convergence behavior 
is the model’s projection solution computed from Chebyshev polynomials as basis 
functions. More specifically, we define kt ∶= ln(Kt∕K

⋆(𝜗)) where K⋆(𝜗) is the capi-
tal stock’s stationary solution and approximate the policy function for working hours 
by

where we further introduce the transformation nt ∶= ln(Nt∕(1 − Nt)) . The Ti are 
Chebyshev polynomials of degree i and 
[k;k̄] × [z;z̄] = [ln(0.8); − ln(0.8)] × [−3

𝜎√
1−𝜌2

;3
𝜎√
1−𝜌2

] is the domain of the approxi-
mation g. The remaining variables are computed analytically from kt, nt and zt and 
the coefficients ci,j(�) are determined in such a way that the model’s Euler equation 
holds exactly at 13 appropriately selected collocation points.9

We discussed in section 2.3 that the expansion of the projection solution is again 
a linear combination of the same basis functions, i.e., of Ti1Ti2 with i1 + i2 ≤ 4 , and 
the coefficients are given by the series expansions of the mappings � ↦ ci,j(�) . 
Hence, we construct truncated PCEs, c(N)

i,j
∶=

∑
𝛼∈ℕ3

0
,�𝛼�≤N ĉij𝛼q𝛼(𝜓

−1(𝜗)) from full-
grid quadrature rules with N + 5 nodes in each dimension. The L2 error, 
‖c(N)

i,j
− cij‖L2 , in log10-basis is again decreasing linearly as N → ∞ as displayed in 

Fig. 2g and the time for construction and evaluation of the PCEs in Fig. 2h remains 
throughout significantly smaller than the time for repeated computations of the 
global solution.

nt = g(kt, zt;𝜗) =
∑
i+j≤4

ci,j(𝜗)Ti

(
2
kt − k

k̄ − k
− 1

)
Tj

(
2
zt − z

z̄ − z
− 1

)
,

9  The collocation points are combinations of the zeros of the Chebyshev polynomials in the approxima-
tion.
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3.3 � Computation of PCE Coefficients

In the previous subsection, our focus was on the convergence behavior of the PCE 
when the degree of truncation N was increased. We therefore abstracted from pos-
sible errors in the computation of the PCE coefficients and employed a full-grid 
quadrature rule with sufficiently many nodes. While full-grid quadrature rules have 
the favorable property that the number of nodes can be easily chosen in such a way 
that they provide exact integration rules for polynomials up to the desired degree, 
the number of nodes grows exponentially in the dimension of the parameter vec-
tor. Hence, they may provide the most convenient way for computation of the PCE 
coefficients when the number of unknown parameters is not too large, but they 
become quickly ineffective in higher dimensional problems. If the PCE coefficients 
are determined from alternative methods, the approximation error of the feasible 
PCE does not only include the error from truncation of the series expansion but also 
from a potentially less accurate approximation of the PCE coefficients that becomes 
necessary.

In this section, we now switch perspective and analyze the convergence behavior 
of the PCE when its coefficients are computed from different methods. Next to the 
benchmark full-grid quadrature rule, the PCE coefficients are additionally approxi-
mated by a sparse-grid Smolyak quadrature rule and by least squares.

We apply our analysis to the PCE of the model’s linear solution but now con-
sider a higher dimensional problem. The vector of unknown parameters expands to 
� ∶=

(
� � � � � �

)
.10 The assumed distributions for � , � and � remain as before in 

Fig. 1, and the distributions of the additional unknown parameters are chosen as

The probability densities for �, � and � are visualized in Fig. 3.
We compute the truncated PCE (10) for each mapping aij ∶ � ↦ aij(�) in the 

linear policy A(�) =
(
aij(�)

)
, with i = 1,… , 6 and j = 1, 2 ∈ ℝ

6×2 . The PCE coeffi-
cients are now determined either by i) a full-grid Gauss quadrature rule with N + 1 

� ∼ 0.9 + 0.09 ⋅ Beta(7,4), � ∼ 0.01 + 0.01 ⋅ Beta(3,3), � ∼ 1.5 + 1 ⋅ Beta(5,4).

Fig. 3   Distributions of uncertain parameters II

10  These are all of the model’s parameters except the standard deviation � which does not affect the 
model’s linear policy.
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nodes for each parameter (FGQ), ii) a sparse-grid Smolyak-Gauss quadrature rule 
with linear growth where the level is set in such a way that the one-dimensional 
quadrature rules include the nodes up to degree N + 1 (SGQ), iii) least squares 

Fig. 4   L2 Convergence of PCE with approximated coefficients and computation time on an Intel® 
Core™i7-7700 CPU @ 3.60GHz I
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where the number of sample point is set either twice (LSMC1) or iv) three times as 
large as the number of unknown PCE coefficients (LSMC2). After construction of 
the truncated PCE by each of the four methods, we compute the PCE’s L2 error as 
in (11) from a draw of M = 105 iid sample points from the parameter’s distribution.

Figure  4 shows the convergence of the truncated (approximated) PCEs with 
approximated coefficients for increasing N. As expected, the PCE constructed from 
a full-grid quadrature rule, which should provide the most accurate determination 
of the coefficients, also shows the fastest convergence. It is followed by the PCE 
constructed from the sparse-grid Smolyak quadrature rule while the PCEs where 
the coefficients are computed by least squares perform worst. Since inaccuracies in 
the coefficients of higher degree polynomials may have large impact on the L2 error 
of the PCE,11 the PCEs computed from least squares even show increasing errors 
for larger N. Yet, the necessary computations for the full-grid quadrature method 
also require by far the most time. Figure 4k shows that by N = 5 the construction 
and evaluation of the PCE already consumes more time than 100,000 repeated com-
putations of the model solution. In comparison, the sparse-grid quadrature rule is 
already significantly less computationally costly while the least-squares methods are 
least expensive to compute and remain less time-consuming than repeated computa-
tions of the model solution up to N = 10.

Finally, Fig. 5 provides a more convenient illustration of the different methods’ 
efficiency and plots the PCEs’ L2 error versus the required computation time, both 
in log10-basis. According to this metric the full-grid quadrature method already 
performs worst and requires the most computation time to reach the same quality 
of approximation as the other methods. The most efficient method is the sparse-
grid Smolyak quadrature rule. In the present case with six unknown parameters, it 
reaches an approximation with L2 error of the order of magnitude of −4 before the 
required time for the PCE’s construction exceeds the time for 100,000 repeated com-
putations of the model solution.

3.4 � Monte Carlo experiments for empirical methods

3.4.1 � Estimation Based on Linearized Models

Design 
Our Monte Carlo study for linearized models follows Ruge-Murcia (2007) and 

analyzes the performance of PCE when applied to different estimation methods. We 
set the vector of uncertain parameters to � ∶= (�, �, �) and choose the following prob-
ability distributions with support Θ ∶= [0.97;0.999] × [0.75;0.995] × [0.004;0.012] 
for the unknown parameters:

� ∼ 0.97 + 0.029 ⋅ Beta(2,2), � ∼ 0.75 + 0.245 ⋅ Beta(2,2), � ∼ 0.004 + 0.009 ⋅ U(0, 1).

11  Note that the norm of the orthogonal polynomials, ‖q�‖L2 , is increasing in |�|.
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Figure 6 illustrates the uncertain parameters’ probability densities and the remaining 
parameters are calibrated as summarized in Table 3.

The simulated data and the subsequent estimation of the parameters are both from 
a linearized model. While the advantage of PCE increases with more sophisticated 

Fig. 5   L2 Convergence of PCE with approximated coefficients and computation time on an Intel® 
Core™i7-7700 CPU @ 3.60GHz II
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solution techniques, i.e., non-linear solutions, there is a reason to consider linear 
solutions: the existence of analytical representations of second moments and the 
likelihood function. Thus, differences in the estimated parameters between PCE and 
the benchmark (solving the model repeatedly) can be solely attributed to the approx-
imation with PCE.

Matching Moments 
To estimate the parameters by matching moments, we choose the following 

5 targets: i) the variance of output and working hours, ii) the autocovariance 
(lag 1) of output and working hours, and iii) the covariance between output and 
working hours. We draw a sample �(i), i = 1,… ,M , of size M = 1, 000 from 
the distribution of the unknown parameters. In a first step, we compute the lin-
ear approximation of the policy function and the second moments for each �(i) 
in the sample. Subsequently, we feed the computed second moments as targets 
to an optimizer and (point) estimate the unknown parameters by the method of 
matching moments. When minimizing the objective function, we distinguish 
the following three cases to evaluate the model’s second moments for different 
parameter values: i) repeatedly solving the model and computing the second 
moments (benchmark), ii) constructing the PCE of the linear approximation of 
the policy function which we then evaluate and use to compute the variables’ 
second moments ( h(�) = g(x;�) ) or iii) constructing the PCE of the model’s sec-
ond moments which we then evaluate ( h(�) becomes directly the five mentioned 

Fig. 6   Distributions of uncertain parameters III

Table 3   Calibration II

Fixed-parameter Description Value

� Capital share 0.37
� Rate of capital depreciation 0.014
N Steady-State labor supply 0.3
� Risk aversion 2

Uncertain parameters Description Distribution

� Discount factor � ∼ 0.97 + 0.029 ⋅ Beta(2,2)

� Persistence � ∼ 0.75 + 0.245 ⋅ Beta(2,2)

� Standard deviation � ∼ 0.004 + 0.009 ⋅ U(0, 1)
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targets). We compute the second moments either from analytic formulae for the 
linear solution (GMM) or from a simulation with T = 10, 000 periods (SMM). 
We adapt the truncation degree and quadrature level manually to achieve suffi-
cient accuracy to demonstrate the capabilities.12 After obtaining the parameters’ 
estimate 𝜗̂(i) , we define the PCE error by the deviation between the realized point 
estimate 𝜗̂(i)

PCE
 from a PCE based method and the estimate 𝜗̂(i)

BM
 obtained from the 

benchmark method, i.e.,

where j indicates the estimator of the particular parameter and �j,max and �j,min 
denote the upper and lower bound of �j ’s prior support.

𝜖
(i)

j
= 100

||𝜗̂(i)j,PCE − 𝜗̂
(i)

j,BM
||

𝜗j,max − 𝜗j,min

, j ∈ {𝛽, 𝜌, 𝜎}, i = 1, ...,M,

Table 4   Monte Carlo Results - GMM

Observable moments: variance of output, variance of hours, covariance between output and hours, auto-
covariance of output (lag 1), autocovariance of hours (lag 1). 𝜖j : mean error, �j,.05 : 5 percentile of error, 
�j,.5 : median of error, �j,.95 : 95 percentile of error. Errors of PCE-based methods are expressed as devia-
tions from the benchmark method of repeatedly solving the policy function in percent of the range of the 
parameter’s distribution. Time: mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation 
degree and quadrature level of the expanded policy function is 9 and of the second moments 19

Benchmark (repeated solution)

Time Total average
00:01.25

PCE policy function

Time Total average
00:00.5

PCE
00:00.05

Estimation average
00:00.45

j � � �

𝜖j 0.04 0.01 0.02
�j,.05 0.00 0.00 0.00
�j,.5 0.03 0.01 0.01
�j,.95 0.11 0.03 0.06

PCE second moments

Time Total average
00:03.44

PCE
00:03.11

Estimation average
00:00.33

j � � �

𝜖j 0.16 0.02 0.02
�j,.05 0.02 0.00 0.00
�j,.5 0.13 0.02 0.01
�j,.95 0.43 0.06 0.09

12  We discuss heuristics for the choice of the truncation level below.
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Table 4 presents the results for GMM. We provide the computation time, the 
mean, the median, the 5 percentile, and the 95 percentile of the PCE error �j 
from M = 1, 000 estimations. We find that the policy function’s PCE provides a 
remarkably good approximation which results in deviations from the benchmark 
mostly smaller than one permille in comparison to the range of the parameter’s 
distribution. The errors increase once PCE directly approximates the second 
moments. However, the average relative errors remain below two permille for all 
parameters and are almost always less than half a percent, again relative to the 
parameter’s range. Using the PCE of the policy function reduces the computa-
tion time on average by 60 percent while the PCE of the second moments is more 
time-consuming than the benchmark. Nevertheless, the pure estimation procedure 
of the second moments’ PCE is on average more than 25 percent faster than the 
estimation procedure of policy function’s PCE.

Since analytic formulae for the model’s moments are only available for the linear 
solution, GMM can only be employed for a linear approximation where computation 
time is rarely a limiting factor. If the model demands non-linear solutions, one has 
to resort to simulations to derive the model’s moments. However, the computation 

Table 5   Monte Carlo Results - SMM

Observable moments: variance of output, variance of hours, covariance between output and hours, auto-
covariance of output (lag 1), autocovariance of hours (lag 1). 𝜖j : mean error, �j,.05 : 5 percentile of error, 
�j,.5 : median of error, �j,.95 : 95 percentile of error. Errors of PCE-based methods are expressed as devia-
tions from the benchmark method of repeatedly solving the policy function in percent of the range of the 
parameter’s distribution. Time: mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation 
degree and quadrature level of the expanded policy function is 7 and of the second moments 13

Benchmark (repeated solution)

Time Total average
01:12.82

PCE policy function

Time Total average
00:34.67

PCE
00:00.03

Estimation average
00:34.63

j � � �

𝜖j 0.10 0.02 0.03
�j,.05 0.01 0.00 0.00
�j,.5 0.08 0.01 0.01
�j,.95 0.25 0.04 0.16

PCE second moments

Time Total average
00:58.03

PCE
00:57.73

Estimation average
00:00.31

j � � �

𝜖j 1.01 0.13 0.10
�j,.05 0.10 0.01 0.01
�j,.5 0.78 0.09 0.06
�j,.95 2.62 0.35 0.30
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of non-linear solutions and the simulation of model outcomes increase the computa-
tional effort significantly. Working with the PCE of the policy function reduces the 
former burden while working with the PCE of the second moments helps to reduce 
both burdens. The results for our Monte-Carlo experiment with SMM are summa-
rized in Table 5.

We find again that the policy function’s PCE provides a remarkably good approx-
imation which results in errors mostly smaller than 2.5 permille in comparison to 
the range of the parameter’s distribution. Similar to GMM, errors rise if the model’s 
second moments are directly approximated by PCE. However, the average relative 
errors remain around or below one percent for all parameters and are almost always 
less than 2.5 percent. Using the PCE of the policy function reduces the computation 
time on average by 50 percent while the PCE of the second moments reduces them 
only by 20 percent. However, the pure estimation procedure of the second moments’ 
PCE is on average more than 99 percent faster than the estimation procedure of pol-
icy function’s PCE. This illustrates the efficiency of expanding the QoI with PCE.

Table 6   Monte Carlo Results - Maximum Likelihood Estimation

Observable: Output Yt . 𝜖j : mean error, �j,.05 : 5 percentile of error, �j,.5 : median of error, �j,.95 : 95 percen-
tile of error. Errors of PCE-based methods are expressed as deviations from the benchmark method of 
repeatedly solving the policy function in percent of the range of the parameter’s distribution. Time: 
mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadrature level of the 
expanded policy function is 9 and of the likelihood function 13

Benchmark (repeated solution)

Time Total average
00:20.60

PCE policy function

Time Total average
00:18.79

PCE
00:00.20

Estimation average
00:18.59

j � � �

𝜖j 0.07 0.08 0.01
�j,.05 0.00 0.00 0.00
�j,.5 0.00 0.00 0.00
�j,.95 0.00 0.01 0.02

PCE likelihood-function

Time Total average
00:10.81

PCE
00:10.36

Estimation average
00:00.44

j � � �

𝜖j 0.08 0.40 0.05
�j,.05 0.00 0.00 0.00
�j,.5 0.00 0.08 0.01
�j,.95 0.03 0.75 0.09
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Likelihood-based Estimation 
We proceed to analyze the performance of PCE in MLE and BE. More pre-

cisely, we now draw a sample of size M = 500 from the distribution of the unknown 
parameters. We approximate linearly the policy function and simulate a time series 
of output Yt for T = 200 periods for each �(i) in the sample.13 We treat the simulated 
time series as observations from which we either (point) estimate the parameters by 
MLE or conduct BE.

In the case of MLE, we distinguish the following three methods to evaluate the obser-
vations’ likelihood for different parameter values: i) repeatedly solving the model and 
computing the likelihood (benchmark), ii) constructing the PCE of the linear approxi-
mation of the policy function which we then evaluate and use to compute the likelihood 
( h(�) = g(x;�) ) or iii) constructing the PCE of the likelihood which we then evaluate 
( h(�) = L(Y1∶T ;�) ). In order to avoid problems with weak identification and to focus on 

Table 7   Monte Carlo results - Bayesian estimation I

Observable: Output Yt . 𝜖j : mean error, �j,.05 : 5 percentile of error, �j,.5 : median of error, �j,.95 : 95 percen-
tile of error. Errors of PCE-based methods are expressed as deviations from the benchmark method of 
repeatedly solving the policy function in percent of the range of the parameter’s distribution. Time: 
mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadrature level of the 
expanded policy function is 9 and of the second moments 13

Benchmark (Repeated Solution)

Time: Total average
08:36.11

PCE Policy Function

Time: Total average
07:56.38

PCE
00:00.05

Estimation average
07:56.33

Mean: Quantile:
j x: 5% 10% 25% 50% 75% 90% 95%

� 𝜖j(x) 0.05 0.12 0.08 0.05 0.04 0.05 0.07 0.10
�j(x).05 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01
�j(x).5 0.04 0.09 0.05 0.03 0.03 0.04 0.05 0.06
�j(x).95 0.15 0.33 0.23 0.15 0.15 0.14 0.22 0.33

� 𝜖j(x) 0.23 0.32 0.28 0.25 0.25 0.30 0.37 0.45
�j(x).05 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03
�j(x).5 0.19 0.24 0.24 0.20 0.21 0.25 0.30 0.35
�j(x).95 0.59 0.87 0.71 0.64 0.63 0.77 0.99 1.22

� 𝜖j(x) 0.09 0.11 0.10 0.09 0.09 0.11 0.15 0.20
�j(x).05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
�j(x).5 0.07 0.09 0.08 0.07 0.07 0.09 0.12 0.15
�j(x).95 0.24 0.24 0.29 0.25 0.26 0.28 0.41 0.59

13  More precisely, we generate a sample of size T = 300 and burn the first 100 observations.
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the quality of PCE in the estimation procedure, here MLE is unusually applied to data in 
levels instead of the relative deviation from steady state.

For BE, the priors remain the same as in Table 3. Moreover, we again consider 
three methods to evaluate the posterior where the first two are analogous to i) and ii) 
above while iii) now involves constructing the PCE of the posterior’s kernel 
( h(�) = L(Yt;�)p(�) , where p(�) is the prior of � ). For each of the three methods, 
we derive the posterior’s mean as well as several quantiles of the posterior distribu-
tion from a standard random walk Metropolis Hasting (RWMH) algorithm with 
100,000 draws from the posterior kernel.14 We measure the accuracy of the PCE-
based methods for each statistic of the posterior, say x, by computing the deviation 
between the statistic x̂(i)

j,PCE
 obtained from the PCE based method and the statistic 

x̂
(i)

j,BM
 from the benchmark method by

Again, we adapt the truncation degree and quadrature level manually to achieve suf-
ficient accuracy.

𝜖
(i)

j,PCE
(x) = 100

||x̂(i)j,PCE − x̂
(i)

j,BM
||

𝜗j,max − 𝜗j,min

.

Table 8   Monte Carlo Results - Bayesian Estimation II

Observable: Output Yt . 𝜖j : mean error, �j,.05 : 5 percentile of error, �j,.5 : median of error, �j,.95 : 95 percen-
tile of error. Errors of PCE-based methods are expressed as deviations from the benchmark method of 
repeatedly solving the policy function in percent of the range of the parameter’s distribution. Time: 
mm:ss.f on an Intel® Core™i7-7700 CPU @ 3.60GHz. The truncation degree and quadrature level of the 
expanded policy function is 9 and of the second moments 13

PCE Posterior-Kernel

Time: Total average
00:16.82

PCE
00:11.00

Estimation average
00:05.82

Mean: Quantile:
j x: 5% 10% 25% 50% 75% 90% 95%

� 𝜖j(x) 0.05 0.13 0.09 0.05 0.04 0.05 0.07 0.09
�j(x).05 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00
�j(x).5 0.04 0.08 0.06 0.03 0.03 0.03 0.04 0.06
�j(x).95 0.16 0.40 0.25 0.15 0.13 0.14 0.19 0.30

� 𝜖j(x) 0.21 0.32 0.27 0.24 0.24 0.27 0.36 0.44
�j(x).05 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.03
�j(x).5 0.16 0.25 0.21 0.20 0.19 0.20 0.27 0.33
�j(x).95 0.59 0.86 0.69 0.59 0.60 0.72 1.01 1.19

� 𝜖j(x) 0.09 0.12 0.11 0.09 0.09 0.11 0.15 0.19
�j(x).05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
�j(x).5 0.07 0.09 0.08 0.07 0.07 0.09 0.12 0.13
�j(x).95 0.24 0.32 0.30 0.25 0.24 0.29 0.42 0.55

14  For the results we burn the first 50,000 draws.
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Table 6 displays the results from MLE. First, deviations between the estimates 
from the method based on the policy function’s PCE, the likelihood function’s PCE, 
and the benchmark version remain remarkably small. The average error concerning 
the policy function’s PCE estimation is smaller than one permille compared to the 
benchmark and relative to the range of the parameter. Furthermore, as the 95 per-
centile is smaller than the average, the error is mostly smaller than on average. The 
same holds for the estimation with the likelihood function’s PCE. The average error 
is less than a half percent and the median is less than one permille. Using the PCE 
of the policy function does not reduce the computation time significantly, because 
the evaluation of the likelihood function is the time-consuming part. For this reason, 
using the PCE of the likelihood function is much more efficient. The total procedure 
is about 50 percent faster than the benchmark on average and the pure maximization 
procedure takes less than half a second on average.

Finally, Table 7 and Table 8 summarize the results from the PCE-based meth-
ods—approximation of the policy function or the kernel of the posterior—in BE. 
First, the errors between the two approximations are virtually the same. The average 
errors of the means and the medians are less than or equal to one-fourth of a percent. 
While deviations slightly increase for estimates of the posterior’s lower and upper 
quantiles, they remain almost always less than 1.25 percent. Recognizing that errors 
may be partly caused by the RWMH algorithm itself, the deviations between the 
methods are negligible. Using the PCE of the policy function does not reduce the 
computation time significantly, because the evaluation of the likelihood function is 
likewise the time-consuming part. For this reason, the PCE of the likelihood func-
tion is much more efficient and nearly 99 percent faster than the benchmark.15

3.4.2 � Estimation Based on the Global Solution

We proceed with our analysis by conducting the previous likelihood-based esti-
mation for global, i.e., non-linear model solutions. On the one hand, the model’s 
linear solution allowed an analytical derivation of the objective function of the 
estimations and, consequently, an exact assessment of the goodness of their PCE 
approximation. On the other hand, the solution and the derivation of the objective 
functions are fast by themselves. Consequently, time is not critical. Non-linear 
solutions and likelihood function evaluation with particle filters rely on numeri-
cal, partly Monte Carlo, methods, which makes the assessment vague. However, 
these methods are time-consuming, making PCE an interesting method to over-
come these burdens.

We follow Fernández-Villaverde and Rubio-Ramírez (2005). The authors show 
that the non-linearities are crucial for parameter inference, even for our benchmark 
RBC model. We deviate from our previous study and follow Fernández-Villaverde 
and Rubio-Ramírez (2005) by considering only one true value for the parameters �o 
and the prior distribution choice, which is now uniform in all dimensions. The latter 
allows us to focus on the effects of the non-linear solution. The former is to evaluate 

15  It must be mentioned that a higher number of parameters leads to a decrease in efficiency.
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our estimators by comparing the estimated average with the true values, as an exact 
objective function for the assessment is missing. We set the true parameter values 
�o = {�o, �o,�o} = {0.985, 0.9725, 0.0085} and the priors

Note that the domain of the priors for � and � remains while for � , the domain 
shrinks. The latter is because � is well-identified. Outside this domain, the likeli-
hood is too small ( < exp(−1000) ) for an accurate particle filter evaluation. In the 
discussion below, we devote ourselves to cases where the model outcome is not 
well-defined or cannot be computed in a numerically stable way at all nodes of the 
quadrature rules.

Lastly, some information on the non-linear solution and the particle filter: we 
apply the projection solution described above with 
[k;k̄] × [z;z̄] = [ln(0.9); − ln(0.9)] × [−2

𝜎√
1−𝜌2

;2
𝜎√
1−𝜌2

] and use a generalized boot-
strap particle filter with 2,000 particles (see Herbst & Schorfheide, 2016 Algo-
rithm14). We conduct the exercises for M = 96 different datasets, each simulated 
using the globally solved model. If not otherwise stated, we still observe T = 200 
periods of Yt.

Maxmimum Likelihood
In the maximum likelihood analysis, we can only compare the maximum of the 

likelihood from the Kalman filter using a linear solution and of the PCE approxi-
mated likelihood as the likelihood directly from the particle filter is not differenti-
able—ruling out gradient-based optimizer. The literature refers to the use of differ-
entiable likelihood surrogates or non-gradient-based optimizers. While the latter is a 
research topic itself, we contribute to the former idea by assessing the possibility of 
surrogate the likelihood with PCE.16

Figure 7 presents the results dependent on the truncation level ( N ∈ {8, 9, ..., 14} ). 
The upper three panels ((a)–(c)) display the bias of the estimators relative to the true 
parameter values, and the middle three panels ((d)–(f)) the relative standard devi-
ations of the estimators. The last two panels ((g) and (f)) indicate the amount of 
a successful PCE approximation, i.e., inner maxima (g), and the time differences 
(f). It turns out that both approximations (linear solution and PCE surrogated likeli-
hood) estimate on average � well. Both are on average within the range of ±0.02% . 
The estimates for � are more biased. Yet, for truncations N ≥ 10 , the PCE estimator 
becomes noticeably less biased. The biggest difference between the estimation strat-
egies is concerning � . While for N ≥ 10 the PCE estimates fluctuate close around 
the true value, the estimate from the linear solutions deviates on average by 3.25% 
from the parameter’s true value. The analysis shows, that the estimators of the PCE 
surrogate are less or equal biased. Yet, the estimator’s fluctuation is higher. However, 

� ∼ 0.98 + 0.01 ⋅ U(0, 1), � ∼ 0.75 + 0.245 ⋅ U(0, 1), � ∼ 0.004 + 0.009 ⋅ U(0, 1).

16  Note that in our example the PCE likelihood surrogate MLE is on average more accurate than the 
average posterior modes from the repeated global solution sampler.
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the estimator’s standard deviation converges with N to the standard deviation of the 
linear solution estimates and is already similar for � and � for N ≥ 13.

The amount of successful PCE, i.e., likelihood maxima at the bounds, increases 
from 85% for N = 8 above 95% for N ≥ 8 and equals 100% for N = 14 . One maxi-
mization with the PCE approximation takes on average between 9 min ( N = 8 ) and 
40 min ( N = 14 ) and takes much longer than with the use of the linear solution (14 

Fig. 7   ML from various likelihood approximations ( M = 96 ). PCE: PCE approximated likelihood from a 
particle filter, SPCE: Only successful PCE approximations ( MS ), i.e., exclusion of maxima at the param-
eter bounds. LinRep: Repeated likelihood evaluation using the Kalman Filter from the linear model solu-
tion. N equals the truncation level, the quadrature level equals N+1. Computation time on one core of an 
AMD® EPYC™7313 (Milan) CPU @ 3.00GHz
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Fig. 8   Observable: Output Yt . 𝜖j : mean error. Errors are expressed as deviations from the benchmark 
method of repeatedly solving the (global) policy function in percent of the range of the parameter’s dis-
tribution. N = 13 equals the truncation level, the quadrature level equals N + 1 . Performed on one core of 
an AMD® EPYC™7313 (Milan) CPU @ 3.00GHz

Table 9   Computational time comparison

N = 13 equals the truncation level, and the quadrature level equals N + 1 . Performed on one core of an 
AMD® EPYC™7313 (Milan) CPU @ 3.00GHz

linear repeated posterior PCE policy fct. PCE non-linear repeated

hh:mm:ss 00:05:45 00:32:27 17:45:11 18:17:37
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sec). However, the duration of the likelihood evaluation of the non-linear model is 
still quick and can be reduced easily and drastically via parallelization.17

Finally, the problem arises in whether the estimator’s standard deviation and the 
remaining bias arise generally from the maximum likelihood method and the parti-
cle filter or from limitations of the PCE approximation. We can identify the reasons 
by improving the properties of the true MLE and the particle filter. To decrease the 
bias and standard deviation of the true MLE, we increase the number of observa-
tions (T=500) c.p., and to decrease the noise in the particle filter, we increase the 
number of particles to 10,000 c.p. Appendix 7 presents the results (Fig. 12 and 13). 
The additional information (T=500) leads to a similar decreasing standard devia-
tion of both estimators the PCE surrogate likelihood and the likelihood from the 
model’s linear approximation. However, while the bias of the MLE from the PCE 
surrogate likelihood shrinks further, the bias of the MLE from the linear solution 
only decreases for � . The bias for � and � remain or even increase. Further, with 
more information, the PCE approximation becomes more stable. Regarding the 
higher amount of particles, there is unsurprisingly no improvement in the bias of the 
estimates from the PCE approximated likelihood. However, the estimator’s stand-
ard deviation decreases for all considered truncation levels. With these two results, 
we conclude that PCE approximation errors are neither the drivers of the remaining 
inaccuracies nor limits a higher accuracy.

Bayesian Estimation
Note that in a Bayesian context besides the mode, we cannot observe the true 

statistics of the posterior distribution. Since the posterior statistics obtained from 
the global projection solution and the generic bootstrap particle filter should be at 
least unbiased (see Fernández-Villaverde & Rubio-Ramírez, 2005) we use them as 
a benchmark case and compare it with three other methods to evaluate the poste-
rior: i) the linear approximate solution combined with a likelihood obtained from 
the Kalman-Filter, ii) the PCE surrogate of the posterior kernel, iii) and the PCE 
approximation of the global projection solution together with the likelihood from 
the generic particle filter. For both QoIs, we set the truncation and the quadrature 
level to N = 13 and M = N + 1 , respectively.

As in the linear setup, we use the RWMH algorithm to generate 100,000 draws 
from the posterior distribution. However, since initializing the algorithm at the pos-
terior mode is difficult when the likelihood is approximated by a particle filter (see 
the discussion above), we depart from the linear setup and specify the algorithm’s 
proposal density using estimates of the posterior mean and variance. We obtain 
these estimates from 10,000 additional draws from a RWMH algorithm based on a 
proposal density pinned down by the prior’s mean and variance.

Figure  8 displays the mean absolute deviations (relative to the range of the 
parameter’s distribution) of the three competing methods to the benchmark case for 

17  We use here only one core. Hence the computational time for the PCE approximation can be roughly 
divided by the amount of available cores, e.g., with > 160 cores, the N = 14 approximation should 
become faster than the linear approximation, ignoring workers’ allocation time.
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various posterior statistics and Table 9 gives an overview over the average computa-
tional time for one estimation.18

For all three estimation parameters and all displayed statistics of the posterior, 
the PCE extension of the global projection solution yields the estimation results that 
come closest to the benchmark case. While the average absolute deviation is well 
below half a percent for all parameters, the average time required for one estima-
tion (17h:45m:11s) is only around half an hour less compared to the benchmark 
(18h:17m:37s). However, this difference depends on the fraction of computational 
time of the solution on the total time. Note that the solution becomes quickly more 
time-consuming than the filter with an increasing number of states.

For � , the deviations between the PCE expansion of the posterior kernel and the 
benchmark case are similar to those of the linear approximation of the model solu-
tion. However, for � and in particular � , the results are significantly closer to the 
benchmark method, with about one and almost two percentage points lower devia-
tion. This, together with the fact that the computational time required (00h:32m:27s) 
is significantly lower, makes the PCE surrogate of the Posterior kernel a promising 
alternative to the benchmark method.

In contrast, the estimates based on the linear approximation of the model solution 
are computationally much more favorable (00h:05m:45s) but also deviate the most 
from the benchmark case with an average absolute deviation from just under two 
to almost four percent. In line with the results by Fernández-Villaverde and Rubio-
Ramírez (2005), we document that for the parameter � the deviations vary system-
atically for different percentiles of the posterior, as the mean absolute deviations 
between the linear and the global benchmark estimation method decrease by more 
than one and a half percentage points from the 5-th to the 95-th percentile.

Discussion

Our study of PCE for estimating a standard RBC model shows that the PCE-based meth-
ods deliver sufficient accurate surrogates to reproduce the results of estimates from the 
benchmark procedure—repeatedly solving the model. Gains in efficiency are larger than 
50 percent for matching moments if the PCE of the policy function is used and for MLE 
if the PCE of the likelihood function is used. Additionally, the PCE of the likelihood 
from a particle filter is differentiable and, thus, enables a gradient-based optimization. 
Gains in efficiency are larger than 95 percent for BE with the chosen numbers of param-
eters, truncation degree, and quadrature level if the PCE of the posterior’s kernel is used.

In our specification of the prior distributions we shape and shift the distribu-
tions to achieve compactness of the support. This procedure is unconventional in 
the Bayesian estimation of DSGE Models but helps for PCE. First and foremost, the 
compactness of the support helps to create a setting where the mapping from param-
eters to the model outcome is square-integrable. Second, it is indispensable for the 
construction of the PCE coefficients that the model outcome is well-defined and can 

18  We provide the complete estimation results (incl. various error percentiles) in Tables 12, 13  and 14 in 
Appendix 7.
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be computed in a numerically stable way at all nodes of the quadrature rules.19 Here, 
importance sampling for least squares, adaptive sparse grids, or grid domain reduc-
tions produces a remedy.20

In non-Bayesian approaches, the application of PCE demands the otherwise 
unnecessary specification of prior distributions. As L2 convergence of the series 
expansion is achieved w.r.t. this prior distribution of the parameters, estimation 
results become less accurate if the true parameter value is at odds with the choice of 
priors, especially if the true parameter is outside the prior domain.21

Similarly, Lu et al. (2015) show that using PCE for BE may be inaccurate in two 
cases. First, the QoI is represented poorly by a low-order polynomial. Second, the 
posterior mass is in other regions than the prior mass. To solve these problems, they 
suggest an adaptive increasing polynomial order by verifying the accuracy at the 
next evaluation point. As our manual adaption is usually not feasible as it requires 
the benchmark results, this is also a practical method for determining the truncation 
level in general. In addition, a small magnitude of the Nth Fourier coefficient indi-
cates a sufficiently high truncation level.

As PCE is a spectral decomposition approximated with a truncated polynomial 
expansion, generally, Runge’s and Gibbs’ phenomena could arise. Both result in spuri-
ous oscillation. Yet, using Gaussian quadratures and nodes prevents the former phe-
nomenon, and the latter phenomenon only appears in the presence of discontinuity 
jumps. Problems with the approximation of a flat function are unknown. Thus, the 
frequent lack of identification of DSGE models does not challenge PCE itself.

Concerning time, the success of PCE is determined by the ratio of the number of 
model evaluations necessary to compute the coefficients and the number of model 
evaluations for the exercise at hand. Hence, PCE works best in cases with a small 
number of unknown parameters where the exercise demands many model evalua-
tions. On the one hand, PCE loses efficiency in higher dimensional problems. On 
the other hand, most exercises are recursive (Monte Carlo sampler, gradient-based 
optimizer, etc.), where the model evaluations are independent of each other for con-
structing PCE. This independence makes the costly evaluations parallelizable—
reducing the curse of dimensionality drastically with cluster or cloud computing. In 
addition, Soize and Desceliers (2010) develop tools to reduce the evaluation time of 
the constructed PCE.

Finally, our analysis is limited to an ergodic, stable stochastic process. However, 
Ozen and Bal (2016) show that, with some adaptions, PCE becomes suitable for 
time-dependent solutions and Jacquelin et al. (2015) for models with deterministic 
eigenfrequencies.

19  For example, larger values of the capital share quickly result in numerical problems for the compu-
tation of the linear approximation of the policy function, and too large distances to the true parameter 
result in minus infinity log-likelihood values.
20  For the latter, note that the priors must not change as otherwise information from the data would enter 
the prior.
21  To put it simply, the prior distribution in such cases is only a guess that determines the accuracy of the 
solution in different ranges of parameter values.
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4 � Conclusion

The present article discusses the suitability of PCE for computational models in eco-
nomics. For this purpose, we first provide the theoretical framework for PCE, review the 
basic theory, and give an overview of common distributions and corresponding orthogo-
nal polynomials. We show how to use the expansion as a pointwise approximation for 
the QoI, e.g., to surrogate the linearized policy function or a policy function based on 
projection methods.

Second, we analyze PCE when applied to a standard RBC model and provide 
practical insights. We study convergence behavior for various QoIs and compare the 
most common methods to compute the PCE coefficients for a lower dimensional 
and a higher dimensional problem. Monte Carlo experiments for different empiri-
cal methods show that the PCE-based methods can accurately reproduce the results 
of the benchmark method of repeatedly solving the model. Gains in efficiency are 
large, especially for Bayesian inference.

Our discussion addresses potential drawbacks of the method. First, the efficiency 
of PCE suffers from the curse of dimensions in problems with numerous unknown 
parameters. Further, poorly chosen priors may affect the accuracy of the estimates.

PCE is a powerful tool for a broad set of applications and the recent literature 
addresses the highlighted drawback. We hope this article can encourage applications 
of PCE in economics. Especially, for parameter inference in complex models where 
numerous repeated solutions are infeasible or when time is critical as in real-time 
analysis of high-frequency data.

5 � Supplementary information

MATLAB® code and replication file are available at www.​johan​neshu​ber.​de/​PCE.

Appendix 1 A Simple Example

Here, we want to outline the concept at a simple but analytically tractable construc-
tion of a PCE. Since our numerical analysis focuses on discretely-timed models, our 
example considers the following system of linear first-order difference equations in 
two real-valued variables x1,t and x2,t,

for all t ∈ ℕ , and given x1,0 and x2,0 . Moreover, � ∈ (0, 1) is an unknown parameter. 
While the variables’ explicit recursion can be derived straightforwardly here by

the mapping � ↦ H(�) from the unknown parameter to the (linearized) policy can 
typically not be derived analytically, but can only be computed numerically if the 
system of difference equations is non-linear and stochastic. In consequence, if H(�) 

�x1,t+1 + x2,t+1 = x1,t,

x1,t+1 + x2,t+1 = x2,t,

(
x1,t+1
x2,t+1

)
= H(�)

(
x1,t
x2,t

)
, where H(�) ∶=

(
h11(�) h12(�)

h21(�) h22(�)

)
=

(
−1

1−�

1

1−�
1

1−�

−�

1−�

)
,

https://www.johanneshuber.de/PCE/Supplementary_Material_PCE.zip
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needs to be computed for different parameter values, the underlying numerical meth-
ods must eventually be applied repeatedly. PCE, on the other hand, aims to represent 
the mapping � ↦ H(�) as a truncation from the Fourier series

where qn is the n-th polynomial from a family of orthogonal polynomials, �−1(�) is 
a transformation of the parameter space into the space of the polynomial orthogonal 
counterpart’s argument, and ĥ(n)

ij
 is the corresponding Fourier coefficient of the poly-

nomial. The truncated series expansion is constructed from a limited number of 
numerical evaluations of the mapping as follows.

First, the uncertainty about the parameter is taken into account by describing it by 
a random variable � with suitable probability distribution P� . For the present example, 
suppose that � is uniformly distributed over the interval (0, b), 0 < b ≤ 1 . Second, the 
series expansion is constructed in a well-known family of orthogonal polynomials, which 
satisfies orthogonality w.r.t. some weighting function w. Thereby, the appropriate family 
of orthogonal polynomials is most conveniently chosen in such a way that the weight-
ing function w coincides with the probability density function of the unknown parameter. 
However, in order to achieve conformity between the weighting function and the density 
function, a (linear) transformation of the parameter typically becomes necessary. In the 
present case, Legendre polynomials {Ln}n≥0 are orthogonal w.r.t. the weighting function 
w(s) = 1(−1,1)(s) , i.e., they satisfy

Hence, transformation of the unknown parameter � to the so-called germ � by

yields the desired result, and Legendre polynomials are orthogonal w.r.t. the proba-
bility distribution P� of � . Given that b < 1 , the mapping s ↦ hij(�(s)) for each entry 
hij of the matrix H is square integrable w.r.t. P� and can be represented by a Fourier 
series of the form22

Moreover, orthogonality implies that the Fourier coefficients ĥ(n)
ij

 satisfy

hij(𝜗) =

∞∑
n=0

ĥ
(n)

ij
qn(𝜓

−1(𝜗)),

�
ℝ

Ln(s)Lm(s)w(s)ds =

�
0, if n ≠ m,

‖Ln‖2 ∶= 2

2n+1
, if n = m.

� ∶= �−1(�) ∶= 2
�

b
− 1 ⇔ � = �(�) =

(� + 1)b

2
,

(12)hij(𝜓(s)) =

∞∑
n=0

ĥ
(n)

ij
Ln(s).

22  The details in which sense convergence of the series can be established are discussed in the next sec-
tion.
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Finally, numerical integration methods are generally required to compute the coeffi-
cients ĥ(n)

ij
 . For example, using Gauss-Legendre-quadrature with M nodes si and 

weights �i yields23

Table 10 shows for b = 0.9 and M = 5 the quadrature weights �i , the nodes si , the 
corresponding retransformed parameter values �i ∶= �(si) , and for the matrix entry 
h11 the evaluation h11(�i) =

−1

1−�i
.

Together with L0(si) = 1 , L1(si) = si , ‖L0‖2 = 2 , and ‖L1‖2 = 2

3
 , one can therefore 

compute, e.g.,24

ĥ
(n)

ij
= ‖Ln‖−2 ∫

1

−1

hij(𝜓(s))Ln(s)ds.

ĥ
(n)

ij
≈ ‖Ln‖−2

M�
i=1

hij(𝜓(si))Ln(si)𝜔i.

Table 10   Example

i �i si �i h11(�i)

1 0.2369 −0.9062 0.0422 −1.0441
2 0.4786 −0.5385 0.2077 −1.2621
3 0.5689 0 0.4500 −1.8182
4 0.4786 0.5385 0.6923 −3.2500
5 0.2369 0.9062 0.8578 −7.0314

23  If we additionally write the transformation � between parameter and germ in terms of the Legendre 
polynomials, i.e.,

we equivalently arrive at

Note that this expression is identical to the more general form in (3).

𝜓(s) =
b

2
���

=∶𝜗̂0

L0(s) +
b

2
���

=∶𝜗̂0

L1(s),

ĥ
(n)

ij
≈ ‖Ln‖−2

M�
i=1

hij
�
𝜗̂0L0(si) + 𝜗̂1L1(si)

�
Ln(si)𝜔i.

24  For comparison, exact integration yields

ĥ
(0)

11
=

1

2 ∫
1

−1

−1

1 −
(s+1)b

2

ds =
ln(1 − b)

b
= −2.56,

ĥ
(1)

11
=

3

2 ∫
1

−1

−s

1 −
(s+1)b

2

ds =
6 − 3b

b2
ln(1 − b) +

6

b
= −2.71.
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In this case, the computation of the Fourier coefficients ĥ(n)
11

 requires M = 5 (numer-
ical) evaluations of the mapping � ↦ h11(�) . After computation of the first N + 1 
Fourier coefficients, one can use the truncated series expansion of (12), i.e.,

to (approximately) evaluate h11(�) for arbitrary parameter values without further 
need for direct numerical evaluations.25 Figure 9 shows a comparison between the 
exact evaluation of h11(�) and the truncated PCE with truncation level N = 5.

Finally, note already here that an important restriction of the methods is the 
requirement that the mapping s ↦ hij(�(s)) is square integrable w.r.t. P� , or equiva-
lently w.r.t. the weighting function w corresponding to the family of orthogonal pol-
ynomials. In the present example, this condition is fulfilled for b < 1 . Yet, if b = 1 , 
the integrals from which the coefficients are defined are not finite, e.g.,

ĥ
(0)

11
≈

1

2

5∑
i=1

h11(𝜗i)𝜔i = −2.55 and ĥ
(1)

11
≈

3

2

5∑
i=1

h11(𝜗i)si𝜔i = −2.70.

h11(𝜗) ≈

N∑
n=0

ĥ
(n)

11
Ln(𝜓

−1(𝜗)),

ĥ
(0)

11
=

1

2 ∫
1

−1

−1

1 −
s+1

2

ds = −∞.

Fig. 9   Example: Exact Evaluation and PCE (numerical integration)

25  Of course, an appropriate choice of the number M of quadrature nodes and, therefore, of the number 
of numerical evaluations is necessary to derive the Fourier coefficients depending on the truncation level 
N. More details on this topic are provided in the next section.
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Appendix 2 Orthogonal Polynomials

We give a short overview of the families of orthogonal polynomials summarized in 
Table 1. More details, in particular regarding their completeness in the respective 
Hilbert spaces L2 of square-integrable functions, can be found in Szegő (1939).

Hermite polynomials

Hermite polynomials are defined by the recurrence relation

and form a complete orthogonal system on L2(ℝ,B(ℝ), w̃(x)dx) with weighting 
function

More specifically,

The probability density function of a normal distributed random variable 
� ∼ N(�, �2) with mean � and variance �2 is given by

Fixing the transformation between the germ and � in this case to

so that the germ � is defined by

implies that � has probability density function

Since w differs from w̃ only by a constant factor, it follows that

and that Hermite polynomials also form a complete orthogonal system in 
L2(ℝ,B(ℝ), dP�) with

H0(x) = 1, H1(x) = 2x, Hn+1(x) = 2xPn(x) − 2nPn−1(x), n ≥ 2

w̃(x) ∶= e−x
2

.

∫
ℝ

Hn(x)Hm(x)w̃(x)dx = 2n(n!)
√
𝜋𝛿n,m

f�(�) =
1√
2��

e
−

(�−�)2

2�2 .

�(s) ∶= � +
√
2�s

� ∶= �−1(�) =
� − �√

2�

w(s) = f𝜃(𝜓(s))𝜓 �(s) =
1√
𝜋
e−s

2

=
1√
𝜋
w̃(s).

L2(ℝ,B(ℝ), dP𝜉) = L2(ℝ,B(ℝ),w(s)ds) = L2(ℝ,B(ℝ), w̃(s)ds),
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Moreover, given the nodes sj and weights 𝜔̃j from the common Gauss-Hermite-
quadrature rule for weighting function w̃ , the Gauss-quadrature rule in terms of 
weighting function w has the same nodes while the weights are scaled by 𝜔j =

𝜔̃j√
𝜋
.

Legendre polynomials

Legendre polynomials are defined by the recurrence relation

and form a complete orthogonal system in L2([−1, 1],B([−1, 1]), dx) , i.e.,

The probability density function of an uniformly distributed random variable 
� ∼ U[0, 1] over [0, 1] is given by

Fixing the transformation between the germ and � in this case to

so that the germ � is defined by

implies that � has probability density function

Hence, it follows that

and consequently the Legendre polynomials also form a complete orthogonal sys-
tem in L2(ℝ,B(ℝ), dP�) with

∫
ℝ

Hn(s)Hm(s)dP𝜉(s) = ∫
ℝ

Hn(s)Hm(s)w(s)ds

=
1√
𝜋 ∫

ℝ

Hn(s)Hm(s)w̃(s)ds

= 2n(n!)𝛿n,m.

L0(x) = 1, L1(x) = 2x, (n + 1)Ln+1(x) = (2n + 1)xLn(x) − nLn−1(x), n ≥ 2

∫
1

−1

Ln(x)Lm(x)dx =
2

2n + 1
�n,m.

f�(�) = 1[0,1](�) ∶=

{
1, if � ∈ [0, 1]

0, if � ∈ ℝ ⧵ [0, 1]

�(s) ∶=
s + 1

2

� ∶= �−1(�) = 2� − 1

w(s) = f�(�(s))� �(s) =
1

2
1[−1,1](s).

L2(ℝ,B(ℝ), dP�) = L2(ℝ,B(ℝ),w(s)ds) ≃ L2([−1, 1],B([−1, 1]), ds),
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Moreover, given the nodes sj and weights 𝜔̃j from the common Gauss-Legendre 
quadrature rule for weighting function w̃ , the Gauss-quadrature rule in terms of 
weighting function w has the same nodes while the weights are scaled by 𝜔j =

𝜔̃j

2
.

Jacobi polynomials

Jacobi polynomials are defined by the recurrence relation

where

They form a complete orthogonal system on L2([−1, 1],B([−1, 1]), w̃(x)dx) with 
weighting function

More specifically,

The probability density function of a Beta-distributed random variable 
� ∼ Beta(�, �) with shape parameters � and � is given by 26

∫
ℝ

Ln(s)Lm(s)dP�(s) = ∫
ℝ

Ln(s)Lm(s)w(s)ds

=
1

2 ∫
1

−1

Ln(s)Lm(s)ds

=
1

2n + 1
�n,m.

J
(�,�)

0
(x) = 1,

J
(�,�)

1
(x) =

1

2
(� − � + (� + � + 2)x),

a1,nJ
(�,�)

n+1
(x) = (a2,n + a3,nx)J

(�,�)
n

(x) − a4,nJ
(�,�)

n−1
(x), n ≥ 2

a1,n = 2(n + 1)(n + � + � + 1)(2n + � + �),

a2,n = (2n + � + � + 1)(�2 − �2),

a3,n = (2n + � + �)(2n + � + � + 1)(2n + � + � + 2),

a4,n = 2(n + �)(n + �)(2n + � + � + 2).

w̃(x;𝛼, 𝛽) ∶= (1 − x)𝛼(1 + x)𝛽 .

∫
1

−1

J(𝛼,𝛽)
n

(x)J(𝛼,𝛽)
m

(x)w̃(x;𝛼, 𝛽)dx

=
2𝛼+𝛽+1

2n + 𝛼 + 𝛽 + 1

Γ(n + 𝛼 + 1)Γ(n + 𝛽 + 1)

Γ(n + 𝛼 + 𝛽 + 1)n!
𝛿nm.

26  We denote by B(x, y) the beta function.
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 Fixing the transformation between the germ and � in this case to

so that the germ � is defined by

implies that � has probability density function

Since w(s;�, �) differs from w̃(s;𝛽 − 1, 𝛼 − 1) only by a constant factor, it follows 
that

and that the Jacobi polynomials {J(�−1,�−1)
n

}n∈ℕ0
 also form a complete orthogonal 

system in L2(ℝ,B(ℝ), dP�) with

Moreover, given the nodes sj and weights 𝜔̃j from the common Gauss-Jacobi-quad-
rature rule for weighting function w̃(., 𝛽 − 1, 𝛼 − 1) , the Gauss-quadrature rule in 
terms of weighting function w(., �, �) has the same nodes while the weights are 
scaled by 𝜔j =

21−𝛼−𝛽

B(𝛼,𝛽)
𝜔̃j.

f�(�;�, �) =
1

B(�, �)
��−1(1 − �)�−11[0,1](�).

�(s) ∶=
s + 1

2

� ∶= �−1(�) = 2� − 1

w(s;𝛼, 𝛽) = f𝜃(𝜓(s);𝛼, 𝛽)𝜓 �(s)

=
1

B(𝛼, 𝛽)

(
s + 1

2

)𝛼−1(
1 −

s + 1

2

)𝛽−1 1

2
1[−1,1](s)

=
21−𝛼−𝛽

B(𝛼, 𝛽)
(s + 1)𝛼−1(1 − s)𝛽−11[−1,1](s)

=
21−𝛼−𝛽

B(𝛼, 𝛽)
w̃(s;𝛽 − 1, 𝛼 − 1)1[−1,1](s).

L2(ℝ,B(ℝ), dP𝜉) = L2(ℝ,B(ℝ),w(s;𝛼, 𝛽)ds) ≃

≃ L2([−1, 1],B([−1, 1]), w̃(s;𝛽 − 1, 𝛼 − 1)ds),

∫
ℝ

J(𝛽−1,𝛼−1)
n

(s)J(𝛽−1,𝛼−1)
m

(s)dP𝜉(s) =

= ∫
ℝ

J(𝛽−1,𝛼−1)
n

(s)J(𝛽−1,𝛼−1)
m

(s)w(s;𝛼, 𝛽)ds

=
21−𝛼−𝛽

B(𝛼, 𝛽) ∫
1

−1

J(𝛽−1,𝛼−1)
n

(s)J(𝛽−1,𝛼−1)
m

(s)w̃(s;𝛽 − 1, 𝛼 − 1)ds

=
1

B(𝛼, 𝛽)(2n + 𝛼 + 𝛽 − 1)

Γ(n + 𝛽)Γ(n + 𝛼)

Γ(n + 𝛼 + 𝛽 − 1)n!
𝛿nm.
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Generalized laguerre polynomials

Generalized Laguerre polynomials are defined by the recurrence relation

They form a complete orthogonal system on L2([0,∞),B([0,∞)), w̃(x)dx) with 
weighting function

More specifically,

The probability density function of a Gamma-distributed random variable, denoted 
by � ∼ Gamma(�, �) , with shape parameter � and rate parameter � is given by 

27 Fixing the transformation between the germ and � in this case to

so that the germ � is defined by

implies that � has probability density function

Since w(s;�, �) differs from w̃(s;𝛼 − 1) only by a constant factor, it follows that

La
(�)

0
(x) = 1,

La
(�)

1
(x) = 1 + � − x,

(n + 1)La
(�)

n+1
(x) = (2n + 1 + � − x)La(�)

n
(x) − (n + �)La

(�)

n−1
(x), n ≥ 2

w̃(x;𝛼) ∶= x𝛼e−x.

∫
∞

0

La(𝛼)
n
(x)La(𝛼)

m
(x)w̃(x;𝛼)dx =

Γ(n + 𝛼 + 1)

n!
𝛿nm.

f�(�;�, �) ∶=
��

Γ(�)
��−1e−��1[0,∞)(�).

�(s) ∶=
s

�

� ∶= �−1(�) = ��

w(s;𝛼, 𝛽) = f𝜃(𝜓(s);𝛼, 𝛽)𝜓 �(s) =
𝛽𝛼

Γ(𝛼)

(
s

𝛽

)𝛼−1

e−s
1

𝛽
1[0,∞)(s)

=
1

Γ(𝛼)
w̃(s;𝛼 − 1)1[0,∞)(s).

L2(ℝ,B(ℝ), dP𝜉) = L2(ℝ,B(ℝ),w(s;𝛼, 𝛽)ds)

≃ L2([0,∞),B([0,∞)), w̃(s;𝛼 − 1)ds),

27  We denote by Γ(x) the gamma function.
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and that the generalized Laguerre polynomials {La(�−1)
n

}n∈ℕ0
 also form a complete 

orthogonal system in L2(ℝ,B(ℝ), dP�) with

Moreover, given the nodes sj and weights 𝜔̃j from the common Gauss-Laguerre-
quadrature rule for weighting function w̃(., 𝛼 − 1) , the Gauss-quadrature rule in 
terms of weighting function w(., �, �) has the same nodes while the weights are 
scaled by 𝜔j =

𝜔̃j

Γ(𝛼)
.

Appendix 3 Intrusive model expansion

Stochastic Galerkin
For both methods discussed in section 2.1.2, the computation of the expansion 

coefficients is detached from the underlying procedure from which the model out-
come is computed. This is different from the third method. Instead of a more general 
discussion, we therefore only illustrate this method for the case where the PCE of a 
model’s policy function is constructed. To simplify the notation, suppose that the 
equations defining the model’s solution can be reduced to a sole Euler equation in a 
single variable. Let S ⊂ ℝ

s denote the model’s state space and let g ∶ S → ℝ denote 
the variable’s policy function. The Euler equation is typically translated into a func-
tional (integral) equation for g, say

If the functional equation can not be solved analytically, a common approach is to 
construct an approximation ĝ from linear combinations of some basis functions,28 
say Φj, j = 1,… , d , i.e.,

In order to determine the coefficients yj in the approximation, which now serves 
as our model outcome of interest and should not be confused with the Fourier 

∫
ℝ

La(𝛼−1)
n

(s)La(𝛼−1)
m

(s)dP𝜉(s) =

= ∫
ℝ

La𝛼−1)
n

(s)J(𝛼−1)
m

(s)w(s;𝛼, 𝛽)ds

=
1

Γ(𝛼) ∫
∞

0

La(𝛼−1)
n

(s)La(𝛼 − 1)m(s)w̃(s;𝛼 − 1)ds

=
Γ(n + 𝛼)

Γ(𝛼)n!
𝛿nm.

R(g, x) = 0 for all x ∈ S.

ĝ(x) =

d∑
j=1

yjΦj(x).

28  Most commonly these are selected either as (tensor products of) Chebyshev polynomials or as piece-
wise linear or cubic polynomials.
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coefficients of the PCE, one can, for example, select d appropriate collocation points 
x1,… , xd ∈ S and solve the non-linear system of equations given by

for y1,… , yd.
Now consider the case where one parameter is uncertain and hence described by 

the random variable � . If the model’s (reduced) Euler equation involves � , then so 
does the functional equation for g, i.e., we now write

Moreover, if one employs the above-mentioned solution method, the coefficients yj 
will typically also depend on � , i.e., we have, in slight abuse of notation, Yj = hj(�) . 
In particular, the mappings hj between the Yj and � arise implicitly from the non-
linear system of equations

In order to avoid the necessity for repeated and potentially computationally expen-
sive solutions of this system of equations for different values of � , one may want to 
find for each Yj a PCE in terms of some chosen germ �29

The PCE of the model’s (approximated) policy function with respect to the germ � 
is then given by

Moreover, the Fourier coefficients ŷjn in the PCE can be derived by a Galerkin 
method if we substitute the Yj in their implicit definition in (13) with their PCE and 
impute the corresponding conditions

R

(
d∑
j=1

yjΦj, xi

)
= 0 for all i = 1,… , d

R(g, x;�) = 0 for all x ∈ S.

(13)R

(
d∑
j=1

YjΦj, xi;�

)
= 0 for all i = 1,… , d.

𝜃 = 𝜓(𝜉) =

∞∑
n=0

𝜗̂nqn(𝜉),

Yj = hj(𝜃) = hj(𝜓(𝜉)) =

∞∑
n=0

ŷjnqn(𝜉).

ĝ(x;𝜉) =

d∑
j=1

YjΦj(x) =

d∑
j=1

∞∑
n=0

ŷjnqn(𝜉)Φj(x).

29  Note that in this case we have d model outcomes of interest, namely the coefficients Yj = hj(�) in ĝ.
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Hence, we can solve for the d(N + 1) unknown coefficients ŷjn in the truncated PCE 
Yj ≈

∑N

n=0
ŷjnqn(𝜉) from the system of equations

for i = 1,… , d and m = 0,… ,N . The integral is computed numerically, either 
from Monte-Carlo draws or from an appropriate Gauss quadrature. Moreover, 
�(�) can be substituted by its truncated series expansion as previously described in 
subsection 2.1.1.

Appendix 4 Smolyak‑Gauss‑Quadrature

Suppose that for every i = 1,… , k the distribution P�i
 of �i possesses a probability 

density function wi , so that w ∶=
∏k

i=1
wi is the probability density of P� . Then (6b) 

becomes

Further, suppose that one-dimensional Gauss-quadrature rules corresponding to 
weighting functions wi and orthogonal polynomials {qin}n∈ℕ0

 are available. For 
i = 1,… , k let Qi(Mi) denote this one-dimensional Gauss-quadrature rule with Mi 
nodes {s(j)

i,Mi
}j=1,…,Mi

 and weights {�(j)

i,Mi
}j=1,…,Mi

 , i.e.,

Then choose for each i = 1,… , k an increasing sequence of natural numbers 
{Mij}j∈ℕ ⊂ ℕ,Mij+1 > Mij and define the difference operator by

R

(
d∑
j=1

∞∑
n=0

ŷjnqn(𝜉)Φj, xi;𝜓(𝜉)

)
= 0 in L2,∀i = 1,… , d

⇔

⟨
R

(
d∑
j=1

∞∑
n=0

ŷjnqn(𝜉)Φj, xi;𝜓(𝜉)

)
, qm(𝜉)

⟩

L2

= 0 ∀i = 1,… , d, ∀m ∈ ℕ0.

0 ≈

⟨
R

(
d∑
j=1

N∑
n=0

ŷjnqn(𝜉)Φj, xi;𝜓(𝜉)

)
, qm(𝜃)

⟩

L2

= ∫
ℝ

R

(
d∑
j=1

N∑
n=0

ŷjnqn(𝜉)Φj, xi;𝜓(𝜉)

)
qm(𝜉)dP𝜉(𝜉)

(14)
ŷ𝛼 = ‖q𝛼‖−2L2 ×

∫
ℝ

…∫
ℝ

h(𝜓(s1,… , sk))q1𝛼1(s1)… qk𝛼k (sk)w1(s1)…wk(sk)ds1 … dsk.

Qi(Mi)g ∶=

Mi∑
j=1

�
(j)

i,Mi
g(s

(j)

i,Mi
) for g ∈ L2

i
.

Δi1 ∶= Qi(Mi1) and Δij ∶= Qi(Mij) − Qi(Mij−1), j ≥ 2.
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The Smolyak-Gauss-quadrature rule of order l ∈ ℕ and with growth rules given by 
{Mij}j∈ℕ is defined by

or equivalently taking care of duplicate terms in the difference operators

Applying the Smolyak-Gauss-quadrature rule to (14) in particular yields the 
approximation

This procedure requires to evaluate the model outcome of interest 
h
(
�

(
s
(j1)

1,M1,�1

… s
(jk)

k,Mk,�k

))
 at all sparse-grid points.

Appendix 5 Monomial rules

Stroud (1971) introduces sparse numerical integration with monomial rules and pre-
sents various rules to integrate in different spaces. In this section, we present some 
numerical results for the calculation of the PCE coefficients.

Rosenbrock function

To show the general functioning of the monomial quadrature rules, we first replicate 
the exercise of Bhusal and Subbarao (2020), i.e., approximate the Rosenbrock function

Ql ∶=
∑

� ∈ ℕ
k

|�| ≤ k + l

k⨂
i=1

Δi�i
.

Ql =
∑

� ∈ ℕ
k

max{k, l + 1} ≤ |�| ≤ k + l

(−1)k+l−1
(

k − 1

k + l − |�|
) k⨂

i=1

Qi(Mi�i
).

ŷ𝛼 ≈

�
k�

i=1

‖qi𝛼i‖2L2
i

�−1 �
𝜈 ∈ ℕ

k

max{k, l + 1} ≤ �𝜈� ≤ k + l

(−1)k+l−1
�

k − 1

k + l − �𝜈�
�

M1,𝜈1�
j1=1

…

Mk,𝜈k�
jk=1

𝜔
(j1)

1,M1,𝜈1

…𝜔
(jk)

k,Mk,𝜈k

× h
�
𝜓

�
s
(j1)

1,M1,𝜈1

… s
(jk)

k,Mk,𝜈k

��

× q1𝛼1

�
s
(j1)

1,M1,𝜈1

�
… qk𝛼k

�
s
(jk)

k,Mk,𝜈k

�
.
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with PCE. We consider the cases where xi ∼ U(−2, 2) and d ∈ {5, 6} . As Bhusal 
and Subbarao (2020), we consider the CUT-8 and CUT-6 rules from Adurthi et al. 
(2018) and full tensor grid, sparse grid, and least squares from the main body of 
the paper. We consider a truncation at levels 4, 5, and 6. Lastly, note that for those 
dimensions ( d ∈ {5, 6} ), we could not find any monomial rules presented by Stroud 
(1971) higher degree 5 that have solely non-negative weights and are in the vari-
ables space, e.g., the first weight of the fifth-degree rule presented in Judd (1998) ( 
Stroud (1971) Cn5 − 5 ) becomes −60.44 for d = 5 . Further, the degree 5 rules with 
solely positive weights approximate the Rosenbrock function poorly. Lastly, the 
CUT-8 rule nodes leave the boundaries of space of xi for d > 6 and has already one 
negative weight for d = 6.

Table 11 presents the results. The CUT-8 rule performs well for d = 5 . How-
ever, the CUT-8 rule is outperformed by Least Squares. The performance of the 
CUT-8 becomes worse with d = 6 , where one weight becomes negative ( ≈ −.5 ), 
yet the approximation seems still good.

f (x) =

d−1∑
i=1

100
(
xi+1 − x2

i

)2
+ (1 − xi)

2

Table 11   Rosenbrock PCE approximation

Tensor grid lvl. = Trunc. lvl.=4 +1, Smolyak, min NGrid , given log10 L2 Error<-5, Least Squares, twice 
PCE coefficients

5-d Rosenbrock PCEapproximation

Trunc. lvl 4 5 6

log10 L
2 Error NGrid log10 L

2 Error NGrid log10 L
2 Error NGrid

Tensor Grid −10.98 3,125 −10.87 7,776 −11.15 16,807
Sparse Grid −9.74 781 −9.70 781 −9.37 2,203
Least Squares −10.91 252 −10.81 504 −10.58 924
CUT-6 1.90 155 2.49 155 3.20 155
CUT-8 −10.44 425 −10.45 425 1.45 425

6-d Rosenbrock PCE approximation

Trunc. lvl 4 5 6

log10 L
2 Error NGrid log10 L

2 Error NGrid log10 L
2 Error NGrid

Tensor Grid −10.87 15,625 −10.72 46,656 −10.84 117,649
Sparse Grid −9.31 1,433 −9.28 1,433 −8.71 4,541
Least Squares −10.94 420 −10.77 924 −10.60 1,848
CUT-6 2.07 301 2.61 301 3.35 301
CUT-8 −6.93 973 −6.89 973 1.79 937



1134	 D. Fehrle et al.

RBC Model

Now we replicate the integration analysis of the main paper (Figure 4 and 5 there) 
for the CUT rules. Given the results of the previous section on monomial rules, we 

Fig. 10   L2 Convergence of PCE with approximated coefficients and computation time on an Intel® 
Core™i7-7700 CPU @ 3.60GHz
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reduce the space to 5 dimensions ( � is now fixed) and assume 
𝜃−𝜑̂0

𝜑̂1

= 𝜓(s) ∼ B(1, 1) = U(0, 1) for all �.

Fig. 11   L2 Convergence of PCE with approximated coefficients and computation time on an Intel® 
Core™i7-7700 CPU @ 3.60GHz
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Figures 10 and 11 illustrate the analyses. It turns out that the monomial rule CUT8 
outperforms all other sparse methods for truncation at N = 5 and all methods in time at 
this truncation level. However, a higher truncation leads to more imprecise approxima-
tions. The problem is the lack of high-degree, high-dimensional monomial rules for dif-
ferent distributions. However, suitable cases for existing monomial rules seem to work 
well, which motivates further research to find high-degree, high-dimensional monomial 
rules for mixed distributions.

Appendix 6 Further applications of Generalized Polynomial Chaos 
Expansions

We present here additional applications of PCE. First, we show how to use PCE as 
surrogates for the gradients. Further, statistical properties of the model outcome, as 
induced by the predefined distribution of the uncertain input parameters, can be derived 
directly from the PCE. Additionally, in somewhat other contexts, PCE can be used to 
discretize the space of cross-sectional distributions.

Surrogate for Gradients 
The truncated PCE in (9) may also be used to approximate the derivatives of the 

mapping h between parameter values and model outcomes. More specifically, the PCE 
provides the approximation

This approximation can be useful if such derivatives must be evaluated at a poten-
tially large number of points. One example may be the method proposed by Iskrev 
(2010) for conducting local identification analysis which requires differentiation of 
the linearized policy function concerning the parameters.

Evaluation of Statistical Properties 

Convergence in L2(Ω,A,P) of the series expansion in (5b) implies that the distribu-
tion of the model outcome Y can be equivalently characterized by its polynomial 
expansion. In particular, the mean and variance of Y follow directly from the fact 
that convergence in L2 also implies convergence of the mean and variance so that 
orthogonality of the polynomials (and q

0
= 1 for 0 ∶= (0,… , 0) ∈ ℕ

k
0
 ) yields

and

𝜕h

𝜕𝜗i
(𝜗) ≈

∑
𝛼∈ℕk

0
,|𝛼|≤N

ŷ𝛼

k∑
j=1

𝜕q𝛼

𝜕sk
(𝜓−1(𝜗))

𝜕𝜓−1
j

𝜕𝜗i
(𝜗).

𝔼[Y] =
�
𝛼∈ℕk

0

ŷ𝛼𝔼[q𝛼(�)] =
�
𝛼∈ℕk

0

ŷ𝛼𝔼[q𝛼(�)q0(�)] =
�
𝛼∈ℕk

0

ŷ𝛼⟨q𝛼 , q0⟩L2 = ŷ
0
,
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Moreover, other statistical properties can be computed by Monte Carlo methods. 
Large samples of Y can be efficiently constructed by drawing from the germ’s dis-
tribution and inserting the sample into the expansion of Y. Compared to traditional 
methods, repeated and costly model evaluations can thus be avoided.

Sobol’s indices for global variance-based sensitivity analysis The decomposition 
of the model’s outcome variance from above also lays the foundation for the sensi-
tivity analyses of Harenberg et  al. (2019). More specifically, consider a truncated 
PCE Stot

N
(Y) or Smax

N
(Y) of the model outcome Y as in (7b) or (8b). By reordering, one 

can then equivalently write the truncated PCE as

i.e., for any collection {�i}i∈I where I ⊂ {1,… , k} we now explicitly group the 
polynomials q�(�) with non-zero degree in each �i, i ∈ I but zero-degree in all 
�, i ∉ I . Orthogonality of the polynomials then implies for any nonempty collection 
I ⊂ {1,… , k}, I ≠ � that

and

The Sobol indices then describe the shares of the variance that are explained by a 
collection {�i}i∈I of germs for I ⊂ {1,… , k}, I ≠ �

The first order Sobol indices S{i} for single germs �i are interpreted as the fraction of 
the total variance which would disappear when �i would be perfectly known. On the 
other hand, the total contribution indices are defined by

Var[Y] = 𝔼

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎝
�
𝛼∈ℕk

0

ŷ𝛼q𝛼(�) − ŷ
0

⎞
⎟⎟⎠

2⎤
⎥⎥⎥⎦
= 𝔼

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎝

�
𝛼∈ℕk

0
⧵{0}

ŷ𝛼q𝛼(�)

⎞
⎟⎟⎠

2⎤
⎥⎥⎥⎦
=

=
�

𝛼,𝛽∈ℕk
0
⧵{0}

ŷ𝛼 ŷ𝛽⟨q𝛼 , q𝛽⟩L2 =
�

𝛼∈ℕk
0
⧵{0}

ŷ2
𝛼
‖q𝛼‖2L2 .

Stot
N
(Y) =

∑
I⊂{1,…,k}

∑
𝛼 ∈ ℕ

k
0
, |𝛼| ≤ N

𝛼i ≠ 0 ∀i ∈ I

𝛼i = 0 ∀i ∉ I

ŷ𝛼q𝛼(𝜉),

VI ∶= Var
� �
𝛼 ∈ ℕ

k
0
, �𝛼� ≤ N

𝛼i ≠ 0 ∀i ∈ I

𝛼i = 0 ∀i ∉ I

ŷ𝛼q𝛼(�)
�
=

�
𝛼 ∈ ℕ

k
0
, �𝛼� ≤ N

𝛼i ≠ 0 ∀i ∈ I

𝛼i = 0 ∀i ∉ I

ŷ2
𝛼
‖q𝛼‖2L2

V ∶= Var[Stot
N
(Y)] =

∑
I ⊂ {1,… , k},

I ≠ �

VI .

SI ∶=
VI

V
.
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and describe the germ’s total contribution to the outcome’s variance.
Relevance for (Bayesian) estimation As Harenberg et al. (2019) note, a sufficient 

size of the total Sobol’ index of the parameter �i is a necessary condition for the 
identifiability of �i using Y. In terms of Bayesian estimation, PCE also facilitates the 
comparison of the model outcome’s prior and posterior distribution. Once we have 
obtained the parameters’ posterior distribution, PCE enables the representation of 
the corresponding posterior distribution of the model’s outcome. We can then com-
pare the PCE implied variances and the contribution of an arbitrary set of param-
eters, which delivers an indicator for the reduced uncertainty of the model outcome 
Y subject to this set of parameters.

Discretizing space of cross-sectional distributions 

Here, we briefly present the possibility of using PCE to discretize the state space in mod-
els where a cross-sectional distribution over heterogeneous agents becomes a state vari-
able for individual decision rules as suggested by Pröhl (2017). Her examples are mod-
els that combine idiosyncratic income risk with aggregate productivity risk as Aiyagari 
(1994). In such models, households need to know the decision rules of other households 
to form rational expectations about future aggregates and prices for their own decisions. 
Yet, since the decisions of other households depend on their respective individual states, 
households need to factor in the whole cross-sectional distribution over individual states 
for their own decision. In consequence, the cross-sectional distribution of individual 
states becomes an argument for the individuals’ policy function in such models.

The literature offers different approaches in order to discretize the state space. 
Krusell and Smith (1998) suggest a bounded rationality approach and base the 
individuals’ policy function only on partial information from the cross-sectional 
distribution, e.g., a finite number of moments, and a parametric law of motion for 
these measures. The method of Reiter (2009) discretizes the state space by piece-
wise uniform distributions over a finite number of histogram bins. Differently, Pröhl 
(2017) replaces the cross-sectional distribution as an argument of the decision rule 
by the coefficients of its (truncated) PCE given a choice of germs. More precisely, 
if � denotes the germ with cumulative distribution function F� and �t is the cross-
sectional distribution over individual states in period t, then the random variable

is distributed according to �t.30 One can then compute the coefficients 𝜗̂n,t of its PCE

ST
i
∶=

∑ I ⊂ {1,… , k},

i ∈ I
VI

V

�t ∶= �−1
t
◦F�◦�

30  Note that �t does not denote a model parameter in this context as in the rest of the present paper. 
Instead, �t is a random variable that is distributed according to the cross-sectional distribution �t and that 
is a function of the germ. Hence, �t can be interpreted as the random variable constructed from the basis 
� that describes a random draw from the mass of heterogenous agents in period t.
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analog to the methods described in section 2 from

Instead of the cross-sectional distribution �t , one can then use a finite number of 
the PCE coefficients 𝜗̂n,t as arguments of the individual policy function. On the one 
hand, the PCE coefficients 𝜗̂n,t then allow to recover the cross-sectional distribution 
�t and aggregate variables in period t. On the other hand, the individual decision 
rules imply the law of motion of the cross-sectional distribution, �t ↦ �t+1 , and the 
PCE coefficients 𝜗̂n,t+1 of �t+1 can be derived as above. Hence, the method of Pröhl 
(2017) does not need a parametric assumption about the law of motion for the cross-
sectional distribution. Pröhl (2017) shows that this approach provides more precise 
solutions and thereby, brings new economic characteristics of those well-known 
models.

Appendix 7 Supplementary Results

Figure  12 contain the supplement MLE results for a sample size of T = 500 and 
a particle filter with 10000 particles, respectively. Analogously, to Tables 7 and 8 
the Tables 12, 13 and  14 in this appendix contains the full BE results based on the 
global projection solution.

𝜃t = 𝜇−1
t
(F𝜉(𝜉)) =

∞∑
n=0

𝜗̂n,tqn(𝜉)

𝜗̂n,t = ‖qn‖−2L2 ⟨𝜇−1
t
◦F𝜉 , qn⟩L2 = ‖qn‖−2L2 ∫

ℝ

(𝜇−1
t
◦F𝜉)qndP𝜉 .
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Fig. 12   ML from various likelihood approximations ( M = 96 ) with T=500. PCE: PCE approximated 
likelihood from a particle filter, SPCE: Only successful PCE approximations ( MS ), i.e., exclusion of 
maxima at the parameter bounds. LinRep: Repeated likelihood evaluation using the Kalman Filter from 
the linear model solution. N equals the truncation level, the quadrature level equals N+1. Computation 
time on one core of an AMD® EPYC™7313 (Milan) CPU @ 3.00GHz
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Fig. 13   ML from various likelihood approximations ( M = 96 ) with 10,000 particles. PCE: PCE approxi-
mated likelihood from a particle filter, SPCE: Only successful PCE approximations ( MS ), i.e., exclusion 
of maxima at the parameter bounds. LinRep: Repeated likelihood evaluation using the Kalman Filter 
from the linear model solution. N equals the truncation level, the quadrature level equals N+1. Computa-
tion time on one core of an AMD® EPYC™7313 (Milan) CPU @ 3.00GHz
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Table 12   Monte Carlo results - Bayesian estimation (global) I

Observable: Output Yt . 𝜖j : mean error, �j,.05 : 5 percentile of error, �j,.5 : median of error, �j,.95 : 95 percen-
tile of error. Errors are expressed as deviations from the benchmark method of repeatedly solving the 
(global) policy function in percent of the range of the parameter’s distribution. Time: hh:mm:ss on one 
core of an AMD® EPYC™7313 (Milan) CPU @ 3.00GHz

Benchmark (repeated solution)

Time: Total average
18:17:37

Linear policy function

Time: Total average
00:05:45

Mean: Quantile:
j x: 5% 10% 25% 50% 75% 90% 95%

� 𝜖j(x) 1.70 2.30 2.01 1.75 1.62 1.70 1.92 2.17
�j(x).05 0.14 0.08 0.09 0.15 0.10 0.15 0.09 0.10
�j(x).5 1.46 1.77 1.69 1.66 1.40 1.46 1.55 1.84
�j(x).95 3.63 5.87 4.98 4.06 3.44 4.12 5.03 5.83

� 𝜖j(x) 3.68 3.57 3.66 3.80 3.87 3.86 3.78 3.71
�j(x).05 0.19 0.13 0.07 0.32 0.25 0.19 0.28 0.29
�j(x).5 3.64 2.96 3.21 3.62 3.77 3.53 3.25 3.29
�j(x).95 9.07 8.81 8.80 9.14 9.61 8.82 8.56 8.35

� 𝜖j(x) 2.56 3.51 3.35 3.08 2.70 2.21 1.80 1.63
�j(x).05 0.72 2.03 1.90 1.58 0.87 0.37 0.24 0.21
�j(x).5 2.49 3.47 3.31 3.05 2.69 2.12 1.67 1.57
�j(x).95 4.57 5.18 5.05 4.88 4.66 4.40 4.12 3.75
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Table 13   Monte Carlo results - Bayesian estimation (global) II

Observable: Output Yt . 𝜖j : mean error, �j,.05 : 5 percentile of error, �j,.5 : median of error, �j,.95 : 95 percen-
tile of error. Errors are expressed as deviations from the benchmark method of repeatedly solving the 
(global) policy function in percent of the range of the parameter’s distribution. Time: hh:mm:ss on one 
core of an AMD® EPYC™7313 (Milan) CPU @ 3.00GHz. The truncation degree and quadratur level of 
the expanded QoI are 14 and 13, respectively

PCE Posterior-Kernel

Time: Total average
00:32:27

PCE
00:32:24

Estimation average
00:00.03

Mean: Quan-
tile:

j x: 5% 10% 25% 50% 75% 90% 95%

� 𝜖j(x) 1.63 2.04 1.98 1.86 1.75 1.68 1.64 1.71
�j(x).05 0.09 0.09 0.06 0.19 0.06 0.06 0.15 0.12
�j(x).5 0.80 0.90 1.01 0.81 0.99 0.90 0.89 0.86
�j(x).95 3.08 4.31 4.10 3.95 3.51 3.38 3.53 3.64

� 𝜖j(x) 2.56 2.85 3.07 3.03 3.09 2.71 2.70 2.58
�j(x).05 0.11 0.28 0.22 0.25 0.16 0.10 0.14 0.09
�j(x).5 1.75 1.96 2.41 1.94 2.31 1.70 1.99 1.88
�j(x).95 7.17 6.79 7.90 8.55 8.46 7.65 7.44 6.75

� 𝜖j(x) 0.70 0.77 0.76 0.75 0.77 0.73 0.75 0.78
�j(x).05 0.02 0.05 0.08 0.06 0.04 0.03 0.07 0.06
�j(x).5 0.51 0.56 0.50 0.54 0.57 0.49 0.51 0.49
�j(x).95 2.10 1.82 1.98 2.07 2.21 2.30 2.64 2.38
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Table 14   Monte Carlo results - Bayesian estimation (global) III

Observable: Output Yt . 𝜖j : mean error, �j,.05 : 5 percentile of error, �j,.5 : median of error, �j,.95 : 95 percen-
tile of error. Errors are expressed as deviations from the benchmark method of repeatedly solving the 
(global) policy function in percent of the range of the parameter’s distribution. Time: hh:mm:ss on one 
core of an AMD® EPYC™7313 (Milan) CPU @ 3.00GHz. The truncation degree and quadratur level of 
the expanded QoI are 14 and 13, respectively

PCE policy function(global)

Time: Total average
17:45:11

PCE
00:00.27

Estimation average
17:44:44

Mean: Quantile:
j x: 5% 10% 25% 50% 75% 90% 95%

� 𝜖j(x) 0.09 0.25 0.15 0.09 0.06 0.07 0.13 0.21
�j(x).05 0.00 0.02 0.02 0.01 0.00 0.00 0.01 0.01
�j(x).5 0.05 0.18 0.12 0.07 0.05 0.06 0.11 0.16
�j(x).95 0.26 0.71 0.35 0.22 0.14 0.20 0.32 0.67

� 𝜖j(x) 0.20 0.32 0.28 0.24 0.23 0.27 0.31 0.43
�j(x).05 0.01 0.03 0.02 0.01 0.01 0.04 0.00 0.03
�j(x).5 0.17 0.24 0.23 0.22 0.18 0.23 0.28 0.37
�j(x).95 0.48 0.95 0.64 0.57 0.58 0.66 0.78 1.08

� 𝜖j(x) 0.05 0.11 0.09 0.08 0.07 0.08 0.11 0.15
�j(x).05 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03
�j(x).5 0.04 0.10 0.07 0.07 0.06 0.06 0.10 0.13
�j(x).95 0.14 0.25 0.21 0.16 0.18 0.20 0.27 0.35

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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