Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/323284 
Erscheinungsjahr: 
2025
Quellenangabe: 
[Journal:] Central European Journal of Operations Research [ISSN:] 1613-9178 [Volume:] 33 [Issue:] 2 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2025 [Pages:] 585-607
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
We consider the problem of obtaining linear state feedback controllers to achieve consensus in a homogeneous network of general second-order discrete-time systems whose graph is directed. Consensus is achieved if certain polynomials associated with the closed-loop network are Schur stable. The coefficients of these polynomials depend on the eigenvalues of the network Laplacian matrix and can therefore be complex. This paper provides a new and simple proof and condition for a second-order polynomial with complex coefficients to be Schur. This condition was applied to obtain controllers which achieve consensus with a guaranteed rate of convergence. We show that consensus can always be achieved for marginally stable systems and discretized systems. Simple conditions for consensus achieving controllers are obtained when the Laplacian eigenvalues are all real. We also demonstrate how these results can be applied to some robust control problems.
Schlagwörter: 
Consensus
Discrete-time systems
Schur polynomials
Robust control
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.