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Abstract
We consider the problem of obtaining linear state feedback controllers to achieve 
consensus in a homogeneous network of general second-order discrete-time systems 
whose graph is directed. Consensus is achieved if certain polynomials associated 
with the closed-loop network are Schur stable. The coefficients of these polynomi-
als depend on the eigenvalues of the network Laplacian matrix and can therefore be 
complex. This paper provides a new and simple proof and condition for a second-
order polynomial with complex coefficients to be Schur. This condition was applied 
to obtain controllers which achieve consensus with a guaranteed rate of conver-
gence. We show that consensus can always be achieved for marginally stable sys-
tems and discretized systems. Simple conditions for consensus achieving controllers 
are obtained when the Laplacian eigenvalues are all real. We also demonstrate how 
these results can be applied to some robust control problems.

Keywords  Consensus · Discrete-time systems · Schur polynomials · Robust control

1  Introduction

Consensus control of a network of linear systems has been the subject of research 
for many years. Some of the early work (Fax and Murray 2004; Blondel et al. 2005; 
Kingston and Beard 2006; Moreau 2005) was motivated applications in different 
fields. The area of control in particular is driven by applications in synchronization, 
distributed averaging, formation flight, and the cooperative control of unmanned 

 *	 Martin Corless 
	 corless@purdue.edu

	 Michael Fruhnert 
	 michael.fruhnert@siemens.com

1	 Siemens Mobility GmbH, Kiefholzstr. 44, 12435 Berlin, Germany
2	 School of Astronautics and Aeronautics, Purdue University, West Lafayette, IN, USA

http://orcid.org/0000-0001-6820-7225
http://crossmark.crossref.org/dialog/?doi=10.1007/s10100-025-00980-1&domain=pdf


586	 M. Fruhnert, M. Corless 

vehicles, to name a few (Ren et al. 2006; Olfati-Saber et al. 2007; Ren 2008; Zhu 
and Martínez 2010; Guan et al. 2012; Zhou et al. 2012).

Many systems can be approximated by linear second-order systems. Networks of 
such systems have been studied in both the continuous-time case (Ren et al. 2006; 
Wieland et  al. 2008; Zhu et  al. 2009; Yu et  al. 2010), and the discrete-time case 
where the individual systems are double-integrators and results were obtained by 
applying a bilinear transformation (Casbeer et al. 2008; Sun et al. 2012; Gao et al. 
2012; Xie and Wang 2012). A more general form of system dynamics is considered 
in Fruhnert and Corless (2015a). While they show that the general second-order dis-
crete-time problem is still an open challenge, it is important for digital control (Liu 
et al. 2010; Guan et al. 2012).

To achieve consensus for a homogenous network of linear systems applying lin-
ear control, it is necessary and sufficient to ensure the stability of a bunch of poly-
nomials associated with the closed-loop network (Wieland et al. 2008; Qu 2009; Ma 
and Zhang 2010). The coefficients of these polynomials can be complex since they 
depend on the possibly complex eigenvalues of the Laplacian matrix associated with 
the network graph. Hence, in discrete-time, we need conditions which guarantee that 
a polynomial with complex coefficients is Schur, that is, its roots have magnitude 
less than one. We note that necessary and sufficient conditions for Schur polyno-
mials have already been established (Schur 1918; Cohn 1922; Jury 1988; Bistritz 
1996). However, in this paper, we present a new and simple condition for a second-
order polynomial with complex coefficients to be Schur. Our proof is independent of 
the Routh-Hurwitz and Schur-Cohn criteria.

The relationship between the Hurwitz and Schur stability tests is clear, and one 
could use such a relationship to transform results for the second-order continuous-
time problem (Zhu et al. 2009; Fruhnert and Corless 2017) to the discrete-time case. 
However, the discrete-time problem has its own challenges and applying such trans-
formations would yield implicit expressions requiring further manipulation. Instead, 
one can take the more direct route and use conditions for linear, n-dimensional, dis-
crete-time SISO agents (You and Xie 2011). However, these conditions are given 
in the form of a modified algebraic Riccati inequality, which requires special solv-
ers. Here, we use the newly developed simple condition for Schur polynomials and 
obtain necessary and sufficient conditions to achieve consensus with guaranteed rate 
of convergence. We derive explicit conditions for linear control gains and show that 
linear control is always sufficient to achieve consensus if systems are marginally sta-
ble. This is important if we wish to synchronize networks of oscillators or try to 
achieve consensus using digital control. The double-integrator model is a special 
case of a marginally stable system. Therefore, our results extend previous findings 
and model a broader class of systems. The general result is also useful to guarantee a 
desired rate of convergence, for example, double-integrators.

The paper is organized as follows. Section 2 formulates the consensus problem. 
The main result is presented in Sect. 3. Afterwards, Sect. 4 provides simple linear 
control strategies for special cases. Next, we present controllers which guaranteed 
a specified rate of convergence in Sect. 5. Then, the main result is proven in Sect. 6 
and necessary and sufficient conditions for polynomials to be Schur are developed. 
Finally, the paper concludes with a numerical simulation in Sect. 7.
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2 � Problem formulation

Consider a homogeneous network of second-order discrete-time systems described by

for i = 1, 2,⋯ ,N where xi(k) ∈ ℝ
2 and ui(k) ∈ ℝ are the state and the control input 

for the ith system at time k, while u0(k) ∈ ℝ
2 is a common reference input. The 

matrices A ∈ ℝ
2×2 and B ∈ ℝ

2×1 are constant.
The communication structure of the network is described by a weighted, directed 

graph G = (V ,E,W) . The set V = {1, 2,⋯ ,N} is called a vertex set, and there is a 
one-to-one correspondence between the vertices (elements of V) and the systems in the 
network. The edge set E is a subset of V × V . An edge (j, i) is in E if system j can 
send information to system i; in this case, we say that j is an in-neighbor of i. We let 
Ni = {j | (j, i) ∈ E} be the set of all in-neighbors of i. Each system i assigns a weight 
wij > 0 to each of its in-neighbors j. Letting wij = 0 when j is not an in-neighbor of i 
yields the weighting matrix W = {wij}.

Control input ui can only depend on the information available to system i. Assuming 
each system has access to its own state, control ui can only be based on the states of sys-
tem i and its in-neighbors. We want to obtain feedback controllers for each ui(k) so that 
the closed-loop network achieves consensus in the following sense.

Definition 1  A network of N discrete-time systems achieves consensus if, for every 
initial condition and all i, j = 1, 2,⋯ ,N:

To achieve consensus, the following linear controllers are considered for the ith 
system:

Note that the gain matrix K ∈ ℝ
1×2 is common to all systems.

Remark 1  If the network achieves consensus, then in steady state, ui(k) = 0 and the 
behavior of the ith system is governed by

(1)xi(k + 1) = A xi(k) + Bui(k) + u0(k)

lim
k→∞

xj(k) − xi(k) = 0.

(2)ui(k) = K
∑

j∈Ni

wij

[
xj(k) − xi(k)

]

xi(k + 1) = A xi(k) + u0(k) .
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3 � Main result

3.1 � Preliminaries

First, we require some concepts and results from graph theory. A directed path in G 
from a vertex j to a vertex i is a sequence (i1, i2,⋯ , im) in V with i1 = j , im = i , and 
(ik, ik+1) ∈ E for k = 1,⋯ ,m − 1 . A graph G is said to contain a spanning tree if at 
least one vertex j∗ in V has the following property: for every i in V, i ≠ j∗ , there is 
a directed path from j∗ to i. If the systems are asymptotically stable, then consensus 
can be trivially achieved with K = 0 . If the systems are not asymptotically stable, one 
can show that a spanning tree is necessary for consensus (Ren et al. 2005). Therefore, 
throughout the paper we assume that

Associated with a weighted graph G = (V ,E,W) is its Laplacian matrix L = {lij} , 
defined by

Note that, in terms of the Laplacian, controller (2) can be expressed as

If 1 is the vector of all ones, then any non-zero multiple of this vector is an eigenvec-
tor of L corresponding to eigenvalue zero. If the graph G has a spanning tree, then 
there are no other eigenvectors corresponding to zero.

Fact 1  (Ren et al. 2005) A graph G contains a spanning tree if and only if the associ-
ated Laplacian matrix has only one eigenvalue at zero and all its other eigenvalues 
have a positive real part.

Now we introduce some parameters that are necessary to state the main result. 
The open-loop behavior of each system is determined by the characteristic polyno-
mial of A , which is given by

Let

Throughout the paper we assume that

Then, the matrix [
(
A + c1 I

)
B B] is invertible and

Gcontains a spanning tree.

lii =
∑

j≠i
wij and lij = −wij for i ≠ j .

ui(k) = −

N∑

j=1

lijK xj(k) .

(3)p(s) = det (sI − A) = s2 + c1 s + c0 .

(4)�0 = K
(
A + c1 I

)
B , �1 = K B .

(A,B) is controllable.
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If (A,  B) is in controllable canonical form, then one can easily show that 
K = [�0 �1].

3.2 � A condition for consensus

The following theorem summarizes the necessary and sufficient conditions for the 
closed-loop network (1)–(2) to achieve consensus.

Theorem 1  The closed-loop network (1)–(2) achieves consensus if and only if for 
each non-zero eigenvalue � of the graph Laplacian matrix,

where

and c0, c1 and �0, �1 are given by (3) and (4).

A proof of Theorem 1 is provided in Sect. 6. For a real Laplacian eigenvalue, condi-
tion (6) simplifies as described in the following remark.

Remark 2  If � is real, then Corollary 1 tells us that condition (6) simplifies to

see Corollary 1.

Theorem 1 provides a necessary and sufficient condition on the gains �0 and �1 for 
consensus, namely (6). When (6) is satisfied, a consensus achieving gain matrix K is 
given by (5). We now use condition (6) to obtain explicit conditions on the controller 
gains.

3.3 � Explicit conditions on controller gains

Inequality (6) is equivalent to

For this to be satisfied, we must have

(5)K =
[
�0 �1

] [(
A + c1 I

)
B B

]−1
.

(6)|d0|2 + |d1 − d0 d̄1| < 1

d0 = c0 + � �0 , d1 = c1 + � �1

(7)d0 < 1 and |d1| < 1 + d0 ;

(8)|d2| < 1 − |d0|2 where d2 ∶= d1 − d0 d̄1 .

(9)|d0| < 1 .
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3.3.1 � A preliminary result

As we shall see shortly, inequalities (8) and (9) are of the form

where b and � are real and � and � can be complex. This is equivalent to

or p(𝛾) < 0 where p(𝛾) = |𝜂|2 𝛾2 + 2 𝛼̃ 𝛾 + |𝜈|2 − b2 . Since lim|�|→∞ p(�) = ∞ , p 
must have two distinct real roots 𝛾 < 𝛾̄ for the existence of � satisfying p(𝛾) < 0 ; 
these roots are

Thus, necessary conditions for the existence of a real number � satisfying inequality 
(10) are

and inequality (10) holds if and only if

Special case: �and � real. If � and � are real, then (11) reduces to

Remark 3  If |𝜈| < b , then (10) holds with � sufficiently small. If |�| = b , then

Hence, either � = 0 or 𝛾̄ = 0 and inequality (10) can be satisfied by an arbitrarily 
small non-zero � whose sign is opposite to the sign of 𝛼̃ . Thus, if one has a collec-
tion of inequalities of the form (10) for which each 𝛼̃ has the same sign, then these 
inequalities can be simultaneously satisfied by an arbitrarily small non-zero � whose 
sign is the opposite of the sign of the 𝛼̃’s.

3.3.2 � Conditions on 

0

Let

It follows from (12) and (13) that (9) holds if and only if

(10)|𝜈 + 𝜂 𝛾| < b ,

b > 0, |𝜂|2 𝛾2 + 2 𝛼̃ 𝛾 + |𝜈|2 − b2 < 0 where 𝛼̃ = ℜ(𝜈𝜂)

(11)𝛾 , 𝛾̄ =
−𝛼̃ ±

√
b2�𝜂�2 − 𝜔̃2

�𝜂�2
where 𝜔̃ = ℑ(𝜈𝜂) .

(12)b > 0, |𝜔̃| < b|𝜂|

(13)𝛾 < 𝛾 < 𝛾̄ .

(14)𝛾 , 𝛾̄ =
−𝜈 ± b

𝜂

𝛾 , 𝛾̄ =
−𝛼̃ ± |𝛼̃|

|𝜂|2
.

(15)� = � + � �
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where

If |c0| < 1 , then (16) holds for all non-zero � if �0 = 0 . If |c0| = 1 , then (16) is satis-
fied by all non-zero � if �0 is sufficiently small and its sign equals that of −c0.

If � is real, then � = 0 , 𝜇 = 𝛼 > 0 and

3.3.3 � Conditions on 

1

Here we use condition (8) to obtain conditions on �1 . With � = � + �� , one may readily 
compute that

Case 1: c ≠ −1 : If c0 ≠ −1 , let

Then

and

where

It follows from (12) and (13) that (8) holds if and only if

where c2 =
c1

1+c0
 and

(16)(c2
0
− 1)𝜔2 < 𝛼2 and 𝛾

0
< 𝛾0 < 𝛾̄0

(17)𝛾
0
, 𝛾̄0 =

−c0 𝛼 ±
√

|𝜇|2 − c2
0
𝜔2

|𝜇|2
.

(18)𝛾
0
, 𝛾̄0 = (−c0 ± 1)∕𝜇

d2 = (1 − c0 − �0� − ��0 �)c1 + [(1 − c0)� − |�|2�0 + �(1 + c0)�] �1

b ∶= 1 − |d0|2 = 1 − c2
0
− 2��0c0 − |�|2�2

0

(19)�2 ∶= (1 + c0)�1 − c1�0

(20)�1 =
c1 �0 + �2

1 + c0

d2 = � + (� + ��)�2

� =
c1b

1 + c0
, � =

(1 − c0) � − |�|2 �0
1 + c0

(21)(c2
2
− 1)𝜔2 < 𝛽2 and 𝛾

2
< 𝛾2 < 𝛾̄2
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From this, one can show that

where

If � is real, then � = 0 , (21) implies that � ≠ 0 and

which can be expressed as

Remark 4  If |c1| < |1 + c0| , that is, |c2| < 1 then (21) holds for all non-zero � if �2 
is sufficiently small. If |c1| = |1 + c0| and � has the same sign for all � , then (21) 
can be satisfied by all non-zero � if �2 is sufficiently small and its sign equals that of 
−c2� . If |c0| ≤ 1 , then �0 can be chosen arbitrarily small; hence it can be chosen so 
that the sign of � is the same as that of 1 − c0 for all non-zero � . In this case �1 can be 
chosen arbitrarily small.

Case 2: c0 = −1 : If c0 = −1 , then

It follows from (12) and (13) that (8) holds if and only if

where

which corresponds to (22) when c0 = −1.

𝛾
2
, 𝛾̄2 =

−c2 𝛽 ±
√

𝛽2 + (1 − c2
2
)𝜔2

𝛽2 + 𝜔2
b

(22)

𝛾
1
, 𝛾̄1 =

ãc1(𝛾0𝛼 + c0 − 1) + 𝛾0c1(1 + c0)𝜔
2 ± b

√
ã2 + [(1+c0)

2 − c2
1
)]𝜔2

ã2 + (1 + c0)
2 𝜔2

ã = (1 + c0)𝛽 = (1 − c0) 𝛼 − |𝜇|2 𝛾0

(23)𝛾
1
, 𝛾̄1 =

−c1

𝜇
±

b

ã

(24)𝛾
1
, 𝛾̄1 =

[
−c1 ± (1 + c0 + 𝜇 𝛾0)

]
∕𝜇

(25)d2 = (2 − �0 �) c1 − � �0 � c1 + � �1

(26)b = � �0, � ∶= 2 � − |�|2�0

(27)c2
1
𝜔2 < 𝜂2 and 𝛾

1
< 𝛾1 < 𝛾̄1

(28)𝛾
1
, 𝛾̄1 =

(𝛼 𝛾0 − 2) c1 ± 𝛾0

√
𝜂2 − 𝜔2 c2

1

𝜂
.
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If � is real, then � = 0 , � = � , � = � (2 − � �0) and

that is the bounds on �1 are also given by (24). If c1 = 0 , then

With �0 ≠ 0 this can be satisfied by sufficiently small �1.

Remark 5  If systems (1) are asymptotically stable, then consensus will be achieved 
even if no feedback is applied. For �0 = �1 = 0 , condition (6) reduces to

which are the conditions for open-loop stability.

3.4 � Limitations

In the continuous-time analog of the problem considered here consensus can always 
be achieved by appropriate choice of K (Fruhnert and Corless 2017). However, that is 
not the case in discrete-time. We have already seen limitations on the imaginary part of 
a Laplacian eigenvalue � in (16), (21) and (27). The next result puts limitations on the 
real part of � . A proof of this result is given in Sect. 6. To state this result we need

where ΛL is the set of non-zero eigenvalues of the Laplacian matrix L.

Lemma 1  If there exists a matrix K such that the closed-loop network (1)–(2) 
achieves consensus, then

where

In the next section, we look at some important classes of networked systems and 
provide easilly verifiable conditions for consensus.

𝛾
1
, 𝛾̄1 =

−c1

𝜇
± 𝛾0 .

𝛾
1
, 𝛾̄1 = ±𝛾0 .

c0 < 1 and |c1| < 1 + c0 ,

(29)�m = min{ℜ(�) |� ∈ ΛL} �M = max{ℜ(�) |� ∈ ΛL}

(30)𝜅 |c0| < 1 and 𝜅 |c1| < 2

(31)� =
�M − �m

�M + �m
.
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4 � Special cases

Identifying gains that satisfy (6) for all � ≠ 0 can be challenging. Here we con-
sider some special cases and obtain simpler conditions for the existence of feasible 
parameters �0 and �1.

4.1 � Marginally stable systems

Here we claim that consensus can always be achieved for networks of marginally 
stable systems. If the systems are marginally stable, then c0 ≤ 1 and |c1| ≤ 1 + c0 
and equality holds for at least one of the inequalities. This is a special case of

Lemma 2  If (32) holds, then consensus in the closed-loop network (1)–(2) can 
always be achieved with arbitrarily small �0 and �1.

Proof  If c0 ≠ −1 , then the result follows the results in Sect.  3.3.2 and Remark  4. 
If c0 = −1 , then we must have c1 = 0 , and the result follows from the results in 
Sect. 3.3.2 and case 2 of section Sect. 3.3.3. 	� ◻

4.2 � Laplacian eigenvalues in a disc

From Lemma 1, we see that if either |c0| > 1 or |c1| > 2 , then the range of the eigen-
values of the Laplacian matrix L must be restricted to achieve consensus. Here we 
consider the non-zero eigenvalues of the Laplacian to be constrained to a disc of 
radius R with center C > 0 . First, we have the following result, which provides sim-
pler sufficient conditions for achieving consensus; Sect. 6 contains a proof.

Lemma 3  The closed-loop network (1)–(2) achieves consensus if, for each non-zero 
eigenvalue � of the graph Laplacian matrix,

Lemma 4  Suppose that

for all non-zero eigenvalues � of the Laplacian. Then, the closed-loop network (1)–
(2) achieves consensus if

There exist �0, �1 satisfying (35) if and only if:

(32)|c0| ≤ 1 and |c1| ≤ |1 + c0| .

(33)||c0 + 𝜇 𝛾0
|| + ||c1 + 𝜇 𝛾1

|| < 1 .

(34)|� − C| ≤ R

(35)|c0+𝛾0 C| + |c1+𝛾1 C| +
(
|𝛾0| + |𝛾1|

)
R < 1 .
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1) R∕C ≥ 1:

In this case, (35) holds with �0 = �1 = 0.
2) R∕C < 1:

In this case, (35) holds with

Proof  From Lemma 3, consensus is achieved if, for each non-zero eigenvalue � of 
the Laplacian,

where di = ci + � �i for i = 0, 1 . If |� − C| ≤ R , then � = C + r (cos� + � sin�) 
where 0 ≤ r ≤ R and � ∈ ℝ . Thus,

and

Hence,

and (35) implies (39).
We note that fi(�i) ∶= |ci + C �i| + |�i|R is continuous and piecewise linear. 

Therefore, its minimum will occur at one of the two switching points �i = 0 and 
�i = −ci∕C ; hence the minimum is the smallest of

If R∕C ≥ 1 , then the minimum is |ci| and (35) can be satisfied if and only if (36) 
holds. If R∕C < 1 , then �i = −ci∕C is the minimizer of fi , and (35) can be satisfied if 
and only if (37) holds. 	�  ◻

Remark 6  (Robustness) The conditions in Lemma 4 can be used to guarantee robust-
ness with respect to changes in the graph; the only knowledge needed about the 
graph is that the non-zero eigenvalues of the graph Lapacian lie within a disc of 
radius R and center C.

To obtain robustness with respect to plant parameters suppose that, for some 
c̄0, c̄1 and Δc , the parameters satisfy

(36)|c0| + |c1| < 1 .

(37)
(
|c0| + |c1|

)
R∕C < 1 .

(38)�0 = −c0∕C and �1 = −c1∕C .

(39)|d0| + |d1| < 1

|di|2 = (ci + �i C)
2 + 2 (ci + �i C) �i r cos� + �2

i
r2

max
|�−C|≤R |di|

2 = (ci+�i C)
2 + 2 |ci+�i C||�i|R + �2

i
R2

= (|ci + �i C| + |�i|R)2 .

max
|�−C|≤R |di| = |ci + �i C| + |�i|R

fi(0) = |ci| and fi(−ci∕C) = |ci|R ∕C .
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If R∕C ≥ 1 , then (35) holds with �0 = �1 = 0 for all c0 and c1 satisfying (40) if and 
only if

If R∕C < 1 , then (35) holds with

for all c0 and c1 satisfying (40) if and only if

4.3 � Real Laplacian eigenvalues

Here we consider weighted graphs whose Laplacian eigenvalues are all real. This 
occurs, for example, if the graph is undirected and the weighting matrix is symmet-
ric or if the graph is a string. For this important special case, we can obtain easily 
verifiable necessary and sufficient conditions for consensus control as outlined in the 
following result.

Lemma 5  If all the eigenvalues of the Laplacian matrix are real, then there exists a 
matrix K such that the closed-loop network (1)–(2) achieves consensus if and only if

where � is given by (31). Such K will be given by (5) where �0 and �1 satisfy

with

and

where �m and �M are defined in (29).

(40)|c0 − c̄0| + |c1 − c̄1| ≤ Δc .

|c̄0| + |c̄1| + Δc < 1 .

𝛾0 = −c̄0∕C and 𝛾1 = −c̄1∕C

(
|c̄0| + |c̄1|

)
R∕C + Δc < 1 .

(41)𝜅 |c0| < 1 and 𝜅 (|1 − c0| + |c1|) < 2

(42)𝛾0m < 𝛾0 < 𝛾0M

(43)−𝛾0 + 𝛾1m < 𝛾1 < 𝛾0 + 𝛾1M

�0m = (�1m − �1M)∕ 2

�0M = �1 (1 − c0) + �2 |1 − c0|
�1m = −�1 (1 + c0 + c1) + �2 |1 + c0 + c1|
�1M = �1 (1 + c0 − c1) − �2 |1 + c0 − c1|

�1 =
�M + �m

2 �M �m
, �2 =

�M − �m

2 �M �m
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Proof  Using Theorem  1 and recalling (18) and (24) we see that consensus is 
achieved if and only if

for all � ∈ ΛL , that is, all non-zero eigenvalues � of the graph Laplacian. Recall that 
these eigenvalues are positive. Noting that

for all � ∈ ΛL , we see that, for any real number c,

Hence, (44) holds for all � ∈ ΛL if and only if

where

Similarly, (45) holds for all non-zero � if and only if (43) holds.
Now, there exists �1 satisfying (43) if and only if 2𝛾0 > 𝛾1m − 𝛾1M = 2 𝛾0m , that is,

For any two real numbers a and b,

Hence,

Recalling (46), we see that �0m ≥ �0m,2.
Finally, there exists �0 satisfying (42) if and only if 𝛾0m − 𝛾0M < 0 , that is,

or, noting that � = �2∕�1,

(44)(−c0 − 1)∕𝜇 < 𝛾0 < (−c0 + 1)∕𝜇

(45)(−c1−1−c0)∕𝜇 − 𝛾0 <𝛾1 < (−c1+1+c0)∕𝜇 + 𝛾0

�1 + �2 = 1∕�m ≤ 1

�
≤ 1∕�M = �1 − �2

min
�∈ΛL

c∕� = �1 c − �2 |c| , max
�∈ΛL

c∕� = �1 c + �2 |c|

𝛾0m,2 < 𝛾0 < 𝛾0M

(46)�0m,2 = max
�∈ΛL

−1−c0

�
= −�1 (1 + c0) + �2 |1 + c0|

(47)�0M = min
�∈ΛL

1−c0

�
= �1 (1 − c0) − �2 |1 − c0|

𝛾0 > 𝛾0m

(48)|a + b| + |a − b| = 2max{|a|, |b|} .

�om = (�1m−�1M)∕2

= −�1(1+c0) + �2
(
|1+c0+c1| + |1+c0−c1|

)
∕2

= −�1(1+c0) + �2 max{|1+c0|, |c1|} .

−2 𝛽1 + 𝛽2
(
max{|1 − c0|, |c1|} + |1 + c0|

)
< 0
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It follows from (48) that |1 − c0| + |1 + c0| = 2max{|c0|, 1} . Since 𝜅 < 1 , inequality 
(49) is equivalent to (41). 	�  ◻

Remark 7  From the proof of the above lemma, we see that if �0 satisfies (42), then 
there exists �1 satisfying (43). Thus, provided (41) holds, one can simply obtain a 
controller K by first choosing �0 to satisfy (42), then choosing �1 to satisfy (43), and 
letting K be given by (5).

Remark 8  (Robust control) The above result can be applied to robust control prob-
lems. Consider an uncertain second-order system described by

where (A, B) is controllable and � is real and satisfies

The using Lemma 5 one can obtain a controller which stabilizes the corresponding 
closed loop sytem for all � provided (41) hold with

4.4 � Discretized systems

From Fruhnert and Corless (2015b), consensus can always be achieved by appro-
priate choice of gains if linear control is applied to a similar setup in continuous-
time where ẋc,i = Ac xc,i + Bc uc,i . On the other hand, Lemma 1 shows that this is not 
always the case in discrete-time. If a continuous-time system (ẋ = Acxc + Bcuc) is 
discretized with time constant h > 0 , then the corresponding discrete-time system is 
characterized by

Lemma 6  A closed-loop network (1)–(2) of discretized systems (51) can always 
achieve consensus if (Ac,Bc) is controllable, the graph contains a spanning tree, 
the discretization time constant h > 0 is chosen small enough, and gains are chosen 
appropriately.

Proof  If (Ac,Bc) is controllable then then (A, B) is controllable for h > 0 suffficiently 
small. If h → 0 , then A → I . Thus, in the limit, A is marginally stable with c0 = 1 
and c1 = −2 . In this case the conditions in (16) and (21) for achieving consensus 
reduce to

(49)𝜅
(
|1 − c0| +max{|1 + c0|, |c1|}

)
< 2 .

(50)x(k + 1) = Ax(k) + �Bu(k)

0 < 𝜇 ≤ 𝜇 ≤ 𝜇

�m = � , �M = � .

(51)A = eAch and B = ∫
h

0

eAc�d� Bc.
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respectively, where � = −|�|2�0∕2 , which are clearly satisified. Since c0 and c1 are 
continuous functions of h and the quantities in inequalities (16) and (21) are con-
tinuous in c0 and c1 , these inequalities hold for h > 0 sufficiently small. 	� ◻

5 � Guaranteed rate of convergence

Sometimes we are interested not only in convergence, but convergence with a speci-
fied convergence rate, which is defined as follows.

Definition 2  A network of N discrete-time systems achieves consensus with con-
vergence rate 0 < 𝜌 < 1 if, for every initial condition, there exists c ≥ 0 , so that

for all i, j = 1, 2,⋯ ,N and k ≥ 0 where ��x�� =
√
xT x.

Theorem 1 can be used to guarantee consensus with convergence rate � . To illus-
trate this, we introduce the following transformed systems

with inputs ũi(k) = ui(k)∕𝜌
k+1 and ũ0(k) = u0(k)∕𝜌

k+1 . Open-loop behavior is deter-
mined by the characteristic polynomial of �−1A , that is,

This yields p̃(s) = s2 + c̃1 s + c̃0 where

First, we present the following result.

Lemma 7  Network (1) achieves consensus with convergence rate � if the associated 
transformed network (52) achieves consensus.

Proof  Consider any 0 < 𝜌 < 1 . Let x̃i(k) ∶= 𝜌−kxi(k) for all i. Then xi(k) = x̃i(k) 𝜌
k 

and

𝛼2 > 0 and 𝛽2 > 0

||xj(k) − xi(k)|| ≤ c �k

(52)x̃i(k + 1) = 𝜌−1A x̃i(k) + B ũi(k) + B ũ0(k)

p̃(s) = det
(
sI − 𝜌−1A

)

= 𝜌−2 det

(
s𝜌 I − A

)
= 𝜌−2 p(𝜌s)

(53)c̃0 = c0∕𝜌
2, c̃1 = c1∕𝜌

||xj(k) − xi(k)|| = ||x̃j(k) − x̃i(k)|| 𝜌k .
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Hence, xj(k) − xi(k) exponentially converges to zero with guaranteed rate � if 
x̃j(k) − x̃i(k) converges to zero. The result is obtained by noting that when the behav-
ior of xi(k) is governed by (1), the behavior of x̃i(k) is described by (52). 	�  ◻

Lemma 7 holds for any type of controller. Here we consider linear controllers 
of the form given in (2) for network (52), that is,

Since ui(k) = 𝜌k+1 ũi(k) and xi(k) = 𝜌k x̃i(k) this is equivalent to

where K = 𝜌 K̃ . With 𝜌−1A + c̃1 I = 𝜌−1(A + c1I) and K̃ = 𝜌−1K , we proceed as in 
(4) and define

This yields

Now, Theorem 1 and Lemma 7 yield the following result.

Theorem 2  The closed-loop network (1)–(2) achieves consensus with convergence 
rate 0 < 𝜌 < 1 if for each non-zero eigenvalue � of the graph Laplacian,

where d̃0 = c̃0 + 𝜇 𝛾̃0 , d̃1 = c̃1 + 𝜇 𝛾̃1 , and c̃0, c̃1, 𝛾̃0 , and 𝛾̃1 are given by (53)–(54).

Remark 9  If systems (1) are in controllable canonical form, then one can easily 
show that

Remark 10  One cannot achieve consensus with arbitrary small rate � using linear 
controller  (2) except in the trivial case in which all the non-zero eigenvalues of L 
are the same. To see this, suppose convergence with an arbitrary small rate � can be 
achieved and recall (53). Then Sect. 3.3.2 implies that � = 0 for every eigenvalue of 
L; see (16). Lemma 1 implies that �m = �M . Thus all the non-zero eigenvalues of L 
are the same.

ũi(k) = K̃
∑

j∈Ni

wij

[
x̃j(k) − x̃i(k)

]
.

ui(k) = K
∑

j∈Ni

wij

[
xj(k) − xi(k)

]
,

(54)𝛾̃0 = 𝜌−2 K
(
A + c1 I

)
B , 𝛾̃1 = K 𝜌−1 B

(55)K =
[
𝛾̃0 𝛾̃1

] [
𝜌−2

(
A + c1 I

)
B 𝜌−1 B

]−1

|d̃0|2 + |d̃1 − d̃0
̄̃d1| < 1

K =
[
𝜌2 𝛾̃0 𝜌 𝛾̃1

]
.
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6 � Proof of main result

6.1 � A condition for consensus

The following result provides a useful condition for consensus of the closed loop 
sytem.

Lemma 8  (Ma and Zhang 2010) The closed-loop network (1)–(2) achieves consen-
sus if for each non-zero eigenvalue � of graph Laplacian, the matrix A − �BK is 
Schur.

Lemma 9  The matrix A − �BK is Schur if and only if

is Schur, where c0, c1, �0 , and �1 are given by (3)–(4).

Proof  The matrix A − �BK is Schur if and only if its characteristic polynomial 
p(s) = s2 + d1 s + d0 is Schur.

and det (sI − A) is given by (3). Considering the power series expansion 
(sI − A)−1 =

1

s
I +

1

s2
A +… and comparing the coefficients of s0 and s on both sides 

of the equation yields

	�  ◻

The coefficients of p in (56) are not necessarily real, since � can be complex. 
Thus we need conditions which guarantee that a second order polynomial with 
complex coefficients is Schur.

6.2 � A simple characterization of second‑order Schur polynomials

This section develops necessary and sufficient conditions for a second order poly-
nomial with complex coefficients to be Schur. A polynomial is Schur if all its 
roots have magnitude less than one. Here we provide a new result which is simple 
proof for second-order Schur polynomials with real or complex coefficients.

(56)p(s) = s2 + (c1 + �1 �) s + (c0 + �0 �)

p(s) = det (sI − A + �BK)

= det (sI − A) det
(
I + � (sI − A)−1KB

)

= det (sI − A)
(
1 + �K(sI − A)−1B

)

d0 = c0 + �K (A + c1 I)B = c0 + �0 �

d1 = c1 + �KB = c1 + �1 � .
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Lemma 10  Suppose p(�) = �2 + d1 � + d0 where d0, d1 ∈ ℂ . Then p is Schur if and 
only if

Proof  First, we express d0 and d1 in polar form, that is,

where �0 and �1 are real. The polynomial p is Schur if and only if p̃ is Schur where 
p̃(𝜆) = e−𝚥 𝛿0 p(𝜆 e𝚥 𝛿0∕2) . Note that

where

If z1 and z2 are the roots of p̃ , then

Comparing (59) and (61), we see that

If z1 = r1 e
��1 and z2 = r2 e

��2 , then it now follows that r1r2 e�(�1+�2) = |d0| . Hence, 
�1 = −�2 ∶= � and (62) results in

The polynomial p̃ is Schur if and only if the magnitudes of its roots are less than 
one, that is, r1, r2 < 1 , which is equivalent to (assuming w.l.o.g. r1 ≥ r2 ≥ 0)

It follows from (63) that inequality (66) is equivalent to

With r1r2 < 1 , (67) is equivalent to

(57)|d0|2 + |d1 − d0 d̄1| < 1

(58)d0 = |d0| e� �0 , d1 = |d1| e� �1 .

(59)p̃(𝜆) = 𝜆2 + |d1| e𝚥𝜙 𝜆 + |d0|

(60)� = �1 − �0∕2 .

(61)p̃(𝜆) = 𝜆2 − (z1 + z2) 𝜆 + z1z2 .

(62)z1z2 = |d0| and z1 + z2 = −|d1| e�� .

(63)r1 r2 = |d0|

(64)(r1 + r2) cos � = −|d1| cos�

(65)(r1 − r2) sin � = −|d1| sin� .

(66)r1 r2 < 1

(67)(r1 − 1)(r2 − 1) > 0 or (r1 − 1)(−r2 − 1) > 0 .

(68)|d0| < 1 .
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Since 1 = cos2 � + sin
2 � , r1r2 < 1 , and r1 ≥ r2 , inequality (69) holds if and only if

which, recalling (63)–(65), is the same as

or

It follows from (58) and (60) that d̄0 d21 = |d0| |d1|2 e𝚥2𝜙 ; hence the above inequality 
can be rewritten as

Noting that

(70) can be written as

The above inequality and (68) are equivalent to

which is equivalent to (57). 	�  ◻

Corollary 1  Suppose p(�) = �2 + d1 � + d0 where d0, d1 ∈ ℝ . Then p is Schur if and 
only if

Proof  When d0 and d1 are real, (57) can be expressed as d2
0
+ |1 − d0||d1| < 1 , that 

is,

which is equivalent to (71). 	�  ◻

(69)
r1 + r2

1 + r1 r2
< 1 or

r1 − r2

1 − r1 r2
< 1 .

(
r1 + r2

1 + r1 r2

)2

cos2 𝜃 +

(
r1 − r2

1 − r1 r2

)2

sin
2 𝜃 < 1

( |d1|
1 + |d0|

)2

cos2 𝜙 +

( |d1|
1 − |d0|

)2

sin
2 𝜙 < 1

(
1 + |d0|2

)
|d1|2 − 2 |d0| |d1|2 cos 2𝜙 <

(
1 − |d0|2

)2
.

(70)
(
1 + |d0|2

)
|d1|2 − d̄0 d

2

1
− d0 d̄

2

1
<
(
1 − |d0|2

)2
.

(1 + |d0|2) |d1|2 − d̄0 d
2

1
− d0 d̄

2

1

= d̄1d1 − d̄1(d0 d̄1) − (d̄0 d1) d1 + (d̄0 d1)(d0 d̄1)

= (d̄1 − d̄0 d1)(d1 − d0 d̄1) = |d1 − d0 d̄1|2

|d1 − d0 d̄1|2 < (1 − |d0|2)2 .

|d1 − d0 d̄1| < 1 − |d0|2

(71)d0 < 1, |d1| < 1 + d0

|1 − d0||d1| < (1 − d0)(1 + d0)
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Corollary 2  Suppose p(�) = �2 + d1 � + d0 where d0, d1 ∈ ℂ . Then p is Schur if

Also, if p is Schur, then we must have

Proof  Inequality (72) implies that

Hence

that is

Hence p is Schur.
Now suppose p is Schur. Then, it follows from (74) that |d0| < 1 and

	�  ◻

6.3 � Proof of Theorem 1, Lemma 1, and Lemma 3

Theorem 1 is a consequence of Lemmas 8, 9, and 10.
Lemma  1 is a consequence of Corollary  2. Corollary  2 requires that 

|d0| < 1 which holds for some 𝜔 > 0 if and only if it holds for � = 0 since 
|d0|2 = |� �0 + c0|2 + �2 �2

0
 . From the proof of Lemma  5, |d0| < 1 holds for a 

range of real valued � if and only if 𝛾0m,2 < 𝛾0M where �0m,2 and �0M are given by 
(46)–(47). Applying (48) and recalling that � = �2∕�1 yields

that is,

Thus, 𝜅 |c0| < 1 is a necessary condition. Corollary  2 also requires that that 
|d1| < 1 + |d0| ; hence |d1| < 2 . Using the arguments in considering |d0| < 1 we 
obtain that 𝜅 |c1| < 2 is also a necessary condition.

Lemma 3 is a consequence of Corollary 1.

(72)|d0| + |d1| < 1 .

(73)|d0| < 1 and |d1| < 1 + |d0| .

|d1| < 1 − |d0|

|d1 − d0 d̄1| ≤ |d1| (1 + |d0|) < (1 − |d0|) (1 + |d0|) = 1 − |d0|2

(74)|d1 − d0 d̄1| < 1 − |d0|2

|d1|(1 − |d0|) ≤ |d1 − d0d̄1| < 1 − |d0|2 = (1 + |d0|)(1 − |d0|)

2 𝛽2 max
{
|1|, |c0|

}
< 2 𝛽1

𝜅 max
{
|1|, |c0|

}
< 1
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7 � Example

Consider a network of three systems with

and common input u0(k) = 0.5 cos k . Figure  1 describes the communication net-
work and shows its associated Laplacian matrix L which has non-zero eigenvalues 
1.5 ± �

√
3∕2.

Since A has eigenvalues 0.2 and 0.8, the open loop systems are stable and con-
sensus with 0.8 as a convergence rate can be achieved with ui = 0 . To achieve 
consensus with a convergence rate smaller than 0.8 we use our consensus control-
lers. Controller gains satisfying the conditions in Corollary 2 are shown in Fig. 2. 
We failed to identify gains for 𝜌 < 0.29 , and we picked �0 = −0.1 and �1 = 0.5 to 
guarantee convergence with at least � ≤ 0.6 . Figure 3 compares the behaviour of 
the open loop systems to the closed loop systems. The initial states are the same 
in each case and were chosen randomly with uniform distribution. We observe 
that consensus was achieved more quickly for the closed loop systems.

A =

[
0 1

−0.16 1

]
, B =

[
0

1

]

Fig. 1   Communication network with assigned edge weights

Fig. 2   Regions of gains achieving consensus with guaranteed rate of convergence
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8 � Conclusion

This paper provided a new and simple proof for general second-order polynomials 
with complex coefficients to be Schur. The result obtained was used to develop nec-
essary and sufficient conditions so that a homogeneous network of linear second-
order discrete-time systems achieves consensus with guaranteed rate of convergence. 
Linear feedback control was applied, explicit inequalities for the control gains given, 
and complex eigenvalues of the Laplacian matrix were considered. It was shown 
that consensus can always be achieved if systems are marginally stable. We provided 
simple conditions for the existence of a linear controller if all eigenvalues of the 
Laplacian matrix are real. We also demonstrated how these results can be applied to 
some robust control problems. The results were illustrated with an example.
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