Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/320321 
Autor:innen: 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Quantitative Economics [ISSN:] 1759-7331 [Volume:] 15 [Issue:] 4 [Year:] 2024 [Pages:] 1035-1064
Verlag: 
The Econometric Society, New Haven, CT
Zusammenfassung: 
Regression discontinuity is a popular tool for analyzing economic policies or treatment interventions. This research extends the classic static RD model to a dynamic framework, where observations are eligible for repeated RD events and, therefore, treatments. Such dynamics often complicate the identification and estimation of long-term average treatment effects. Empirical papers with such designs have so far ignored the dynamics or adopted restrictive identifying assumptions. This paper presents identification strategies under various sets of weaker identifying assumptions and proposes associated estimation and inference methods. The proposed methods are applied to revisit the seminal study of Cellini, Ferreira, and Rothstein (2010) on long-term effects of California local school bonds.
Schlagwörter: 
Long-term treatment effects
dynamic regression discontinuity
semi-parametric
varying coefficient logit
JEL: 
C31
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
555.43 kB





Publikationen in EconStor sind urheberrechtlich geschützt.