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Appendix A: Additional identification results

In this section, we omit the subscript i in all random variables for notational simplicity.
In addition, we suppress the subscript D2|S2 in propensity score functions throughout
the Supplemental Appendix.

A.1 Multiperiod CFR

The following lemma extends Lemma 2.1 to the general multiperiod model discussed in
Section 3. First, we extend the smoothness condition in Assumption 2.1.2.

Assumption A.1. There exists an ε > 0, such that E[Ỹ(1+τ)(d1 )|Z1 = z1] is continuous
in z1 ∈ Nε for all τ = 2, � � � , K − 1 and E[D̃(2+τ)(d1 )|Z1 = z1] is continuous for all τ =
1, � � � , K − 2, for both d1 = 0, 1.

Meanwhile, the mean equivalence condition in (2.4) need to be extended to

ATEτ ≡ E[θτ,1|Z1 = 0] =E
[
θ�

k

τ,(k+1)|Z1 = 0
]
, (A.1)

for all τ = 0, 1, � � � , K− 1, �k ∈ Lk, and k= 1, � � � , K− τ− 1. The random treatment selec-
tion condition in (2.5) need to be extended to

E
[
θ�

k

τ,(k+1)D
(
�k, 1

)
|Z1 = 0

]=E
[
θ�

k

τ,(k+1)|Z1 = 0
] ·E[D(�k, 1

)
|Z1 = 0

]
, (A.2)

for all τ = 0, 1, � � � , K − 1, �k ∈ Lk, and k= 1, � � � , K − τ − 1.
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Lemma A.1. Under Assumptions 2.1, A.1, and conditions in equations (2.4), (2.5), (A.1),
and (A.2), the following CFR recursive identification result holds:

ATE0 = lim
z1↘0

E[Y1|Z1 = z1] − lim
z1↗0

E[Y1|Z1 = z1],

ATEτ = lim
z1↘0

E[Y1+τ|Z1 = z1] − lim
z1↗0

E[Y1+τ|Z1 = z1]

−
τ−1∑
s=0

ATEs ·
(

lim
z1↘0

E[D1+τ−s|Z1 = z1] − lim
z1↗0

E[D1+τ−s|Z1 = z1]
)

,

for all τ = 1, 2, � � � , K − 1.

Lemma A.1 reduces to Lemma 2.1 when K = 2. The lemma is proven in Section C.

A.2 Extended CFR with covariates

This section extends the recursive CFR identification strategy using covariates.

Assumption A.2. There exists an ε > 0, such that for all x ∈X :

1. Z1 is continuous in z1 ∈ Nε with P[Z1 ≥ 0|X = x] ∈ (0, 1);

2. E[Y1(d1 )|X = x, Z1 = z1], E[Ỹ2(d1 )|Z1 = z1], and E[D2(d1 )|X = x, Z1 = z1] are all
continuous in z1 ∈ Nε, for both d1, d2 = 0, 1.

The following lemma summarizes the extension.

Lemma A.2. Under Assumption A.2 and conditions in equations (2.6) and (2.7), the fol-
lowing recursive identification results hold:

ATE1 ≡ lim
z1↘0

E[Y2|Z1 = z1] − lim
z1↗0

E[Y2|Z1 = z1] −E
[
CATE0(X )p2(X )|Z1 = 0

]
,

where CATE0(x) = limz1↘0 E[Y1|X = x, Z1 = z1] − limz1↗0 E[Y1|X = x, Z1 = z1] and
p2(x) = limz1↘0 E[D2|X = x, Z1 = z1] − limz1↗0 E[D2|X = x, Z1 = z1], for all x ∈ X .

The lemma is proven in Section C.

A.3 Partial identification

In this section, we discuss partial identification of the one-period-after ATE by replacing
the CIA condition in Assumption 2.2 to a monotonicity condition that might be more
plausible in some empirical applications.

Assumption A.3 (Monotone 1—Benchmark). E[Y2(d1, 0)|Z2(d1 ) = z2, S2(d1 ) = 1, Z1 =
z1] is (weakly) monotonically increasing in z2 for all z1 ∈ Nε.
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Assumption A.3 assumes that the potential second-round running variable has a
monotonic relationship with the conditional mean of potential second-round outcomes
with no second-round treatment. The assumption nests the CIA condition in Assump-
tion 2.2. Under Assumption A.3, for d1 = 0, 1,

E
[
θd1

0,2|D2(d1 ) = 1, Z1 = 0
]

= E
[
Y2(d1, 1)|D2(d1 ) = 1, Z1 = 0

]−E
[
Y2(d1, 0)|S2(d1 ) = 1, Z2(d1 ) ≥ 0, Z1 = 0

]
≤E

[
Y2(d1, 1)|D2(d1 ) = 1, Z1 = 0

]−E
[
Y2(d1, 0)|S2(d1 ) = 1, Z2(d1 ) < 0, Z1 = 0

]
.

Then, following the identification results in Section 2.3, we know that

E
[
θ0

0,2D2(0)|Z1 = 0
]≤ lim

z1↗0
E
[
Y2S2

(
D2 − λ0)]/(1 − λ0), and

E
[
θ1

0,2D2(1)|Z1 = 0
]≤ lim

z1↘0
E
[
Y2S2

(
D2 − λ1)]/(1 − λ1).

Assumption A.4 (Monotone 2—Benchmark). E[θd1
0,2|Z2(d1 ) = z2, S2(d1 ) = 1, Z1 = z1]

is (weakly) monotonically increasing in z2 ∈R for all x ∈ X and z1 ∈ Nε.

Assumption A.4 assumes that the potential second-round running variable has a
monotonic relationship with the immediate second-period ATE. When the continuity
conditions in Assumptions 2.2 are extended to conditional means of potential outcomes
conditional on both Z1 and Z2, it is easy to show that under Assumption A.4,

E
[
θ0

0,2|D2(0) = 1, Z1 = 0
]≥E

[
θ0

0,2|S2(0) = 1, Z2(0) = 0, Z1 = 0
]

= lim
z1↗0,z2↘0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1]

− lim
z1↗0,z2↗0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1] ≡ β0,

E
[
θ1

0,2|D2(1) = 1, Z1 = 0
]≥E

[
θ1

0,2|S2(1) = 1, Z2(1) = 0, Z1 = 0
]

= lim
z1↘0,z2↘0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1]

− lim
z1↘0,z2↗0

E[Y2|S2 = 1, Z2 = z2, Z1 = z1] ≡ β1.

Combining the inequalities above and the decomposition stated in equation (2.2),
we bound the one-period-after ATE E[θ1,1|Z1 = z1] as

α1 −
(

lim
z1↗0

E[Y2|Z1 = z1] −β0 · lim
z1↗0

P[D2 = 1|Z1 = z1]
)

≤E[θ1,1|Z1 = z1]

≤
(

lim
z1↘0

E[Y2|Z1 = z1] −β1 · lim
z1↘0

P[D2 = 1|Z1 = z1]
)

− α0.

where α0 and α1 are identified in Lemma 2.2 but used here without the conditioning
covariate X . The inequalities can also be extended trivially to include covariates.
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A similar partial identification result of longer-term ATEs could also be obtained,
given the Markovian-type condition in Assumption 2.2.1 and generalized versions of As-
sumptions A.3 and A.4. Details are omitted for brevity of the paper. All identified bounds
can be estimated by conventional nonparametric RD estimators (see, e.g., Chiang, Hsu,
and Sasaki (2019)).

A.4 Special cases

A.4.1 Up-to-one treatment Case I An important special case of the dynamic RD model
is that every individual can only receive up to one treatment. For example, the effect of
unionization studied in DiNardo and Lee (2004) and Lee and Mas (2012) is a case where
the treatment has an absorbing state. Then the universe of past treatment paths, or Lk

for all k, only includes paths with up to one treatment. For instance, L2 = {(0, 0), (0, 1)},
and L3 = {(0, 0, 0), (0, 1, 0), (0, 0, 1)}.

Consider the identification of one-period-after and two-period-after ATEs. In this
special case, the relationship between total and direct effects reduces to

θ̃1,1 =θ1,1 − θ0
0,2D2(0),

θ̃2,1 =θ2,1 − θ̃0
1,2D2(0) − θ(0,0)

0,3 D3(0, 0) = θ2,1 + θ̃0
1,2η0,1 + θ(0,0)

0,3 η1,1.

This leads to simplification in Lemma 3.2. For one-period-after and two-period-after
ATEs, we have that

E[θ1,1|Z1 = 0] = lim
z1↘0

E[Y2|Z1 = z1] − lim
z1↗0

E

[
Y2 − Y2S2

(
D2 − λ0(X )

)
1 − λ0(X )

∣∣Z1 = z1

]
;

E[η1,1|Z1 = 0] = − lim
z1↗0

E

[
D3 − D3S2

(
D2 − λ0(X )

)
1 − λ0(X )

∣∣Z1 = z1

]
;

E[θ2,1|Z1 = 0] = lim
z1↘0

E[Y3|Z1 = z1] − lim
z1↗0

E

[
Y3 − Y3S2

(
D2 − λ0(X )

)
1 − λ0(X )

∣∣Z1 = z1

]

− lim
z1↗0

E

[
Y2S2

(
D2 − λ0(X )

)(
1 − λ0(X )

)
E[D2|Z1 = z1]

∣∣Z1 = z1

]
×E[η1,1|Z1 = 0].

A.4.2 Up-to-one treatment Case II In a related but different special case, treatment is
administrated after all rounds of RD have taken place, if an individual qualifies for it in
any round. For example, Clark and Martorell (2014) use RD to study the effect of a high
school diploma, whereby every student has multiple chances to take the test and qualify
for the diploma. This RD setting could be regarded as a classic fuzzy RD model, where
those who would opt out or fail to meet later-round RD cutoffs upon failing the first
round are compliers, and those who earn eligibility for treatment through later rounds
of RD are always takers.

Use a two-round model for intuition. The potential outcome framework is

Y = Y (1)D+Y (0)(1 −D),

D =D1 +D2 = 1(Z1 ≥ 0) + (1 −D1 ) · S2(0) · 1
(
Z2(0) ≥ 0

)
.
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Let C = 1 − S2(0) · 1(Z2(0) ≥ 0). Under smoothness conditions,

lim
z1↘0

E[Y |Z1 = z1] = lim
z1↘0

E
[
Y (1)|Z1 = z1

]=E
[
Y (1)|Z1 = 0

]
,

lim
z1↗0

E[Y |Z1 = z1] = lim
z1↗0

E
[
Y (1) · (1 −C ) +Y (0) ·C|Z1 = z1

]
=E

[
Y (1)|Z1 = 0

]−E
[(
Y (1) −Y (0)

) ·C|Z1 = 0
]
.

In this special case, conventional RD smoothness conditions could identify the av-
erage treatment effect among those who would opt out or fail to meet later-round RD
cutoffs upon barely failing the first round:

E
[
Y (1) −Y (0)|C = 1, Z1 = 0

]=
lim
z1↘0

E[Y |Z1 = z1] − lim
z1↗0

E[Y |Z1 = z1]

lim
z1↗0

P[D2 = 0|Z1 = z1]

If the goal is, instead, to identify the average effect for everyone at the first-round RD
cutoff, then we would like to note that

lim
z1↘0

E[Y |Z1 = z1] − lim
z1↗0

E[Y |Z1 = z1]

= E
[
Y (1) −Y (0)|Z1 = 0

]
−E

[
Y (1) −Y (0)|D2(0) = 1, Z1 = 0

] · P[D2(0) = 1|Z1 = 0
]
,

where E[Y (1) − Y (0)|Z1 = 0] could then be identified following the same intuition of
point identifying E[θ1,1|Z1 = 0] in the general model.

A.4.3 Not observing some initial rounds of RD In some empirical applications (e.g.,
U.S. House of Representative elections in Lee (2008)), the first observed period may not
be the first round of treatment. In such a case, identification strategies described in Lem-
mas 2.2 and 3.2 need to be reinterpreted or modified.

Suppose the initial S rounds of RD (and treatment decisions) are unobserved. The
observed outcome discontinuity at the first observed RD cutoff then identifies a con-
temporaneous effect of treatment (CET) for individuals at the cutoff, following the termi-
nology in Blackwell and Glynn (2018). Let Lpre ∈ LS be the random variable denoting the
realized but unobserved treatment path of all unobserved rounds of RD. Let Y1(Lpre, d1 )
be the potential outcome of the first observed outcome, characterized by the potential
treatment decision d1 in the first observed period. It is then clear that the following av-
erage immediate treatment effect is identified under standard smoothness conditions:

E
[
Y1
(
Lpre, 1

)
|Z1 = 0

]−E
[
Y1
(
Lpre, 0

)
|Z1 = 0

]
= lim

z1↘0
E[Y1|Z1 = z1] − lim

z1↗0
E[Y1|Z1 = z1].

Similarly, the CET concept could be extended to capture long-term effects in the special
setting with unobserved initial rounds of data.



6 Hsu and Shen Supplementary Material

As is explained in Blackwell and Glynn (2018), CET reflects the effect of a treatment
averaged across all of the treatment histories up to the period of that treatment. In
other words, CET is a weighted average of path-specific treatment effects with unknown
weights. Using notation of the previous sections,

E
[
Y1
(
Lpre, 1

)
|Z1 = 0

]−E
[
Y1
(
Lpre, 1

)
|Z1 = 0

]
=

∑
�pre∈LS

E
[
Y1
(
�pre, 1

)−Y1
(
�pre, 0

)
|Dpre

(
�pre)= 1, Z1 = 0

]
P
[
Dpre

(
�pre)= 1|Z1 = 0

]
,

where �pre is a preobservation treatment path (e.g., �pre = (0, 1, 0S−2 )), and Dpre(.) is the
unobserved preobservation treatment path indicator.

If a researcher would, instead, like to identify path-specific ATEs, then an alterna-
tive strategy is to use a prefocal-treatment condition using observed treatments, and
then use a Markovian-type assumption to eliminate the dependence of treatment ef-
fects on the unobserved treatment history. The empirical section of the paper takes this
approach since the expenditure outcomes are not observed in the first several years of
the data.

Appendix B: Additional inference results

B.1 Additional assumptions the asymptotic results

The following two assumptions are required for the asymptotic results stated in Theo-
rem 4.1 in Section 4.1.

Assumption B.1. For j = 1, � � � , k, the jth element of γ(z1 ), or γj(z1 ), is twice contin-
uously differentiable on (−ε, 0) and (0, ε) with corresponding derivatives bounded for
some ε > 0.

Assumption B.2. Moment E[‖X‖3|Z1 = z1] exists and is bounded on Nε for some ε > 0.

Recall that φγ0,ni(D2i, S2i, Z1i, Xi ) and φγ1,ni(D2i, S2i, Z1i, Xi ) are influence func-
tions of γ̂0 and γ̂1, respectively. Let Ik denote the k× k identity matrix and 0k×k denote
the k× k zero matrix. Under Assumptions 4.1–4.3 and B.1–B.2, one can show that

φγd ,ni(D2i, S2i, Z1i, Xi ) = (Ik0k×k )
(

d
)−1

S2i · 1(Z1i ≥ 0)d · 1(Z1i < 0)1−d

·K(Z1i/h)
(
D2i −L

(
X ′

i

(
γd +βdZ1i

)))( Xi

Z1iXi/h

)
,

for d = 0, 1.
The following two assumptions are required for the asymptotic results stated in The-

orem 4.1 and Theorem 4.2.
For notational simplicity, we use Ỹ2(γ) to denote Y2S2(D2−L(X ′γ))

(1−L(X ′γ)) . For d1 = 0, 1, define

Ỹ d1
2 = Y2S2(D2−L(X ′γd1 ))

(1−L(X ′γd1 ))
and ∇γỸ

d1
2 = ∇γỸ2(γ)|γ=γd1 . Let ∇2

γỸ2(γ) be the Hessian matrix

of Ỹ2(γ).
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Assumption B.3. Assume that for some ε > 0:

1. E[Y2|Z = z] and E[Ỹ 0
2 |Z1 = z1] are twice continuously differentiable on z ∈ [−ε, 0)

with bounded corresponding derivatives;

2. E[Y2|Z = z] and E[Ỹ 1
2 |Z1 = z1] are twice continuously differentiable on z ∈ [0, ε]

with bounded corresponding derivatives;

3. E[|Y2|3|Z1 = z1] is bounded for z ∈ [−ε, ε], E[|Ỹ 0
2 |3|Z1 = z1] is bounded for z ∈

[−ε, 0), and E[|Ỹ 1
2 |3|Z1 = z1] is bounded for z ∈ [0, ε].

Assumption B.4. Assume that for some ε > 0:

1. The third moment of the jth element of ∇γỸ
0
2 , or E[|∇γỸ

0
2j|

3|Z1 = z1], is bounded
and twice continuously differentiable on z ∈ [−ε, 0) with bounded corresponding
derivatives;

2. The third moment of the jth element of ∇γỸ
1
2 , or E[|∇γỸ

1
2j|

3|Z1 = z1], is bounded
and twice continuously differentiable on z ∈ [0, ε] with bounded corresponding
derivatives;

3. E[sup‖γ−γ0‖≤ε ‖∇2
γỸ2(γ)‖2] and E[sup‖γ−γ1‖≤ε ‖∇2

γỸ2(γ)‖2] are bounded.

B.2 Alternative inference procedure with robust RD inference

In this section, we propose an alternative inference procedure that extends the robust
RD inference method in CCT to the two-step one-period-after ATE estimator proposed
in Section 2. The new inference procedure avoids undersmoothing in the second-step
estimation. On the other hand, the first-step propensity score estimation in the new
procedure needs to use a higher-order local polynomial and a larger bandwidth than
the second-step ATE estimation. We detail the procedure below.

To carry out the alternative inference procedure, we redefine the first-step estima-
tors γ̂0

FS and γ̂1
FS using a local quadratic method and a first-step specific bandwidth hFS:

(
γ̂1

FS, β̂1
FS, ρ̂1

FS

)= arg max
γ,β,ρ

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

hFS

)
· [D2i logp

(
Xi, γ +βZ1i + ρZ2

1i

)
+ (1 −D2i ) log

(
1 −p

(
Xi, γ +βZ1i + ρZ2

1i

))]
,

(
γ̂0

FS, β̂0
FS, ρ̂0

FS

)= arg max
γ,β,ρ

n∑
i=1

S2i1(Z1i < 0)K
(
Z1i

hFS

)
· [D2i logp

(
Xi, γ +βZ1i + ρZ2

1i

)
+ (1 −D2i ) log

(
1 −p

(
Xi, γ +βZ1i + ρZ2

1i

))]
.

where hFS is the bandwidth for the first-step propensity score estimator.
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Given the first-step estimators, define

Ŷ1,i = Y2i −
Y2iS2i

(
D2i −p

(
Xi, γ̂

1
FS

))
1 −p

(
Xi, γ̂

1
FS

) ,

Ŷ0,i = Y2i −
Y2iS2i

(
D2i −p

(
Xi, γ̂

0
FS

))
1 −p

(
Xi, γ̂

0
FS

) .

Let α̂1(hn ) and α̂0(hn ) be estimators of α1 and α0, respectively, with the second-step
bandwidth hn:

(
α̂1(hn ), β̂1(hn )

)= arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K
(
Z1i

hn

)
[Ŷ1,i − α−βZ1i]

2,

(
α̂0(hn ), β̂0(hn )

)= arg min
α,β

n∑
i=1

1(Z1i < 0)K
(
Z1i

h

)
[Ŷ0,i − α−βZ1i]

2.

Following CCT, we define a bias-corrected estimator for the one-period-after ATE,
θ̄1,1, as

θ̂bc1,1(hn, bn ) = α̂1(hn ) − α̂0(hn ) − h2
nB̂1,1(hn, bn )

where h2
nB̂1,1(hn, bn ) is the bias estimator of the local linear estimator α̂1(hn ) − α̂0(hn )

using a pilot bandwidth bn defined later. Under proper assumptions, the first-step es-
timation of γ0

FS and γ1
FS does not influence either the first-order asymptotic bias or the

asymptotic variance of α̂1(hn ) − α̂0(hn ). In other words, the bias term could be defined
as

B̂1,1(hn, bn ) = ρ̂1(bn )
2! B+,1,1(hn ) − ρ̂0(bn )

2! B−,1,1(hn )

with B+,1,1(hn ) and B−,1,1(hn ) following the definitions in Lemma A.1(B) of CCT replac-
ing outcome variables in the Lemma by Ỹ1,i and Ỹ0,i. Let V bc

1,1(hn, bn ) be the variance
given in Theorem 1 of CCT with outcome variables replaced by Ỹ1,i and Ỹ0,i. Under suit-
able conditions, we are able to show that

θ̂bc1,1(hn, bn ) − θ̄1,1√
V bc

1,1(hn, bn )

d→N(0, 1).

Next, we study the asymptotic properties of the proposed two-step estimator with
p(x, γ) = L(x′γ) with L(a) = exp(a)/(1 + exp(a)). The following assumptions gives the
new bandwidth conditions.

Assumption B.5. Assume that:

1. The bandwidth satisfies that hFS → 0, nhFS → ∞, and nh7
FS → 0 as n → ∞;

2. hn → 0, nhn → ∞ and nh7
n → 0;
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3. bn → 0, nbn → ∞ and nb7
n → 0;

4. hn/hFS → 0 and bn/hFS → 0.

Redefine the influence function

φγd ,ni(D2i, S2i, Z1i, Xi ) = (Ik0k×k )
(

d
)−1

S2i · 1(Z1i ≥ 0)d · 1(Z1i < 0)1−d

·K
(
Z1i

hFS

)(
D2i −L

(
X ′

i

(
γd +βdZ1i + ρdZ2

1i

)))
⎛⎜⎜⎜⎜⎝

Xi
XiZ1i

hFS
XiZ

2
1i

h2
FS

⎞⎟⎟⎟⎟⎠ ,

for d = 0, 1. The following lemma then provides asymptotic properties of the first-step
local MLE estimators under the new local quadratic regression set-up.

Lemma B.1. Suppose that Assumptions 4.1–B.2, and 4.3 hold, then for d = 0, 1,

√
nhFS

⎛⎜⎝ γ̂d
FS − γd

FS
hFSβ̂

d
FS − hFSβ

d
FS

h2
FSρ̂

d
FS − h2

FSρ
d
FS

⎞⎟⎠
= 1√

nhFS

n∑
i=1

(

d
)−1

S2i · 1(Z1i ≥ 0)d · 1(Z1i < 0)1−d

·K
(
Z1i

hFS

)(
D2i −L

(
X ′

i

(
γd

FS +βd
FSZ1i + ρdFSZ

2
1i

)))
⎛⎜⎜⎜⎜⎝

Xi
XiZ1i

hFS
XiZ

2
1i

h2
FS

⎞⎟⎟⎟⎟⎠+ op(1),

where 
d is given in the proof of the lemma. In addition, for d = 0, 1,

√
nhFS

⎛⎜⎝ γ̂d
FS − γd

FS
hFSβ̂

d
FS − hFSβ

d
FS

h2
FSρ̂

d
FS − h2

FSρ
d
FS

⎞⎟⎠⇒N
(
0,
(

d
)−1

�d
(

d
)−1)

,

where �d is given in equation (D.3) in the proof.

Let Ỹ1,i and Ỹ0,i be the infeasible versions of Ŷ1,i and Ŷ0,i such that

Ỹ1,i = Y2i −
Y2iS2i

(
D2i −p

(
Xi, γ

1
FS

))
1 −p

(
Xi, γ

1
FS

) , Ỹ0,i = Y2i −
Y2iS2i

(
D2i −p

(
Xi, γ

0
FS

))
1 −p

(
Xi, γ

0
FS

) .

Given smoothness conditions on them, we can show asymptotic properties of the bias-
corrected estimator θ̂bc1,1(hn, bn ).
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Assumption B.6. Assume that for some ε > 0:

1. E[Ỹ 4
1 |Z = z] and E[Ỹ 4

0 |Z = z] are bounded on z ∈ [−ε, ε];

2. E[Ỹ1|Z = z] and E[Ỹ0|Z = z] are three times continuously differentiable on z ∈
[−ε, ε];

3. V [Ỹ1|Z = z] and V [Ỹ0|Z = z] are continuously on z ∈ [−ε, ε] and bounded away
from zero.

Theorem B.1. Suppose that Assumptions 4.1–B.2, 4.3, and B.6 hold. Then

θ̂bc1,1(hn, bn ) − θ̄1,1√
V bc

1,1(hn, bn )

d→N(0, 1).

Results in the theorem follows directly from Theorem 1 of CCT. Proof is given in Sec-
tion D. This is straightforward because Assumption B.5 implies that the first step esti-
mation converges at a faster rate than the resulting θ̂bc1,1(hn, bn ) estimator and we can
ignore its effect on the AMSE of the final estimator. Then by the same reasoning, we can
show that the AMSE-optimal (infeasible) choices for hn and bn are the same as those
in Lemma 1 of CCT after replacing outcomes with Ỹ1,i and Ỹ0,i, respectively. The data-
driven plug-in bandwidth selectors then follow directly from Section S.2.6 of the supple-
ment material of CCT.

Appendix C: Proofs for identification results

Proof of Lemma A.1

The identification result for ATE0 is a standard result in static sharp RD. Also by standard
static RD identification and the smoothness conditions in Assumption A.2, we know that
limz1↘0 E[D1+τ−s|Z1 = z1] − limz1↗0 E[D1+τ−s|Z1 = z1] =E[D̃1+τ−s(1) − D̃1+τ−s(0)|Z1 =
0] ≡ πτ−s , for any τ ≥ 1 and s = 0, 1, � � � , τ − 1.

Set π0 = limz1↘0 E[D1|Z1 = z1] − limz1↗0 E[D1|Z1 = z1] = 1. To prove the lemma, we
only need to prove that for all τ ≥ 1,

lim
z1↘0

E[Y1+τ|Z1 = z1] − lim
z1↗0

E[Y1+τ|Z1 = z1] =
τ∑

s=0

ATEs ·E[πτ−s|Z1 = 0].

We prove by induction. When τ = 1, the equation implies that limz1↘0 E[Y2|Z1 = z1] −
limz1↗0 E[Y2|Z1 = z1] = E[θ̃1,1|Z1 = 0] = ATE1 +ATE0 E[π1|Z1 = 0], which is already
shown in Section 2. Now, suppose that the equation above holds for some k ≥ 1. This
implies that

k∑
s=0

ATEs ·E[πk−s|Z1 = 0]

= lim
z1↘0

E[Y1+k|Z1 = z1] − lim
z1↗0

E[Y1+k|Z1 = z1]
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= lim
z1↘0

E
[
Ỹ1+k(1)|Z1 = z1

]− lim
z1↗0

E
[
Ỹ1+k(0)|Z1 = z1

]
= E[Ỹ1+k|Z1 = 0] −E[Ỹ1+k|Z1 = 0]

= E

[ ∑
�k∈Lk

(
Y1+k

(
1, �k

) ·D2:(1+k)
(
1, �k

)
−Yt

(
0, �k

) ·D2:(1+k)
(
0, �k

))∣∣Z1 = 0
]

, (C.1)

where the second and fourth equalities hold by definitions and the third equality holds

by smoothness conditions.

Now for period k+ 1, under smoothness conditions,

lim
z1↘0

E[Y(k+1)+1|Z1 = z1] − lim
z1↗0

E[Y(k+1)+1|Z1 = z1]

=E

[ ∑
�k∈Lk

Y(k+1)+1
(
1, �k, 1

)
D2:(k+1)

(
1, �k

)
D(k+1)+1

(
1, �k

)
+Y(k+1)+1

(
1, �k, 0

)
D2:(k+1)

(
1, �k

)(
1 −D(k+1)+1

(
1, �k

))∣∣Z1 = 0
]

−E

[ ∑
�k∈Lk

Y(k+1)+1
(
0, �k, 1

)
D2:(k+1)

(
0, �k

)
D(k+1)+1

(
0, �k

)
+Y(k+1)+1

(
0, �k, 0

)
D2:(k+1)

(
0, �k

)(
1 −D(k+1)+1

(
0, �k

))∣∣Z1 = 0
]

=E

[ ∑
�k∈Lk

(Y(k+1)+1
(
1, �k, 0

)
D2:(k+1)

(
1, �k

)
−Y(k+1)+1

(
0, �k, 0

)
D2:(k+1)

(
0, �k

)∣∣Z1 = 0
]

+E

[ ∑
�k∈Lk

θ(1,�k )
0,(k+1)+1 ·D2:(k+1)+1

(
1, �k, 1

)∣∣Z1 = 0
]

−E

[ ∑
�k∈Lk

θ(0,�k )
0,(k+1)+1 ·D2:(k+1)+1

(
0, �k, 1

)∣∣Z1 = 0
]

=A+ ATE0 ·E
[ ∑
�k∈Lk

D2:(k+1)+1
(
1, �k, 1

)∣∣Z1 = 0
]

− ATE0 ·E
[ ∑
�k∈Lk

D2:(k+1)+1
(
0, �k, 1

)∣∣Z1 = 0
]

≡A+ ATE0 ·E[D̃(k+1)+1(1) − D̃(k+1)+1(0)|Z1 = 0
]

=A+ ATE0 ·E[πk+1|Z1 = 0]. (C.2)
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The first two equalities hold by definitions. The third equality holds by the mean equali-
vance condition and random treatment selection condition in (A.1) and (A.2). The last
two equalities again hold by definitions.

Now note that the only difference between the A term above and the conditional
mean expression in the right-hand side of equation (C.1) is between the quasi-potential
outcome Y(k+1)+1(d1, �k, 0) in (C.2) and the potential outcome Yk+1(d1, �k ) in (C.1).
Given the definition of direct treatment effects, it is clear that

A=
k∑

s=0

ATEs+1 ·E[πk−s|Z1 = 0] =
k+1∑
s=1

ATEs ·E[π(k+1)−s|Z1 = 0]

Plugging the result into equation (C.2) therefore completes the proof by showing that

lim
z1↘0

E[Y1+(k+1)|Z1 = z1] − lim
z1↗0

E[Y1+(k+1)|Z1 = z1] =
k+1∑
s=0

ATEs ·E[π(k+1)−s|Z1 = 0].

Proof of Lemma A.2

From equation (2.1) and the proof of Lemma A.1, we know that

ATE1 = lim
z1↘0

E[Y2|Z1 = z1] − lim
z1↗0

E[Y2|Z1 = z1]

−E
[
E
[
θ1

0,2D2(1) − θ0
0,2D2(0)|X , Z1 = 0

]
|Z1 = 0

]]
,

where

E
[
θ1

0,2D2(1) − θ0
0,2D2(0)|X , Z1 = 0

]
=E

[
θ1

0,2|D2(1) = 1, X , Z1 = 0
]
E
[
D2(1)|X , Z1 = 0

]
−E

[
θ0

0,2|D2(0) = 1, X , Z1 = 0
]
E
[
D2(0)|X , Z1 = 0

]
=E

[
θ1

0,2|X , Z1 = 0
]
E
[
D2(1)|X , Z1 = 0

]−E
[
θ0

0,2|X , Z1 = 0
]
E
[
D2(0)|X , Z1 = 0

]
= CATE0(X )

(
E
[
D2(1) −D2(0)|X , Z1 = 0

])
.

The second equality is by the extended random treatment selection assumption in
(2.6) and the third equality is by the extended homogeneous ATE assumption in (2.7).
Then, by the strengthened smoothness and overlapping conditions in Assumption A.2,
we know that CATE0(X ) = limz1↘0 E[Y1|X , Z1 = z1] − limz1↗0 E[Y1|X , Z1 = z1] and
E[D2(1) −D2(0)|X , Z1 = 0] = limz1↘0 E[D2|X , Z1 = z1] − limz1↗0 E[D2|X , Z1 = z1]. The
lemma is hence proven.

Proof of Lemma 2.2

By the definition of potential propensity scores, we have that

E
[
Y2(0, 1)|X(0), S2(0) = 1, Z2(0) ≥ 0, Z1 = 0

]
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=E
[
Y2(0, 1)1

(
Z2(0) ≥ 0

)
|X(0), S2(0) = 1, Z1 = 0

]
/P
[
Z2(0) ≥ 0|X(0), S2(0) = 1, Z1 = 0

]
=E

[
Y2(0, 1)D2(0)|X(0), S2(0) = 1, Z1 = 0

]
/λ0(X(0)

)
.

Under the CIA condition in Assumption 2.2, we also have that

E
[
Y2(0, 0)|X(0), S2(0) = 1, Z2(0) ≥ 0, Z1 = 0

]
= E

[
Y2(0, 0)|X(0), S2(0) = 1, Z2(0) < 0, Z1 = 0

]
= E

[
Y2(0, 0)1

(
Z2(0) < 0

)
|X(0), S2(0) = 1, Z1 = 0

]
/P
[
Z2(0) < 0|X(0), S2(0) = 1, Z1 = 0

]
= E

[
Y2(0, 0)

(
1 −D2(0)

)
|X(0), S2(0) = 1, Z1 = 0

]
/
(
1 − λ0(X(0)

))
.

Then

E
[
θ0

0,2|D2(0) = 1, Z1 = 0
]

=E
[
E
[
Y2(0, 1) −Y2(0, 0)|X(0), S2(0) = 1, Z2(0) ≥ 0, Z1 = 0

]
|S2(0) = 1,

Z2(0) ≥ 0, Z1 = 0
]

=E

[
E

[
Y2(0, 1)D2(0)

λ0(X(0)
) − Y2(0, 0)

(
1 −D2(0)

)
1 − λ0(X(0)

) ∣∣X(0), S2(0) = 1, Z1 = 0
]∣∣S2(0) = 1,

Z2 ≥ 0, Z1 = 0
]

=
(
E

[
E

[
Y2(0, 1)D2(0)

λ0(X(0)
) − Y2(0, 0)

(
1 −D2(0)

)
1 − λ0(X(0)

) ∣∣X(0), S2(0) = 1, Z1 = 0
]

· 1
(
Z2(0) ≥ 0

)
|S2(0) = 1, Z1 = 0

])
/
(
P
[
Z2(0) ≥ 0|S2(0) = 1, Z1 = 0

])
=E

[
E

[
Y2(0, 1)D2(0)

λ0(X(0)
) − Y2(0, 0)

(
1 −D2(0)

)
1 − λ0(X(0)

) ∣∣X(0), S2(0) = 1, Z1 = 0
]

· E
[
1
(
Z2(0) ≥ 0

)
|X(0), S2(0) = 1, Z1 = 0

]
P
[
Z2(0) ≥ 0|S2(0) = 1, Z1 = 0

] ∣∣S2(0) = 1, Z1 = 0
]

= lim
z1↗0

E

[
E

[
Y2D2

λ0(X )
− Y2(1 −D2 )

1 − λ0(X )

∣∣X , S2 = 1, Z1 = z1

]

· λ0(X )
E[D2|S2 = 1, Z1 = z1]

∣∣S2 = 1, Z1 = z1

]

= lim
z1↗0

E

[
E

[
Y2
(
D2 − λ0(X )

)(
1 − λ0(X )

)
E[D2

∣∣S2 = 1, Z1 = z1]

∣∣X , S2 = 1, Z1 = z1

]∣∣S2 = 1, Z1 = z1

]

= lim
z1↗0

E

[
Y2
(
D2 − λ0(X )

)(
1 − λ0(X )

)
E[D2

∣∣S2 = 1, Z1 = z1]

∣∣S2 = 1, Z1 = z1

]
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= lim
z1↗0

E

[
Y2
(
D2 − λ0(X )

)(
1 − λ0(X )

)
E[D2|S2 = 1, Z1 = z1]

· S2

P[S2 = 1|Z1 = z1]

∣∣Z1 = z1

]

= lim
z1↗0

E

[
Y2S2

(
D2 − λ0(X )

)(
1 − λ0(X )

)
E[D2|Z1 = z1]

∣∣Z1 = z1

]
.

The first and third equalities holds by the law of iterated expectations. The second holds
by plugging in the equations shown above. The fourth equality holds by smoothness
conditions in Assumption 2.2.2.

Similarly, we have that

E
[
θ1

0,2|D2(1) = 1, Z1 = 0
]= lim

z1↘0
E

[
Y2S2

(
D2 − λ1(X )

)(
1 − λ1(X )

)
E[D2|Z1 = z1]

∣∣Z1 = z1

]
.

Plugging the results to equation (2.2) proves the lemma.

Proof of Lemma 3.1

First, consider pairs of potential outcomes with only one flipped treatment status. De-
note the difference by Yk+τ(�k−1, 1, ητ ) − Yk+τ(�k−1, 0, ητ ), where k = 1, � � � , T − 1,
τ = 1, � � � , T − k, �k−1 ∈ Lk−1, and ητ ∈ Lτ . If all elements of η are zero, the above dif-
ference is a direct effect of the kth round treatment. If all but the sth element of η are
zero, for any s = 1, � � � , τ, then the difference

Yk+τ

(
�k−1, 1, η

)−Yk+τ

(
�k−1, 0, η

)
= Yk+τ

(
�k−1, 1, 0τ

)−Yk+τ

(
�k−1, 0, 0τ

)
+Yk+τ

(
�k−1, 1, η

)−Yk+τ

(
�k−1, 1, 0τ

)− (Yk+τ

(
�k−1, 0, η

)−Yk+τ

(
�k−1, 0, 0τ

))
= θ

�k−1
τ,k + θ

(�k−1,1,0s−1 )
τ−s,k+s − θ

(�k−1,0,0s−1 )
τ−s,k+s . (C.3)

is a linear combination of long-term direct effects (or immediate effects and long-term
direct effects when τ = s).

If all but the sth and s′th elements of η are zero, s < s′, then

Yk+τ

(
�k−1, 1, η

)−Yk+τ

(
�k−1, 0, η

)
= Yk+τ

(
�k−1, 1, η′)−Yk+τ

(
�k−1, 0, η′)+Yk+τ

(
�k−1, 1, η

)−Yk+τ

(
�k−1, 1, η′)

− (Yk+τ

(
�k−1, 0, η

)−Yk+τ

(
�k−1, 0, η′)),

where η′ is a vector whose sth element is one and all other elements are zero. The first
difference in the right-hand side is between a pair of potential outcomes discussed in
(C.3). The other two differences are direct effects (or immediate effects when τ = s′).
Similarly, the difference Yk+τ(�k−1, 1, η) − Yk+τ(�k−1, 0, η) with three or more nonzero
elements in η could all be represented by linear combinations of immediate effects and
long-term direct effects.
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Now consider pairs of potential outcomes with two flipped treatments. It is easy

to see that such differences, for example, Yk+τ(�k−1, 1, η, 1, ρ) − Yk+τ(�k−1, 0, η, 0, ρ),

could be represented by a linear combination of differences of potential outcomes with

only one flipped treatment status, which has been discussed above and, therefore, could

eventually be represented by a linear combination of immediate effects and long-term

direct effects. Similarly, the difference of potential outcomes with three or more flipped

treatment status could be defined by a linear combination of immediate effects and

long-term direct effects. This completes the proof.

Proof of equation (3.1)

Set θ̃�
k−1

0,k = θ�
k−1

0,k in this proof for nation simplicity. (There is no need to differentiate

direct immediate effect and total immediate effect.) First, we notice that for both d1 =
0, 1, the quasi-potential outcome Ỹτ+1(d1 ) could be decomposed as the following:

Ỹτ+1(d1 ) = Ỹτ+1(d1, 0) · (1 −D2(d1 )
)+ Ỹτ+1(d1, 1) ·D2(d1 )

= Ỹτ+1(d1, 0) + θ̃d1
τ−1,2 ·D2(d1 )

= Ỹτ+1(d1, 0, 0) · (1 −D3(d1, 0)
)+ Ỹτ+1(d1, 0, 1) ·D3(d1, 0)

+ θ̃d1
τ−1,2 ·D2(d1 )

= Ỹτ+1(d1, 02 ) + θ̃(d1,0)
τ−2,3 ·D3(d1, 0) + θ̃d1

τ−1,2 ·D2(d1 )

= Ỹτ+1(d1, 03 ) · (1 −D4(d1, 02 )
)+ Ỹτ+1(d1, 02, 1) ·D4(d1, 02 )

+ θ̃(d1,0)
τ−2,3 ·D3(d1, 0) + θ̃d1

τ−1,2 ·D2(d1 )

= Ỹτ+1(d1, 03 ) + θ̃(d1,02 )
τ−3,4 ·D4(d1, 02 ) + θ̃(d1,0)

τ−2,3 ·D3(d1, 0) + θ̃d1
τ−1,2 ·D2(d1 )

= ...

= Yτ+1(d1, 0τ ) + θ̃d1
τ−1,2 ·D2(d1 ) +

τ−2∑
s=0

θ̃
(d1,0τ−1−s )
s,τ+1−s ·Dτ+1−s(d1, 0τ−1−s ).

Then it is clear that for all τ = 2, � � � , K − 1,

θ̃τ,1 = Ỹτ+1(1) − Ỹτ+1(0)

= θτ,1 + (θ̃1
τ−1,2 ·D2(1) − θ̃0

τ−1,2 ·D2(0)
)

+
τ−2∑
s=0

(
θ̃

(1,0τ−1−s )
s,τ+1−s ·Dτ+1−s(1, 0τ−1−s ) − θ̃

(0,0τ−1−s )
s,τ+1−s ·Dτ+1−s(0, 0τ−1−s )

)
.

This completes the proof of equation (3.1).
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Proof of Lemma 3.2

Combining the decomposition in equation (3.1) and the Markovian condition in As-
sumption 3.1, we have that

E[θ̃τ,1|Z1 = 0]

=E[θτ,1|Z1 = 0] +E
[
θ̃1
τ−1,2|D2(1) = 1, Z1 = 0

] · P[D2(1) = 1|Z1 = 0
]

−E
[
θ̃0
τ−1,2|D2(0) = 1, Z1 = 0

] · P[D2(0) = 1|Z1 = 0
]

+
τ−2∑
s=0

E
[
θ̃

(1,0τ−1−s )
s,τ+1−s |Dτ+1−s(1, 0τ−1−s ) = 1, Z1 = 0

]
× P

[
Dτ+1−s(1, 0τ−1−s ) = 1|Z1 = 0

]
−

τ−2∑
s=0

E
[
θ̃

(0,0τ−1−s )
s,τ+1−s |Dτ+1−s(0, 0τ−1−s ) = 1, Z1 = 0

]
× P

[
Dτ+1−s(0, 0τ−1−s ) = 1|Z1 = 0

]
=E[θτ,1|Z1 = 0] +E

[
θ̃1
τ−1,2|D2(1) = 1, Z1 = 0

] · P[D2(1) = 1|Z1 = 0
]

−E
[
θ̃0
τ−1,2|D2(0) = 1, Z1 = 0

] · P[D2(0) = 1|Z1 = 0
]

+
τ−2∑
s=0

E
[
θ̃0
s,2|D2(0) = 1, Z1 = 0

]
P
[
Dτ+1−s(1, 0τ−1−s ) = 1|Z1 = 0

]

−
τ−2∑
s=0

E
[
θ̃0
s,2|D2(0) = 1, Z1 = 0

]
P
[
Dτ+1−s(0, 0τ−1−s ) = 1|Z1 = 0

]
=E[θτ,1|Z1 = 0] + μ̃1

τ−1 ·E[D2(1)|Z1 = 0
]− μ̃0

τ−1 ·E[D2(0)|Z1 = 0
]

+
τ−2∑
s=0

μ̃0
s ·E[ητ−1−s,1|Z1 = 0]. (C.4)

By smoothness conditions in Assumption 2.1, the left-hand side could be iden-
tified as limz1↘0 E[Ys+1|Z1 = z1] − limz1↗0 E[Ys+1|Z1 = z1] while E[D2(1)|Z1 = 0] =
limz1↘0 E[D2|Z1 = z1], and E[D2(0)|Z1 = 0] = limz1↗0 E[D2|Z1 = z1] in the right-hand
side. Meanwhile, since

E
[
θ̃ds,2|D2(d) = 1, Z1 = 0

]=E
[
Ỹ2+s(d, 1) − Ỹ2+s(d, 0)|D2(d) = 1, Z1 = 0

]
,

it can be identified following the same steps in the proof of Lemma 2.2, by treating
Ỹ2+s(d, 0) and Ỹ2+s(d, 1) as potential second-period outcomes. Then we have that μ̃0

s =
limz1↗0 E[ Y2+sS2(D2−λ0(X ))

(1−λ0(X ))E[D2|Z1=z1]
|Z1 = z1] and μ̃1

s = limz1↘0 E[ Y2+sS2(D2−λ1(X ))
(1−λ1(X ))E[D2|Z1=z1]

|Z1 = z1]

for all s = 0, � � � , τ − 1.
Lastly, we notice that ητ−1−s,1 = Dτ+1−s(1, 0τ−1−s ) −Dτ+1−s(0, 0τ−1−s ) is a direct ef-

fect, viewing a subsequent treatment decision as an outcome. Then, applying the iden-
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tification result in Lemma 2.2, we know that

E[η1,1|Z1 = 0] = lim
z1↘0

E

[
D3 − D3S2

(
D2 − λ1(X )

)
1 − λ1(X )

∣∣Z1 = z1

]

− lim
z1↗0

E

[
D3 − D3S2

(
D2 − λ0(X )

)
1 − λ0(X )

∣∣Z1 = z1

]
.

In addition, for all τ = 2, � � � , K − 2, following the identification in equation (C.4) and
viewing a subsequent treatment decision as an outcome,

E[ητ,1|Z1 = 0] = lim
z1↘0

E[Dτ+2|Z1 = z1] − lim
z1↗0

E[Dτ+2|Z1 = z1]

− ν̃1
τ−1 · lim

z1↘0
E[D2|Z1 = z1] + ν̃0

τ−1 · lim
z1↗0

E[D2|Z1 = z1]

−
τ−2∑
s=0

ν̃0
s ·E[ητ−1−s,1|Z1 = 0],

could be identified recursively, where ν̃0
s = limz1↗0 E[ D3+sS2(D2−λ0(X ))

(1−λ0(X ))E[D2|Z1=z1]
|Z1 = z1] and

ν̃1
s = limz1↘0 E[ D3+sS2(D2−λ1(X ))

(1−λ1(X ))E[D2|Z1=z1]
|Z1 = z1] for all s = 0, � � � , τ − 1.

Plugging in all pieces to equation (C.4) completes the proof of Lemma 3.2.

Appendix D: Proofs for inference results

Proof of Lemma 4.1

Recall that

(
γ̂1, β̂1

FS

)= arg max
γ,β

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
· [D2i logL

(
X ′

i(γ +βZ1i )
)+ (1 −D2i ) log

(
1 −L

(
X ′

i(γ +βZ1i )
))]

,

(
γ̂0, β̂0

FS

)= arg max
γ,β

n∑
i=1

S2i1(Z1i < 0)K
(
Z1i

h

)
· [D2i logL

(
X ′

i(γ +βZ1i )
)+ (1 −D2i ) log

(
1 −L

(
X ′

i(γ +βZ1i )
))]

.

We prove the lemma for γ̂1 following Cai, Fan, and Li (2000). Results for γ̂0 could be
shown similarly. To simplify notation, we will drop the superscript 1 and subscript FS in
the rest of the proof. That is, we have

(γ̂, β̂) = arg max
γ,β

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
· [D2i logL

(
X ′

i(γ +βZ1i )
)+ (1 −D2i ) log

(
1 −L

(
X ′

i(γ +βZ1i )
))]

≡ arg max
γ,β

�n(γ, β). (D.1)
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Recall that γ1 = limz↘0 γ(z) and β1 = limz↘0 γ
′(z). Define

γ∗ = √
nh
(
γ − γ1), β∗ = √

nh
(
hβ− hβ1),

γ̂∗ = √
nh
(
γ̂1 − γ1), β̂∗ = √

nh
(
hβ̂1 − hβ1),

θ = ((γ∗)′, (β∗)′)′, θ̂ = ((γ̂∗)′, (β̂∗)′)′,
X̃i =

(
X ′

i

Z1iX
′
i

h

)′
, δn = 1√

nh
, η(z, x) = (γ1 +β1z

)′
x.

Therefore, we have that

(γ +βZ1i )
′Xi =

(
γ1 +β1Z1i

)′
Xi + δn

((
γ∗)′Xi +

(
β∗)′Z1iXi

h

)
= η(Z1i, Xi ) + δnθ

′X̃i,

and we define �∗
n(θ) as

�∗
n(θ) =

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
· {[D2i logL

(
η(Z1i, Xi ) + δnθ

′X̃i

)+ (1 −D2i ) log
(
1 −L

(
η(Z1i, Xi ) + δnθ

′X̃i

))]
− [D2i logL

(
η(Z1i, Xi )

)+ (1 −D2i ) log
(
1 −L

(
η(Z1i, Xi )

))]}
.

Given that (γ̂′, β̂′ )′ maximizes �n(γ, β), we have θ̂ maximizes �∗
n(θ).

Let qi(a) = D2i logL(a) + (1 − D2i ) log(1 − L(a)), then q′
i(a) = D2i − L(a), q′′

i (a) =
−L(a)(1 − L(a)), and q′′′

i (a) = (2L(a) − 1)L(a)(1 − L(a)). Taking a Taylor expansion of
qi(η(Z1i, Xi ) + δnθ

′X̃i ) around η(Z1i, Xi ) for each i, we obtain

�∗
n(θ) =

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)

·
{(

D2i −L
(
η(Z1i, Xi )

))
δnθ

′X̃i − 1
2
L
(
η(Z1i, Xi )

)(
1 −L

(
η(Z1i, Xi )

))(
δnθ

′X̃i

)2

+ 1
6

(
2L(η̄i ) − 1

)
L(η̄i )

(
1 −L(η̄i )

)(
δnθ

′X̃i

)3
}

,

where η̄i is between η(Z1i, Xi )) and η(Z1i, Xi )) + δnθ
′X̃i for each i. Note that for

each i, the expected value of the last term, S2i1(Z1i ≥ 0)K( Z1i
h )(2L(η̄i ) − 1)L(η̄i )(1 −

L(η̄i ))(δnθ′X̃i )3, is bounded by O(δ3E|‖Xi‖ · K(Z1i/h)|) = O(n−3/2 · h−3/2 · h) =
O(n−1δn ).

It then follows that

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
· 1

6

(
2L(η̄i ) − 1

)
L(η̄i )

(
1 −L(η̄i )

)(
δnθ

′X̃i

)3 =O(δn ) = o(1).

Therefore,

�∗
n(θ) =Q′

nθ− 1
2
θ′
nθ+ op(1), where
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Qn = δn

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
· (D2i −L

(
η(Z1i, Xi )

))
X̃i,


n = δ2
n

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
·L(η(Z1i, Xi )

)(
1 −L

(
η(Z1i, Xi )

))
X̃iX̃

′
i .

Next, we omit subscript i when there is no confusion for notational simplicity. For
the term 
n, we have that

E[
n] = 1
h
E

⎡⎣S21(Z1 ≥ 0)K
(
Z1

h

)
L
(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))⎛⎝ X
Z1X

h

⎞⎠(X ′Z1X
′

h

)⎤⎦ .

Note that for any j = 0, 1, � � � and function g(.), by standard arguments,

1
h
E

[
S21(Z1 ≥ 0)K

(
Z1

h

)
L
(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
g(X )

(
Z1

h

)j]

= E

[
E
[
S2L

(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
g(X )|Z1

]
1(Z1 ≥ 0)

(
Z1

h

)j

K

(
Z1

h

)]
= fz1 (0)E

[
S2L

(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
g(X )|Z1 = 0

]∫
u≥0

ujK(u)du+ o(h).

Let


z = fz(0) ·
(
μz,0 μz,1

μz,1 μz,2

)
with μz,j =

∫
u≥0

ujK(u)du, for j = 0, 1, � � � .

Then we have

E[
n] = 
z ⊗E
[
S2L

(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
XX ′|Z1 = 0

]+ o(1) ≡ 
+ o(1). (D.2)

where ⊗ denotes Kronecker product. Similar arguments show that for each, (
n )jk, the

(j, k)-th element of 
n, Var((
n )jk ) =O(δn ) = o(1). Therefore, 
n
p→ 
 and it follows that

�∗
n(θ) =Q′

nθ− 1
2
θ′
θ+ op(1).

Then by the quadratic approximation lemma in Fan and Gijbels (1996), page 210, we
have that

θ̂ = 
−1Qn + op(1).

For the term Qn, we have that

E[Qn] = nδnE

[
S21(Z1 ≥ 0)K

(
Z1

h

)
· (D2 −L

(
η(Z1, X )

))
X̃

]
= nδnE

[
E[S2|X , Z1]1(Z1 ≥ 0)K

(
Z1

h

)
· (E[D2|S2 = 1, X , Z1] −L

(
η(Z1, X )

))
X̃

]
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= nδnE

[
E[S2|X , Z1]1(Z1 ≥ 0)K

(
Z1

h

)
· (L(γ(Z1 )′X

)−L
(
η(Z1, X )

))
X̃

]
=O

(
nδnh · h2)=O

(√
nh5

)= o(1).

To see this, note that L(γ(Z1 )′X ) =L(η(Z1, X )) +L(η̄)(1 −L(η̄))(γ(Z1 )′X −η(Z1, X ))
where η̄ is between η(Z1, X ) and γ(Z1 )′X , so L(γ(Z1 )′X ) − L(η(Z1, X )) =
Op(γ(Z1 )′X − η(Z1, X ))) because L(η̄)(1 − L(η̄)) is bounded by 1/4. By a mean value
expansion of γ(Z1 )′X around 0, we have γ(Z1 )′X = (γ1 + β1Z1 + γ′′(Z̄1 )Z2

1 )′X where
Z̄1 is between 0 and Z1. Therefore, γ(Z1 )′X − η(Z1, X )′ = γ′′(Z̄1 )′Z2

1X . Therefore,
L(γ(Z1 )′X ) − L(η(Z1, X )) = Op(Z2

1 ). Given that K(Z1/h) is nonzero when |Z1/h| ≤ 1
or equivalently, |Z1| ≤ h, K( Z1

h ) · (L(γ(Z1 )′X ) − L(η(Z1, X ))) = Op(K(Z1/h)h2 ). It fol-

lows that the expectation is O(nδnh ·h2 ) =O(
√
nh5 ) and Assumption 4.3(iii) implies that

O(
√
nh5 ) = o(1).

In addition, the variance-covariance matrix of Qn is given by

V [Qn] = δ2nE

[
S21(Z1 ≥ 0)K2

(
Z1

h

)
· (D2 −L

(
η(Z1, X )

))2
X̃X̃ ′

]
= 1

h
E

[
E[S2|Z1, X]1(Z1 ≥ 0)K2

(
Z1

h

)
·L(η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
X̃X̃ ′

]
+O

(
h2)

= fz1 (0)

(
ν0,+ν1,+
ν1,+ν2,+

)
⊗E

[
E[S2|Z1, X]L

(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
XX ′|Z1 = 0

]+O
(
h2)

≡ �+ o(1), (D.3)

where νk,+ = ∫u≥0 u
kK2(u)du for k= 0, 1, � � � .

Finally, let ξi = S2i1(Z1i ≥ 0)K(Z1i/h)(D2i − L(η(Z1i, Xi )))X̃i. ξi satisfies the Lya-
punov’s condition since nδ3

nE[‖ξi‖3] = O(δn ) → 0 by Assumption B.2. It then follows that

Qn
d→ (0, �) and θ̂

d→ (0, 
−1�
−1 ).

Proof of Theorem 4.1

We derive the asymptotics of α̂1 and α̂0. Recall that

(
α̂1, β̂1)= arg min

α,β

∑
{i:Z1i≥0}

K

(
Z1i

h

)[
Y2i −

Y2iS2i
(
D2i −L

(
X ′

i γ̂
1))(

1 −L
(
X ′

i γ̂
1)) − α−βZ1i

]2

,

(
α̂0, β̂0)= arg min

α,β

∑
{i:Z1i<0}

K

(
Z1i

h

)[
Y2i −

Y2iS2i
(
D2i −L

(
X ′

i γ̂
0))(

1 −L
(
X ′

i γ̂
0)) − α−βZ1i

]2

.
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Note that the local linear estimator is additive in the dependent variables in that if

(α̂ay+bx, β̂ay+bx) = arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K
(
Z1i

h

)[
(aYi + bXi ) − α−βZ1i

]2
,

(α̂y , β̂y ) = arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K
(
Z1i

h

)
[Yi − α−βZ1i]

2,

(α̂x, β̂x ) = arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K
(
Z1i

h

)
[Xi − α−βZ1i]

2,

then (α̂ay+bx, β̂ay+bx) = a(α̂y , β̂y ) + b(α̂x, β̂x ). In addition, suppose Yi satisfies Assump-
tion B.3 with Y2i replaced with Yi. By Chiang, Hsu, and Sasaki (2019), we have

√
nh

(
α̂y − αy

hβ̂y − hβy

)
= 1√

nh

n∑
i=1


−1
z 1(Z1i ≥ 0)K

(
Z1i

h

)(
Yi −E[Yi|Z1i]

)⎛⎝ 1
Z1i

h

⎞⎠+ op(1)

where αy = limz↘0 E[Y |Z = z], βy = limz↘0 dE[Y |Z = z]/dz. For each i, we take a

second-order Taylor expansion of
Y2iS2i(D2i−L(X ′

i γ̂
1 ))

1−L(X ′
i γ̂

1 )
around γ1 and

Y2iS2i
(
D2i −L

(
X ′

i γ̂
1))

1 −L
(
X ′

i γ̂
1) = Y2iS2i

(
D2i −L

(
X ′

iγ
1))

1 −L
(
X ′

iγ
1)

+ Y2iS2i(D2i − 1)L
(
X ′

iγ
1)

1 −L
(
X ′

iγ
1) X ′

i

(
γ̂1 − γ1)+Op

(
n−1h−1),

where Op(n−1h−1 ) holds by the fact that (γ̂1 − γ1 ) is Op(n−1/2h−1/2 ) and its coefficient
is Op(1). Therefore, it is true that

α̂1 = α̂y2 − α̂ Y2iS2i(D2i−L(X′
i
γ1 ))

1−L(X′
i
γ1 )

− α̃′
c

(
γ̂1 − γ1)+ op(

√
nh)

= α̃1 − α̃′
c

(
γ̂1 − γ1)+ op(

√
nh)

where for j = 1, � � � , k

α̃c = (α̃c,1, � � � , α̃c,1 )′,

(α̃c,j , β̃c,j ) = arg min
α,β

n∑
i=1

1(Z1i ≥ 0)K
(
Z1i

h

)[
Y2iS2i(D2i − 1)L

(
X ′

iγ
1)

1 −L
(
X ′

iγ
1)) Xji − α−βZ1i

]2

.

Then it is true that

√
nh
(
α̃1 − α1)= 1√

nh

n∑
i=1

(10)
−1
z 1(Z1i ≥ 0)K

(
Z1i

h

)(
Y2i −E[Y2i|Z1i]
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− Y2iS2i
(
D2i −L

(
X ′

iγ
1))

1 −L
(
X ′

iγ
1) +E

[
Y2iS2i

(
D2i −L

(
X ′

iγ
1))

1 −L
(
X ′

iγ
1) ∣∣Z1i

])⎛⎝ 1
Z1i

h

⎞⎠
+ op(1).

Given that

α̃c,j = αc,j + op(1), with αc,j = lim
z↘0

E

[
Y2S2(D2 − 1)L

(
X ′γ1)

1 −L
(
X ′γ1)) Xj

∣∣Z = z

]
,

we have

√
nhα̂c = α̃′

c

√
nh
(
γ̂1 − γ1)

= α′
c

√
nh
(
γ̂1 − γ1)+ op(1)

= lim
z↘0

E

[
Y2S2(D2 − 1)L

(
X ′γ1)

1 −L
(
X ′γ1)) X ′∣∣Z = z

]√
nh
(
γ̂1 − γ1)+ op(1)

≡ 1√
nh

n∑
i=1

�1
γ ·φγ1,ni(D2i, S2i, Z1i, Xi ) + op(1),

where �1
γ is the gradient and φγ1,ni(D2i, Z1i, S2i, Xi ) is the inference function of√

nh(γ̂1 − γ1 ). Both notation are defined in Section 4.2. Then it is true that

√
nh
(
α̂1 − α1)= 1√

nh

n∑
i=1

(10)
−1
z 1(Z1i ≥ 0)K

(
Z1i

h

)(
Y2i −E[Y2i|Z1i]

− Y2iS2i
(
D2i −L

(
X ′

iγ
1))

1 −L
(
X ′

iγ
1) +E

[
Y2iS2i

(
D2i −L

(
X ′

iγ
1))

1 −L
(
X ′

iγ
1) ∣∣Z1i

])⎛⎝ 1
Z1i

h

⎞⎠
− 1√

nh

n∑
i=1

�1
γ ·φγ1,ni(D2i, S2i, Z1i, Xi ) + op(1)

= 1√
nh

n∑
i=1

(
φ̃α1,ni(Y2i, D2i, S2i, Z1i, Xi ) − �1

γ ·φγ1,ni(D2i, S2i, Z1i, Xi )
)

+ op(1)

≡ 1√
nh

n∑
i=1

φα1 (Y2i, D2i, S2i, Z1i, Xi ) + op(1).

Similarly, we have

√
nh
(
α̂0 − α0)= 1√

nh

n∑
i=1

(1, 0)′
−1
z,−1(Z1i < 0)K

(
Z1i

h

)(
Y2i −E[Y2i|Z1i]
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− Y2iS2i
(
D2i −L

(
X ′

iγ
0))

1 −L
(
X ′

iγ
0) +E

[
Y2iS2i

(
D2i −L

(
X ′

iγ
0))

1 −L
(
X ′

iγ
0) ∣∣Z1i

])⎛⎝ 1
Z1i

h

⎞⎠
− 1√

nh

n∑
i=1

�0
γφγ0,ni(D2i, S2i, Z1i, Xi ) + op(1)

≡ 1√
nh

n∑
i=1

φα0 (Y2i, D2i, S2i, Z1i, Xi ) + op(1).

These results are enough to derive the asymptotic normality of α̂1 and α̂0 since α̂1 and
α̂0 are mutually independent.

Proof of Theorem 4.2

Recall that γ̂0,w, γ̂1,w, β̂0,w
FS , β̂1,w

FS are given by

(
γ̂1,w, β̂1,w

FS

)= arg max
γ,β

n∑
i=1

WiS2i1(Z1i ≥ 0)K
(
Z1i

h

)
· [D2i logL

(
X ′

i(γ +βZ1i )
)+ (1 −D2i ) log

(
1 −L

(
X ′

i(γ +βZ1i )
))]

,

(
γ̂0,w, β̂0,w

FS

)= arg max
γ,β

n∑
i=1

WiS2i1(Z1i < 0)K
(
Z1i

h

)
· [D2i logL

(
X ′

i(γ +βZ1i )
)+ (1 −D2i ) log

(
1 −L

(
X ′

i(γ +βZ1i )
))]

.

Again, for brevity, we focus on the γ̂1,w case and drop the superscript 1 and subscript FS
for notational simplicity. Therefore, by the same argument, we have

�wn (θ) = (Qw
n

)′
θ− 1

2
θ′
w

n θ+ op(1), where

Qw
n = δn

n∑
i=1

WiS2i1(Z1i ≥ 0)K
(
Z1i

h

)
· (D2i −L

(
η(Z1i, Xi )

))
X̃i,


w
n = δ2

n

n∑
i=1

WiS2i1(Z1i ≥ 0)K
(
Z1i

h

)
·L(η(Z1i, Xi )

)(
1 −L

(
η(Z1i, Xi )

))
X̃iX̃

′
i .

Note that

E
[

w
n

]= 1
h
E

[
W S21(Z1 ≥ 0)K

(
Z1

h

)
L
(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
X̃iX̃

′
i

]
= 1

h
E

[
S21(Z1 ≥ 0)K

(
Z1

h

)
L
(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
X̃iX̃

′
i

]
= 
+ o(1),

where the second equality holds by the fact that W is independent of (S, Z1, X ) and
E[W ] = 1.
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Similar arguments show that for each (
w
n )jk, the (j, k)-th element of 
w

n , V [(
w
n )jk] =

O(δn ) = o(1). Therefore, 
w
n

p→ 
 and it follows that

�wn (θ) = (Qw
n

)′
θ− 1

2
θ′
θ+ op(1).

Let γ̂∗,w = √
nh(γ̂1,w − γ1 ), β̂∗,w = √

nh(hβ̂1,w − hβ1 ), θ̂w = ((γ̂∗,w )′, (β̂∗,w )′ )′. Then,

by the quadratic approximation lemma again, we have that θ̂w = 
−1Qw
n +op(1). There-

fore,

θ̂w − θ̂ = 
−1(Qw
n −Qn

)+ op(1)

=
n∑

i=1

(Wi − 1)

[
S2i1(Z1i ≥ 0)K

(
Z1i

h

)
· (D2i −L

(
η(Z1i, Xi )

))
X̃i

]
+ op(1).

Given that E[Wi − 1] = 0 and Var(Wi − 1) = 1 and that {Wi − 1}ni=1 is independent of

the sample path, we can apply the standard multiplier bootstrap argument as in Ma

and Kosorok (2005) to show that conditional on the sample path with probability one,

θ̂w − θ̂
d→ (0, 
−1�
−1 ), which shows the validity of the weighted bootstrap for the local

MLE estimator.

Following the same arguments in the proof of Theorem 4.1, we can show that

√
nh
(
α̂1,w − α1)= 1√

nh

n∑
i=1

Wi ·φα1 (Y2i, D2i, S2i, Z1i, Xi ) + op(1),

√
nh
(
α̂0,w − α0)= 1√

nh

n∑
i=1

Wi ·φα0 (Y2i, D2i, S2i, Z1i, Xi ) + op(1),

and it follows that

√
nh
(
α̂1,w − α̂1)= 1√

nh

n∑
i=1

(Wi − 1) ·φα1 (Y2i, D2i, S2i, Z1i, Xi ) + op(1),

√
nh
(
α̂0,w − α̂0)= 1√

nh

n∑
i=1

(Wi − 1) ·φα0 (Y2i, D2i, S2i, Z1i, Xi ) + op(1).

Therefore, the two left-hand side expressions converge to the same distributions as√
nh(α̂1 − α1 ) and

√
nh(α̂0 − α0 ), respectively, conditional on sample path with prob-

ability approaching one.

With all the results above, we know that
√
nh( ˆ̄θw1,1 − ˆ̄θ1,1 ) is asymptotic normal and

converges to the same limiting distribution as
√
nh( ˆ̄θ1,1 − θ̄1,1 ) conditional on sample

path with probability approaching one.
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Proof of Lemma B.1

Recall that for the alternative estimation and inference procedure proposed in Section B,
the first-step propensity estimation uses the local quadratic method:

(
γ̂1, β̂1

FS, ρ̂1
FS

)= arg max
γ,β,ρ

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
· [D2i logL

(
X ′

i

(
γ +βZ1i + ρZ2

1i

))
+ (1 −D2i ) log

(
1 −L

(
X ′

i

(
γ +βZ1i + ρZ2

1i

)))]
,

(
γ̂0, β̂0

FS, ρ̂0
FS

)= arg max
γ,β,ρ

n∑
i=1

S2i1(Z1i < 0)K
(
Z1i

h

)
· [D2i logL

(
X ′

i

(
γ +βZ1i + ρZ2

1i

))
+ (1 −D2i ) log

(
1 −L

(
X ′

i

(
γ +βZ1i + ρZ2

1i

)))]
.

We prove the lemma for γ̂1. Results for γ̂0 could be shown similarly. To simplify no-
tation, we again drop the superscript 1 and subscript FS in the rest of the proof. That is,
we have

(γ̂, β̂, ρ̂) = arg max
γ,β,ρ

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
· [D2i logL

(
X ′

i

(
γ +βZ1i + ρZ2

1i

))
+ (1 −D2i ) log

(
1 −L

(
X ′

i

(
γ +βZ1i + ρZ2

1i

)))]
≡ arg max

γ,β,ρ
�n(γ, β, ρ). (D.4)

Recall that γ1 = limz↘0 γ(z), β1 = limz↘0 γ
′(z) and ρ1 = limz↘0 γ

′′(z). Define

γ∗ = √
nh
(
γ − γ1), β∗ = √

nh
(
hβ− hβ1), ρ∗ = √

nh
(
h2ρ− h2ρ1)

γ̂∗ = √
nh
(
γ̂1 − γ1), β̂∗ = √

nh
(
hβ̂1 − hβ1), ρ̂∗ = √

nh
(
h2ρ̂1 − h2ρ1)

θ = ((γ∗)′, (β∗)′, (ρ∗)′)′, θ̂ = ((γ̂∗)′, (β̂∗)′, (ρ̂∗)′)′,
X̃i =

(
X ′

i

Z1iX
′
i

h

Z2
1iX

′
i

h2

)′
, δn = 1√

nh
, η(z, x) = (γ1 +β1z + ρ1z2)′x.

Therefore, we have that(
γ +βZ1i + ρZ2

1i

)′
Xi =

(
γ1 +β1Z1i + ρ1Z2

1i

)′
Xi

+ δn

((
γ∗)′Xi +

(
β∗)′Z1iXi

h
+ (ρ∗)′Z2

1iXi

h2

)
= η(Z1i, Xi ) + δnθ

′X̃i,
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and we define �∗
n(θ) as

�∗
n(θ) =

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
· {[D2i logL

(
η(Z1i, Xi ) + δnθ

′X̃i

)+ (1 −D2i ) log
(
1 −L

(
η(Z1i, Xi ) + δnθ

′X̃i

))]
− [D2i logL

(
η(Z1i, Xi )

)+ (1 −D2i ) log
(
1 −L

(
η(Z1i, Xi )

))]}
.

Given that (γ̂′, β̂′, ρ̂′ )′ maximizes �n(γ, β, ρ), we have θ̂ maximizes �∗
n(θ).

Let qi(a) = D2i logL(a) + (1 −D2i ) log(1 −L(a)), then

q′
i(a) = D2i −L(a), q′′

i (a) = −L(a)
(
1 −L(a)

)
,

q′′′
i (a) = (2L(a) − 1

)
L(a)

(
1 −L(a)

)
.

Taking a Taylor expansion of qi(η(Z1i, Xi ) + δnθ
′X̃i ) around η(Z1i, Xi ) for each i, we

obtain

�∗
n(θ) =

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)

·
{(

D2i −L
(
η(Z1i, Xi )

))
δnθ

′X̃i − 1
2
L
(
η(Z1i, Xi )

)(
1 −L

(
η(Z1i, Xi )

))(
δnθ

′X̃i

)2

+ 1
6

(
2L(η̄i ) − 1

)
L(η̄i )

(
1 −L(η̄i )

)(
δnθ

′X̃i

)3
}

,

where η̄i is between η(Z1i, Xi )) and η(Z1i, Xi )) + δnθ
′X̃i for each i. Note that for

each i, the expected value of the last term, S2i1(Z1i ≥ 0)K( Z1i
h )(2L(η̄i ) − 1)L(η̄i )(1 −

L(η̄i ))(δnθ′X̃i )3, is bounded by

O
(
δ3
nE
∣∣‖Xi‖ ·K(Z1i/h)

∣∣)=O
(
n−3/2 · h−3/2 · h)=O

(
n−1δn

)
.

It then follows that

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
· 1

6

(
2L(η̄i ) − 1

)
L(η̄i )

(
1 −L(η̄i )

)(
δnθ

′X̃i

)3 =O(δn ) = o(1).

Therefore,

�∗
n(θ) =Q′

nθ− 1
2
θ′
nθ+ op(1), where

Qn = δn

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
· (D2i −L

(
η(Z1i, Xi )

))
X̃i,


n = δ2
n

n∑
i=1

S2i1(Z1i ≥ 0)K
(
Z1i

h

)
·L(η(Z1i, Xi )

)(
1 −L

(
η(Z1i, Xi )

))
X̃iX̃

′
i .
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For the term 
n, we have that

E[
n] = 1
h
E

[
S21(Z1 ≥ 0)K

(
Z1

h

)
L
(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))

×

⎛⎜⎜⎜⎜⎝
X

Z1X

h
Z2

1X

h2

⎞⎟⎟⎟⎟⎠
(
X ′Z1X

′

h

Z2
1X

′

h2

)⎤⎥⎥⎥⎥⎦ .

Note that for any j = 0, 1, � � � and function g(.), by standard arguments,

1
h
E

[
S21(Z1 ≥ 0)K

(
Z1

h

)
L
(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
g(X )

(
Z1

h

)j]

= E

[
E
[
S2L

(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
g(X )|Z1

]
1(Z1 ≥ 0)

(
Z1

h

)j

K

(
Z1

h

)]
= fz1 (0)E

[
S2L

(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
g(X )|Z1 = 0

]∫
u≥0

ujK(u)du+ o(h).

Let


z = fz(0) ·
⎛⎜⎝μz,0 μz,1 μz,2

μz,1 μz,2 μz,3

μz,2 μz,3 μz,4

⎞⎟⎠ with μz,j =
∫
u≥0

ujK(u)du, for j = 0, 1, � � � .

Then we again have

E[
n] = 
z ⊗E
[
S2L

(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
XX ′|Z1 = 0

]+ o(1) ≡ 
+ o(1),

and similar arguments show that for each, (
n )jk, the (j, k)-th element of 
n,

Var((
n )jk ) = O(δn ) = o(1). Therefore, 
n
p→ 
 and it follows that

�∗
n(θ) =Q′

nθ− 1
2
θ′
θ+ op(1).

and

θ̂ = 
−1Qn + op(1).

For the term Qn, we have that

E[Qn] = nδnE

[
S21(Z1 ≥ 0)K

(
Z1

h

)
· (D2 −L

(
η(Z1, X )

))
X̃

]
= nδnE

[
E[S2|X , Z1]1(Z1 ≥ 0)K

(
Z1

h

)
· (E[D2|S2 = 1, X , Z1] −L

(
η(Z1, X )

))
X̃

]
= nδnE

[
E[S2|X , Z1]1(Z1 ≥ 0)K

(
Z1

h

)
· (L(γ(Z1 )′X

)−L
(
η(Z1, X )

))
X̃

]
=O

(
nδnh · h3)=O

(√
nh7

)= o(1).
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To see this, note that L(γ(Z1 )′X ) =L(η(Z1, X )) +L(η̄)(1 −L(η̄))(γ(Z1 )′X −η(Z1, X ))
where η̄ is between η(Z1, X ) and γ(Z1 )′X , so L(γ(Z1 )′X ) − L(η(Z1, X )) =
Op(γ(Z1 )′X − η(Z1, X ))) because L(η̄)(1 − L(η̄)) is bounded by 1/4. By a mean value
expansion of γ(Z1 )′X around 0, we have γ(Z1 )′X = (γ1 +β1Z1 + ρ2Z2

1 + γ′′′(Z̄1 )Z3
1 )′X

where Z̄1 is between 0 and Z1. Therefore, γ(Z1 )′X − η(Z1, X )′ = γ′′′(Z̄1 )′Z3
1X . There-

fore, L(γ(Z1 )′X ) − L(η(Z1, X )) = Op(Z3
1 ). Given that K(Z1/h) is nonzero when

|Z1/h| ≤ 1 or equivalently, |Z1| ≤ h, K( Z1
h ) · (L(γ(Z1 )′X ) − L(η(Z1, X ))) = Op(K(Z1/

h)h3 ). It follows that the expectation is O(nδnh · h3 ) = O(
√
nh7 ) and Assumption 4.3(iii)

implies that O(
√
nh7 ) = o(1).

In addition, the variance-covariance matrix of Qn is given by

V [Qn] = δ2nE

[
S21(Z1 ≥ 0)K2

(
Z1

h

)
· (D2 −L

(
η(Z1, X )

))2
X̃X̃ ′

]
= 1

h
E

[
E[S2|Z1, X]1(Z1 ≥ 0)K2

(
Z1

h

)
·L(η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
X̃X̃ ′

]
+O

(
h3)

= fz1 (0)

⎛⎜⎝ν0,+ ν1,+ ν2,+
ν1,+ ν2,+ ν3,+
ν2,+ ν3,+ ν4,+

⎞⎟⎠
⊗E

[
E[S2|Z1, X]L

(
η(Z1, X )

)(
1 −L

(
η(Z1, X )

))
XX ′|Z1 = 0

]+O
(
h3)

≡ �+ o(1),

where νk,+ = ∫u≥0 u
kK2(u)du for k= 0, 1, � � � .

Finally, let ξi = S2i1(Z1i ≥ 0)K(Z1i/h)(D2i − L(η(Z1i, Xi )))X̃i. ξi satisfies the Lya-
punov’s condition since nδ3

nE[‖ξi‖3] = O(δn ) → 0 by Assumption B.2. It then follows that

Qn
d→ (0, �) and θ̂

d→ (0, 
−1�
−1 ).

Appendix E: Monte Carlo simulations

We first use the simple case of T = 2 to showcase the advantages of our proposed esti-
mator compared to the recursive CFR strategy.

We use six data-generating processes (DGPs). DGP 1 illustrates a case where individ-
ual treatment effects are nonrandom and only need to be labeled by the number of pe-
riods between the outcome variable and the focal round of RD. DGP 2 illustrates a case
where individual treatment effects are nonrandom but path-dependent. DGP 3 mod-
ifies DGP 1 by simulating individual treatment effects as random variables. In DGP 3,
individual treatment effects are still independent of treatment decisions of later rounds.
DGP 4 modifies DGP 3 by adding a correlation between the second-round immediate
treatment effect and the second-round RD participation decision. In DGP 5, poten-
tial second-period outcomes with second-round treatments are designed to be corre-
lated with the second-round running variable. In DGP 6, potential second-period out-
comes without second-round treatments are designed to be correlated with the second-
round running variable. As is stated in the CIA condition of Assumption 2.2, the case of
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DGP 5 is compatible with the proposed estimation procedure described in Lemma 2.2,
while the case of DGP 6 is not. Summing up, the proposed estimation strategy de-
scribed in Lemma 2.2 is valid under DGPs 1–5. The recursive CFR estimator described
in Lemma 2.1 is only valid under DGPs 1 and 3. Under DGP 6, both estimation strategies
are invalid.

For all DGPs, we first simulate random variables

X ∼U[0, 10], Z1 ∼ X − 10 · Beta(2, 2),

uy1, uy2, us2, as ∼N(0, 0.5), vz2 ∼ logis(0, 1),

all independent of each other. Then we simulate potential random variables following

Y1(0) = 0.1X + 0.5Z1 + 0.1XZ1 + 0.1Z2
1 + uy1,

S2(0) = 1(us2 + as ≥ 0), S2(1) = 1(1 + us2 + as ≥ 0),

Z2(0) = 0.3 + 0.1X + vz2, Z2(1) =Z2(0) + (1X )γ0, γ0 = (−0.4 − 0.2)′,

Y2(0, 0) = 0.1X + 0.5Z1 + 0.1XZ1 + 0.1Z2
1 + uy2,

Y1(1) = Y1(0) + θ0,1, Y2(0, 1) = Y2(0, 0) + θ0
0,2,

Y2(1, 0) = Y2(0, 0) + θ1,1, Y2(1, 1) = Y2(0, 0) + θ1,1 + θ1
0,2,

with treatment and first-stage effect parameters θ0,1, θ0
0,2, θ1

0,2, and θ1,1 varying across
different DGPs:

DGP 1: θ0,1 = 0.5, θ0
0,2 = θ1

0,2 = 0.5, θ1,1 = 0.2.
DGP 2: θ0,1 = 0.5, θ0

0,2 = 0.5, θ1
0,2 = 0.1, θ1,1 = 0.2.

DGP 3: θ0,1 = 0.5, θ0
0,2 = θ1

0,2 = 0.5 + e, θ1,1 = 0.2 + e, e ∼N(0, 0.5).
DGP 4: θ0,1 = 0.5, θ0

0,2 = 0.5 + as , θ1
0,2 = 0.5, θ1,1 = 0.2.

DGP 5: θ0,1 = 0.5, θ0
0,2 = θ1

0,2 = 0.5 + vz2, θ1,1 = 0.2.
DGP 6: θ0,1 = 0.5, θ0

0,2 = θ1
0,2 = 0.5 + vz2, θ1,1 = 0.2 + vz2.

Given the above potential random variables, observed random variables Y1, S2,
Z2, D2, and Y2 are defined following the potential outcome framework in Section 2.
For each DGP, we carry out 1000 simulations and estimate both the proposed and
the recursive CFR immediate and one-period-after ATEs. Standard errors are calcu-
lated using weighted bootstrap discussed in Section 4.1. Bandwidth is chosen follow-
ing h = hCCT × n1/5−1/k, where hCCT is the CCT bandwidth for classic RD estimation of
E[θ̃1,1|Z1 = 0], and k < 5 is an undersmoothing parameter. Simulation codes are writ-
ten using R. The CCT bandwidth is calculated using R package “rdrobust” (Calonico,
Cattaneo, and Titiunik (2015)). Different k choices are used to examine the robustness
of proposed estimators with respect to bandwidth choice.

Table A1 reports the mean and the mean squared error (MSE) of both the proposed
and the recursive CFR one-period-after ATE estimators. As is predicted by the theory,
both estimators average around the true value in DGPs 1 and 3. The proposed estimator
has larger MSEs due to first-step local likelihood estimation. Under DGPs 2, 4, and 5, the
recursive CFR estimator does not center around the true value 0.2, while the proposed
estimator still performs well. Under DGP 6, neither estimators have correct centering.
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Table A1. One-period-after ATE: proposed estimator vs. recursive CFR estimator.

Proposed estimation strategy Recursive CFR

Mean MSE Mean MSE

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

DGP 1
n= 2000 0.208 0.209 0.210 0.021 0.020 0.020 0.214 0.215 0.215 0.014 0.013 0.013
n= 4000 0.205 0.206 0.207 0.010 0.009 0.009 0.212 0.213 0.214 0.007 0.007 0.007
n= 8000 0.202 0.202 0.203 0.005 0.005 0.005 0.205 0.206 0.206 0.004 0.003 0.003

DGP 2
n= 2000 0.205 0.206 0.208 0.022 0.021 0.020 0.152 0.154 0.155 0.016 0.015 0.014
n= 4000 0.196 0.197 0.198 0.010 0.010 0.009 0.145 0.146 0.147 0.011 0.010 0.010
n= 8000 0.203 0.205 0.205 0.006 0.005 0.005 0.151 0.153 0.154 0.007 0.006 0.006

DGP 3
n= 2000 0.209 0.209 0.210 0.026 0.025 0.024 0.211 0.212 0.212 0.021 0.020 0.019
n= 4000 0.199 0.200 0.201 0.013 0.012 0.012 0.203 0.205 0.206 0.012 0.011 0.011
n= 8000 0.203 0.203 0.204 0.006 0.006 0.006 0.205 0.206 0.206 0.005 0.005 0.005

DGP 4
n= 2000 0.202 0.204 0.205 0.021 0.020 0.019 0.166 0.168 0.169 0.017 0.016 0.016
n= 4000 0.200 0.200 0.201 0.010 0.010 0.010 0.169 0.170 0.171 0.009 0.008 0.008
n= 8000 0.204 0.205 0.205 0.005 0.005 0.005 0.172 0.173 0.173 0.005 0.004 0.004

DGP 5
n= 2000 0.203 0.204 0.205 0.021 0.019 0.019 0.076 0.077 0.077 0.035 0.034 0.033
n= 4000 0.203 0.204 0.205 0.010 0.010 0.010 0.069 0.071 0.071 0.027 0.026 0.026
n= 8000 0.203 0.203 0.204 0.005 0.005 0.005 0.066 0.067 0.068 0.023 0.023 0.022

DGP 6
n= 2000 −0.004 −0.003 −0.002 0.073 0.071 0.070 0.062 0.062 0.062 0.059 0.057 0.056
n= 4000 0.0004 0.002 0.003 0.055 0.053 0.053 0.068 0.069 0.070 0.038 0.036 0.036
n= 8000 −0.004 −0.002 −0.002 0.049 0.048 0.047 0.065 0.066 0.067 0.028 0.027 0.027

Note: All Monte Carlo experiments use 1000 simulation repetitions and weighted bootstrap with 1000 bootstrap repeti-
tions.

Table A2 reports the proportion of rejections in 5% two-sided t-tests associated with

proposed immediate and one-period-after ATE estimators. The left half of the table

shows the size of the tests with the true value stated under the null. The right half of the

table shows the power of the tests with the null set incorrectly to 0.3 for the immediate

ATE and 0 for the one-period-after ATE. It is clear that for all DGPs that are compatible

with the proposed estimation procedure, t-tests following the proposed estimators con-

trol size well under the null and have power going to one under the alternative. Choice

of the undersmoothing parameter k does not seem to affect simulation results much

either, under the DGPs considered in this section.

Next, we extend DGPs 1–4 to examine small sample performances of proposed esti-

mators of E[θτ,1|Z1 = 0] for τ = 0, 1, 2, 3. For all DGPs, let

X ∼U[0, 10], Z1 ∼ X − 10 · Beta(2, 2),
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Table A2. Two-sided T-tests with proposed immediate and one-period-after ATE estimators.

Size Power

Immediate ATE One-period-after ATE Immediate ATE One-period-after ATE

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

DGP 1
n = 2000 0.060 0.060 0.058 0.069 0.068 0.069 0.634 0.670 0.683 0.353 0.379 0.388
n = 4000 0.041 0.041 0.042 0.047 0.045 0.043 0.878 0.893 0.902 0.553 0.585 0.604
n = 8000 0.049 0.050 0.055 0.044 0.044 0.045 0.982 0.987 0.990 0.786 0.803 0.817

DGP 2
n = 2000 0.056 0.054 0.056 0.079 0.077 0.072 0.592 0.617 0.629 0.356 0.380 0.380
n = 4000 0.057 0.051 0.056 0.057 0.055 0.050 0.823 0.848 0.854 0.537 0.557 0.562
n = 8000 0.063 0.063 0.058 0.064 0.063 0.069 0.973 0.984 0.985 0.793 0.826 0.834

DGP 3
n = 2000 0.052 0.048 0.050 0.072 0.075 0.076 0.471 0.491 0.499 0.314 0.331 0.339
n = 4000 0.050 0.051 0.054 0.066 0.066 0.066 0.724 0.756 0.768 0.473 0.499 0.501
n = 8000 0.050 0.051 0.050 0.050 0.048 0.050 0.938 0.949 0.952 0.734 0.764 0.771

DGP 4
n = 2000 0.061 0.064 0.063 0.080 0.078 0.071 0.591 0.627 0.638 0.369 0.393 0.395
n = 4000 0.056 0.052 0.054 0.063 0.065 0.063 0.846 0.872 0.886 0.535 0.557 0.575
n = 8000 0.060 0.060 0.063 0.046 0.050 0.047 0.985 0.990 0.991 0.814 0.834 0.844

DGP 5
n = 2000 0.058 0.058 0.055 0.075 0.078 0.077 0.602 0.623 0.636 0.345 0.358 0.366
n = 4000 0.053 0.058 0.060 0.057 0.053 0.059 0.861 0.883 0.892 0.566 0.601 0.611
n = 8000 0.048 0.043 0.039 0.063 0.059 0.061 0.985 0.992 0.992 0.815 0.842 0.849

DGP 6
n = 2000 0.048 0.047 0.046 0.244 0.254 0.257 0.622 0.654 0.668 0.062 0.059 0.058
n = 4000 0.050 0.054 0.061 0.387 0.400 0.404 0.860 0.873 0.887 0.048 0.049 0.050
n = 8000 0.053 0.062 0.064 0.657 0.671 0.687 0.990 0.993 0.995 0.038 0.040 0.041

Note: All Monte Carlo experiments use 1000 simulation repetitions and weighted bootstrap with 1000 bootstrap repeti-
tions. The true value of the estimated parameter is 0.2. All t-tests use the 5% significance level.

(uy1, uy2, uy3, uy4, as ) ∼ i.i.d. N(0, 0.5),

Yt(0t ) = 0.1X + 0.5Z1 + 0.1XZ1 + 0.1Z2
1 + uyt , for t = 1, 2, 3, 4.

Potential outcomes with nonzero treatment status are simulated different in each
DGP, based on the longer-term direct treatment effect parameters specific to each DGP,
as is stated in the following:

DGP 1-T4: θ0,1 = θ0
0 = θ1

0 = 0.5, θ1,1 = θ0
1 = θ1

1 = 0.2, θ2,1 = θ0
2 = θ1

2 = 0.3, θ3,1 = 0.
DGP 2-T4: θ0,1 = θ0

0 = 0.5, θ1
0 = 0.1, θ1,1 = θ0

1 = 0.2, θ1
1 = −0.2, θ2,1 = θ0

2 = 0.3, θ1
2 =

−0.3, θ3,1 = 0.
DGP 3-T4: θ0,1 = θ0

0 = θ1
0 = 0.5+e0, θ1,1 = θ0

1 = θ1
1 = 0.2+e1, θ2,1 = θ0

2 = θ1
2 = 0.3+e2,

θ3,1 = e3, (e0, e1, e2, e3 ) ∼ i.i.d. N(0, 0.5).
DGP 4-T4: θ0,1 = 0.5, θ0

0 = 0.5 + as, θ1
0 = 0.5, θ1,1 = 0.2, θ0

1 = 0.2 + as , θ1
1 = 0.2, θ2,1 =

0.3, θ0
2 = 0.3 + as , θ1

2 = 0.3, θ3,1 = 0.
Note that path-dependency in direct effects are restricted with the same Markovian

assumption in Assumption 3.1. For example, Y2(1, 1) is simulated using the fact that
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Y2(1, 1) = Y2(0, 0) + [Y2(1, 0) − Y2(0, 0)] + [Y2(1, 1) − Y2(1, 0)] = Y2(0, 0) + θ1,1 + θ1
0,

while Y3(1, 0, 1) is simulated using the fact that Y3(1, 0, 1) = Y3(0, 0, 0) + [Y3(1, 0, 0) −
Y3(0, 0, 0)] + [Y3(1, 0, 1) −Y3(1, 0, 0)] = Y3(0, 0, 0) + θ2,1 + θ0

0. The proposed estimators
are valid under all four DGPs while the recursive CFR estimators are only valid under
DGPs 1-T4 and 3-T4.

Meanwhile, potential running variables and RD participation decisions are simu-
lated as following:

(vz1, vz2, vz3, vz4 ) ∼ i.i.d. logis(0, 1), Zt(0t ) = 0.3 + 0.1X + vzt , for t = 2, 3, 4,

Z2(1) =Z2(0) + (1X )γ0,

Z3(0, 1) =Z3(02 ) + (1X )γ0
0,

Z3(1, 0) =Z3(02 ) + (1X )γ1,1,

Z3(1, 1) =Z3(02 ) + (1X )
(
γ1,1 + γ1

0
)
,

Z4(0, 0, 1) =Z4(03 ) + (1X )γ0
0,

Z4(0, 1, 0) =Z4(03 ) + (1X )γ0
1,

Z4(0, 1, 1) =Z4(03 ) + (1X )
(
γ0

1 + γ1
0

)
,

Z4(1, 0, 0) =Z4(03 ) + (1X )γ2,1,

Z4(1, 1, 0) =Z4(03 ) + (1X )
(
γ2,1 + γ1

1

)
,

Z4(1, 0, 1) =Z4(03 ) + (1X )
(
γ2,1 + γ0

0

)
,

γ0,1 = (−0.3 − 0.1), γ0
0 = (0.10.1), γ1

0 = (−0.2 − 0.1),

γ1,1 = γ0
1 = γ1

1 = γ2,1 = (−0.1 − 0.1),

(us1, us2, us3, us4 ) ∼ i.i.d. N(0, 0.5),

St(0) = 1(ust + as ≥ 0), St(1) = 1(1 + ust + as ≥ 0), for t = 2, 3, 4.

Table A3 reports the average of the proposed and recursive CFR estimators among
1000 simulations. The true value is 0.5, 0.2, 0.3, and 0 for the immediate, one-period-
after, two-period-after, and three-period-after ATEs. As is predicted by the theory, the
proposed estimators average around the true value among all four DGPs, while the re-
cursive estimators only perform well under DGPs 1-T4 and 3-T4.

Table A4 reports proportions of rejections in two-sided t-tests associated with pro-
posed ATE estimators. The first half of the table shows the size of the tests with the true
value of ATEs stated under the null. The second half of the table shows the power of the
tests with the null set incorrectly to 0.3 for the immediate ATE and 0 for all other longer-
term ATEs. Thus, it is clear that the proposed method controls size well under the null
and has power going to one under the alternative.
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Table A3. Performance of proposed and CFR estimators.

Immediate One-period-after Two-period-after Three-period-after

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

True Parameter Values
0.5 0.5 0.5 0.2 0.2 0.2 0.3 0.3 0.3 0.0 0.0 0.0

Averages across simulations: The proposed strategy
DGP 1-T4

n = 2000 0.501 0.502 0.502 0.199 0.202 0.204 0.303 0.305 0.307 0.003 0.007 0.010
n = 4000 0.504 0.505 0.506 0.193 0.194 0.196 0.299 0.301 0.302 −0.000 0.001 0.002
n = 8000 0.504 0.504 0.505 0.203 0.204 0.205 0.307 0.308 0.309 0.003 0.004 0.005

DGP 2-T4
n = 2000 0.505 0.505 0.505 0.200 0.202 0.204 0.296 0.298 0.300 0.008 0.010 0.012
n = 4000 0.504 0.505 0.506 0.203 0.204 0.205 0.303 0.305 0.306 0.018 0.019 0.021
n = 8000 0.504 0.505 0.505 0.203 0.204 0.205 0.301 0.302 0.302 0.015 0.015 0.016

DGP 3-T4
n = 2000 0.512 0.512 0.513 0.205 0.207 0.210 0.300 0.302 0.304 0.008 0.011 0.013
n = 4000 0.505 0.505 0.506 0.202 0.204 0.205 0.301 0.303 0.304 −0.000 0.002 0.004
n = 8000 0.505 0.506 0.506 0.203 0.204 0.205 0.305 0.307 0.308 0.005 0.006 0.007

DGP 4-T4
n = 2000 0.506 0.507 0.508 0.201 0.203 0.204 0.304 0.306 0.309 −0.001 0.003 0.006
n = 4000 0.504 0.505 0.506 0.200 0.201 0.202 0.297 0.298 0.299 −0.001 0.0003 0.002
n = 8000 0.506 0.507 0.507 0.202 0.203 0.204 0.306 0.308 0.309 0.013 0.014 0.014

Averages across simulations: The recursive CFR strategy
DGP 1-T4

n = 2000 0.501 0.502 0.502 0.205 0.206 0.207 0.312 0.313 0.313 0.013 0.015 0.016
n = 4000 0.504 0.505 0.506 0.202 0.203 0.204 0.305 0.307 0.307 0.010 0.011 0.011
n = 8000 0.504 0.504 0.505 0.204 0.205 0.206 0.306 0.308 0.309 0.008 0.009 0.010

DGP 2-T4
n = 2000 0.505 0.505 0.505 0.097 0.098 0.098 0.238 0.239 0.240 −0.095 −0.094 −0.093
n = 4000 0.504 0.505 0.506 0.103 0.104 0.105 0.247 0.248 0.249 −0.085 −0.084 −0.083
n = 8000 0.504 0.505 0.505 0.099 0.100 0.101 0.243 0.244 0.245 −0.091 −0.090 −0.089

DGP 3-T4
n.2000.2 0.512 0.512 0.513 0.218 0.219 0.219 0.320 0.321 0.321 0.022 0.023 0.024
n.4000.2 0.505 0.505 0.506 0.207 0.208 0.208 0.307 0.308 0.309 0.006 0.007 0.007
n.8000.2 0.505 0.506 0.506 0.207 0.208 0.209 0.307 0.309 0.310 0.008 0.010 0.010

DGP 4-T4
n = 2000 0.506 0.507 0.508 0.172 0.172 0.173 0.257 0.257 0.258 −0.033 −0.032 −0.031
n = 4000 0.504 0.505 0.506 0.171 0.171 0.172 0.250 0.250 0.251 −0.036 −0.035 −0.035
n = 8000 0.506 0.507 0.507 0.167 0.168 0.169 0.249 0.251 0.252 −0.033 −0.032 −0.031

Note: All Monte Carlo experiments use 1000 simulation repetitions and weighted bootstrap with 1000 bootstrap repeti-
tions.
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Table A4. Performance of proposed estimators: rejection proportion of two-sided tests.

Immediate One-period-after Two-period-after Three-period-after

k 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75 4.25 4.5 4.75

Size of two-sided T-tests
DGP 1-T4

n= 2000 0.056 0.057 0.056 0.063 0.069 0.074 0.048 0.052 0.052 0.055 0.058 0.056
n= 4000 0.062 0.067 0.066 0.056 0.055 0.058 0.045 0.049 0.047 0.051 0.050 0.051
n= 8000 0.046 0.043 0.046 0.065 0.062 0.058 0.052 0.050 0.052 0.050 0.052 0.049

DGP 2-T4
n= 2000 0.053 0.054 0.052 0.067 0.066 0.068 0.057 0.056 0.052 0.064 0.064 0.063
n= 4000 0.047 0.051 0.054 0.055 0.055 0.052 0.070 0.069 0.069 0.077 0.072 0.068
n= 8000 0.047 0.048 0.050 0.066 0.060 0.062 0.050 0.051 0.053 0.057 0.059 0.056

DGP 3-T4
n= 2000 0.046 0.045 0.046 0.075 0.072 0.074 0.062 0.060 0.057 0.052 0.051 0.052
n= 4000 0.047 0.051 0.051 0.057 0.061 0.061 0.062 0.061 0.058 0.064 0.069 0.063
n= 8000 0.052 0.054 0.055 0.053 0.049 0.049 0.060 0.061 0.058 0.058 0.060 0.059

DGP 4-T4
n= 2000 0.039 0.041 0.042 0.062 0.069 0.067 0.071 0.070 0.075 0.056 0.055 0.058
n= 4000 0.052 0.056 0.051 0.064 0.062 0.065 0.050 0.052 0.049 0.059 0.062 0.061
n= 8000 0.053 0.051 0.058 0.052 0.048 0.049 0.051 0.050 0.049 0.063 0.059 0.060

Power of two-sided T-tests
DGP 1-T4

n= 2000 0.598 0.615 0.626 0.325 0.335 0.351 0.515 0.540 0.552 0.442 0.464 0.467
n= 4000 0.824 0.850 0.862 0.460 0.479 0.485 0.783 0.806 0.816 0.757 0.770 0.784
n= 8000 0.974 0.983 0.988 0.749 0.770 0.781 0.961 0.973 0.974 0.950 0.960 0.961

DGP 2-T4
n= 2000 0.590 0.619 0.633 0.311 0.327 0.328 0.474 0.524 0.538 0.427 0.448 0.452
n= 4000 0.856 0.885 0.889 0.509 0.541 0.555 0.791 0.807 0.824 0.716 0.730 0.729
n= 8000 0.977 0.985 0.987 0.768 0.785 0.793 0.965 0.975 0.978 0.944 0.949 0.949

DGP 3-T4
n= 2000 0.479 0.506 0.521 0.269 0.281 0.289 0.366 0.379 0.390 0.270 0.281 0.289
n= 4000 0.739 0.756 0.775 0.454 0.470 0.488 0.594 0.616 0.630 0.481 0.497 0.507
n= 8000 0.931 0.941 0.949 0.686 0.711 0.726 0.845 0.869 0.883 0.745 0.765 0.774

DGP 4-T4
n= 2000 0.596 0.631 0.643 0.304 0.325 0.330 0.425 0.453 0.465 0.339 0.346 0.345
n= 4000 0.838 0.862 0.877 0.506 0.530 0.540 0.661 0.688 0.696 0.602 0.616 0.621
n= 8000 0.983 0.989 0.990 0.760 0.802 0.808 0.907 0.926 0.929 0.813 0.831 0.846

Note: All Monte Carlo experiments use 1000 simulation repetitions and weighted bootstrap with 1000 bootstrap repeti-
tions. All t-tests use the 5% significance level.
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