Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/312853 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Flexible Services and Manufacturing Journal [ISSN:] 1936-6590 [Volume:] 35 [Issue:] 1 [Publisher:] Springer US [Place:] New York, NY [Year:] 2022 [Pages:] 142-169
Verlag: 
Springer US, New York, NY
Zusammenfassung: 
Albeit its importance, a large number of port authorities do not provide continuous or publicly available air emissions inventories (EIs) and thereby obscure the emissions contribution of ports. This is caused by, e.g., the economic effort generated by obtaining data. Therefore, the performance of abatement measures is not monitored and projected, which is specifically disadvantageous concerning top contributors such as container ships. To mitigate this issue, in this paper we propose port vessel EI prediction models by exploring the combination of different machine-learning algorithms, data from the one-off application of an activity-based bottom-up methodology and vessel-characteristics data. The results for this specific case show that prediction models enable acceptable trade-offs between the prediction performance and data requirements, promoting the creation of EIs.
Schlagwörter: 
Air emissions
Inventory
Green ports
Machine learning
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.