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Abstract
Albeit its importance, a large number of port authorities do not provide continuous 
or publicly available air emissions inventories (EIs) and thereby obscure the emis-
sions contribution of ports. This is caused by, e.g., the economic effort generated by 
obtaining data. Therefore, the performance of abatement measures is not monitored 
and projected, which is specifically disadvantageous concerning top contributors 
such as container ships. To mitigate this issue, in this paper we propose port vessel 
EI prediction models by exploring the combination of different machine-learning 
algorithms, data from the one-off application of an activity-based bottom-up meth-
odology and vessel-characteristics data. The results for this specific case show that 
prediction models enable acceptable trade-offs between the prediction performance 
and data requirements, promoting the creation of EIs.

Keywords Air emissions · Inventory · Green ports · Machine learning

1 Introduction

Air emissions are among the top environmental issues of port authorities (PAs) 
(COGEA 2017) and citizens (Ortiz et  al. 2019), threatening to increase climate 
change and direct negative health impacts for approximately 230 million people 
by the top 100 ports (Merk 2014). Specifically shipping can contribute to the 
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largest share of port emissions (Merk 2014). Yet, less than half of the world’s top 
49 container ports provide emissions reporting (Cammin et  al. 2022) and thus 
lack transparency concerning the performance of emissions abatement measures 
for becoming more green ports. PAs, being the regulators of ports (Notteboom 
et al. 2021) justify the lack of EIs with their generated economic effort, as shown 
in case studies (Cammin et al. 2020). The motivation to create EIs, based on, e.g., 
political, regulatory or stakeholder requirements, may not be sufficient to justify 
this effort; for instance, through obtaining and further processing data, or engag-
ing or integrating external (data) service providers. The vested interest to mini-
mize data costs conforms with our observations in practice and academia. The 
shared and accepted solution is the use of assumptions for unavailable data in EI 
methodologies.

Although this practice is accepted, it increases the imprecision of the EIs. There-
fore, it seems advisable to carefully scrutinize the capability of methodologies to 
determine the performance of emissions abatement measures. This includes the pro-
posal in this study.

An example for vessel characteristics and activity-based assumptions is the use 
of average engine power and average speed per vessel type, respectively. Among 
the works that surmount the unavailability of data with assumptions are activity-
based bottom-up methodologies. For instance, POLA (2019) and Ekmekçioğlu et al. 
(2021) adapt the EPA and ENTEC methodologies, respectively, i.e., using assump-
tions by relying on historic data on average speeds in certain areas. Likewise, aca-
demics suffer from the unavailability of data, trying to find a trade-off between the 
accuracy and costs, which is reasonable specifically for multi-port EIs. For instance, 
Wan et  al. (2020) use multi-port Automatic Identification System (AIS) data and 
assume engine powers with linear regression based on deadweight tonnage (DWT), 
and Merk (2014) extrapolates data from one month to a year for budgetary reasons 
to create multi-port vessel EIs. As the necessary data scales with the number of 
ports assessed, less data-demanding methodologies can foster the (successive) crea-
tion of port-related vessel EIs.

To this end, the objective of this paper is the development of tiered prediction 
models to create port-related container ship EIs taking into account data require-
ments. In this sense, lower-tier models rely on less features, potentially resolving 
data dependencies as well as reducing costs to adhere to budgetary constraints. A 
range of alternative models can then be input to a trade-off analysis, which has not 
received much attention in previous studies that focus on the prediction performance.

In this paper, the development of prediction models is based on (1) data from the 
one-off application of an activity-based bottom-up methodology that incorporates 
detailed vessel-characteristics data and, (2) the use of vessel-characteristics data, 
both as input for (3) different machine-learning algorithms. While aiming to foster 
the creation of EIs in order to promote green ports, we also point out limitations and 
pitfalls of this approach.

The remainder of this paper is organized as follows. Section 2 reviews the appli-
cation of machine learning for fuel consumption and emissions prediction of ves-
sels. Next, Sect. 3 describes the methodology of the proposed approach and Sect. 4 
addresses the numerical experiments. Section  5 discusses the key results and 
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limitations of the presented approach. Finally, Sect. 6 concludes this study and out-
lines limitations and potential future research.

2  Literature review

Academia has taken advantage of data-driven models and machine learning for a 
variety of problems in fuel consumption prediction. Solving this problem is an inter-
mediate step towards emissions calculation, i.e., the necessary next steps are deter-
mining the used fuel type, applying the dependent emissions factors with respect 
to exhaust gas cleaning systems, such as scrubbers that are installed on vessels or 
barge-mounted to serve vessels at berth. Regarding the prediction of vessel emis-
sions and fuel consumption, the literature can be classified by its focus on different 
machine-learning algorithms (e.g., artificial neural network (ANN), multiple linear 
regression (MLR), support vector regression (SVR), least absolute shrinkage and 
selection operator (LASSO), random forest (RF), nonlinear regression (NLR)), the 
focus on different ship types (e.g., container or cruise ships), the scale of application 
(e.g., single to multiple vessels), and the feature set. Notably, many of the works 
that employ vessel-specific and voyage-specific data, e.g., shaft revolution per min-
ute (RPM) speed from on-board sensors or cargo weight, do so for a single vessel. 
From the perspective of PAs or public institutions, it is questionable if such a data 
coverage of all vessels operating in a port is feasible as it would generate high effort, 
whereas obtaining vessel-characteristics data from the usual maritime data provid-
ers is a common choice in literature and practice. Many of the works employ noon 
report data for the features and the response.

The examined literature is categorized in three groups. The first two groups refer 
to shipping-related literature that address the prediction of fuel consumption, and 
emissions. The summary is presented in Table 1. The third group refers to shipping-
unrelated references that concern the prediction of emissions, which is summarized 
in Table 2. Due to the narrower domain, we found fewer shipping-related references 
concerning emissions, for which more insights are provided in the following.

First, Ekmekçioğlu et  al. (2021) apply the regression analysis using the feature 
gross tonnage (GT) and the response emissions for container ships in the activity 
modes of cruising, maneuvering, and berthing at four ports in Turkey. Prior, the 
emissions are calculated using the ENTEC activity-based bottom-up method. The 
study generalizes time for the cruising and maneuvering modes, but appears to use 
actual berthing times for the calculation. Notably, times are not used as a feature for 
training. The model’s performance is reported using the coefficient of determination 
( R2 ) with 0.93 for the cruising mode, 0.92 for the maneuvering mode and 0.80 for 
the berthing mode.

The weaker performance of the berthing mode indicates that GT does not suf-
ficiently correlate with the berthing time, although a loose correlation is reasonable, 
i.e., larger vessels potentially berth longer due to longer overall container handling 
operations. High variations of berthing times for similar-sized vessels are adverse 
for the performance of the model. This emergence could be based on inconsistent 
container volume handling across similar-sized vessels (see Cullinane et al. (2006)) 



145

1 3

Tiered prediction models for port vessel emissions inventories  

Ta
bl

e 
1 

 S
um

m
ar

y 
of

 sh
ip

pi
ng

-r
el

at
ed

 li
te

ra
tu

re
 c

on
ce

rn
in

g 
th

e 
pr

ed
ic

tio
n 

of
 fu

el
 c

on
su

m
pt

io
n 

an
d 

em
is

si
on

s

Re
fe

re
nc

e
A

N
N

M
LR

SV
R

LA
SS

O
R

F
N

LR
Ve

ss
el

 ty
pe

Ve
ss

el
 c

ou
nt

Fe
at

ur
es

K
ar

ag
ia

nn
id

is
 a

nd
 T

he
m

el
is

 (2
02

1)
✓

C
on

ta
in

er
1

Ve
ss

el
 sp

ee
d 

th
ro

ug
h 

w
at

er
 (S

TW
), 

tri
m

, d
ra

ft 
m

ea
n,

 
ru

dd
er

 a
ng

le
, p

ro
pe

lle
r s

ha
ft 

po
w

er
, s

ig
ni

fic
an

t w
av

e 
he

ig
ht

, f
ou

lin
g,

 w
in

d 
eff

ec
t, 

se
a 

cu
rr

en
t

K
im

 e
t a

l. 
(2

02
1)

✓
✓

C
on

ta
in

er
1

M
ai

n 
en

gi
ne

 R
PM

, v
es

se
l s

pe
ed

 o
ve

r g
ro

un
d 

(S
O

G
), 

ST
W

, r
el

at
iv

e 
w

in
d 

sp
ee

d 
an

d 
di

re
ct

io
n,

 ru
dd

er
 a

ng
le

, 
tri

m
, s

ea
 c

ur
re

nt
, w

et
te

d 
su

rfa
ce

 a
re

a,
 m

ai
n 

dr
au

gh
t, 

di
sp

la
ce

m
en

t
Zh

ou
 e

t a
l. 

(2
02

1)
✓

✓
✓

✓
O

il 
ta

nk
er

1
M

ai
n 

en
gi

ne
 sp

ee
d,

 fo
re

 a
nd

 a
ft 

dr
af

t, 
w

in
d 

sp
ee

d,
 re

la
-

tiv
e 

w
in

d 
di

re
ct

io
n

Zh
u 

et
 a

l. 
(2

02
1)

✓
✓

✓
Ro

-P
ax

1
ST

W
, t

rim
, d

ra
ug

ht
, w

in
d 

sp
ee

d 
an

d 
di

re
ct

io
n,

 ru
dd

er
 

an
gl

e,
 p

ro
pe

lle
r p

itc
h

Le
 e

t a
l. 

(2
02

0)
✓

C
on

ta
in

er
14

3
A

ve
ra

ge
 v

es
se

l s
pe

ed
, s

ai
lin

g 
tim

e,
 m

ax
im

um
 c

ap
ac

ity
, 

ca
rg

o 
w

ei
gh

t; 
nu

m
be

r o
f c

on
ta

in
er

s, 
di

sp
la

ce
m

en
t

Pa
na

pa
ki

di
s e

t a
l. 

(2
02

0)
✓

Ro
-P

ax
1

Pa
st 

fu
el

 c
on

su
m

pt
io

n 
(o

n 
da

ys
 d
−
1  a

nd
 d
−
8
 ), 

av
er

-
ag

e 
ve

ss
el

 sp
ee

d,
 w

in
d 

fo
rc

e,
 n

um
be

r o
f p

as
se

ng
er

s, 
m

ai
n 

en
gi

ne
 h

ou
rs

 a
nd

 to
ta

l f
ue

l c
on

su
m

pt
io

n,
 sa

ili
ng

 
di

st
an

ce
 (a

ll 
on

 d
ay

s d
 a

nd
 d
−
1 )

Pe
ng

 e
t a

l. 
(2

02
0)

✓
✓

✓
C

on
ta

in
er

, 
bu

lk
, g

en
-

er
al

 c
ar

go

77
88

N
et

 to
nn

ag
e,

 D
W

T,
 a

ct
ua

l c
ar

go
 h

an
dl

in
g 

vo
lu

m
e,

 
effi

ci
en

cy
 o

f f
ac

ili
tie

s, 
tra

de
 ty

pe
; v

es
se

l a
rr

iv
al

 ti
m

e,
 

at
tri

bu
te

 o
f e

nt
er

pr
is

e,
 b

er
th

, g
oo

ds
, i

m
po

rt/
ex

po
rt,

 
sh

ip
 le

ng
th

, s
hi

p 
ar

riv
al

 m
on

th
 a

nd
 w

ee
kd

ay
, s

hi
p 

na
tio

n,
 o

pe
ra

tio
n 

de
pa

rtm
en

t
U

ya
nı

k 
et

 a
l. 

(2
02

0)
✓

✓
✓

✓
C

on
ta

in
er

1
M

ai
n 

en
gi

ne
 p

ow
er

, R
PM

, c
oo

le
r t

em
pe

ra
tu

re
, m

ai
n 

lu
br

ic
at

in
g 

oi
l, 

et
c.

Ya
n 

et
 a

l. 
(2

02
0)

✓
B

ul
k

1
B

ad
 w

ea
th

er
 ra

tio
, s

ai
lin

g 
sp

ee
d,

 re
la

tiv
e 

se
a 

sw
el

l 
di

re
ct

io
n,

 re
la

tiv
e 

w
in

d 
di

re
ct

io
n,

 re
la

tiv
e 

w
in

d 
w

av
e 

di
re

ct
io

n,
 se

a 
sw

el
l h

ei
gh

t, 
se

a 
cu

rr
en

t t
yp

e 
an

d 
va

lu
e,

 
w

in
d 

fo
rc

e,
 to

ta
l c

ar
go

 w
ei

gh
t, 

co
m

bi
ne

d 
w

in
d 

w
av

es
 

an
d 

sw
el

l h
ei

gh
t



146 P. Cammin et al.

1 3

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Re
fe

re
nc

e
A

N
N

M
LR

SV
R

LA
SS

O
R

F
N

LR
Ve

ss
el

 ty
pe

Ve
ss

el
 c

ou
nt

Fe
at

ur
es

Y
ua

n 
et

 a
l. 

(2
02

0)
✓

✓
✓

✓
In

la
nd

 c
ar

go
1

SO
G

, c
ou

rs
e 

ov
er

 g
ro

un
d 

(C
O

G
), 

le
ft 

an
d 

rig
ht

 e
ng

in
e 

sp
ee

d 
an

d 
te

m
pe

ra
tu

re
, w

at
er

 le
ve

l a
nd

 sp
ee

d,
 w

in
d 

sp
ee

d 
an

d 
an

gl
e,

 se
gm

en
t I

D
H

u 
et

 a
l. 

(2
01

9)
✓

C
on

ta
in

er
1

Sh
ip

 sh
af

t, 
sp

ee
d,

 av
er

ag
e 

dr
af

t, 
tri

m
s, 

cu
rr

en
t s

pe
ed

 a
nd

 
di

re
ct

io
n,

 w
in

d 
sp

ee
d 

an
d 

di
re

ct
io

n,
 w

av
e 

he
ig

ht
 a

nd
 

di
re

ct
io

n
K

ee
 a

nd
 S

im
on

 (2
01

9)
✓

Tu
gb

oa
t

2
Tr

av
el

le
d 

di
st

an
ce

 a
nd

 h
ou

rs
, v

es
se

l s
pe

ed
, D

W
T,

 c
on

-
su

m
pt

io
n 

m
et

ric
, w

in
d 

sp
ee

d
Zh

en
g 

et
 a

l. 
(2

01
9)

✓
C

ru
is

e
1

Ve
ss

el
 sp

ee
d,

 lo
ad

K
ee

 e
t a

l. 
(2

01
8)

✓
✓

Tu
gb

oa
t

2
Tr

av
el

ed
 d

ist
an

ce
 a

nd
 h

ou
rs

, v
es

se
l s

pe
ed

, D
W

T,
 w

in
d 

sp
ee

d
W

an
g 

et
 a

l. 
(2

01
8)

✓
✓

✓
C

on
ta

in
er

97
Le

ng
th

 o
ve

ra
ll,

 b
ea

m
, c

ar
go

 w
ei

gh
t, 

av
er

ag
e 

dr
af

t, 
tri

m
 

an
gl

e,
 in

iti
al

 m
et

ac
en

tri
c 

he
ig

ht
, R

PM
, m

ai
n 

en
gi

ne
 

lo
ad

, S
O

G
, c

ur
re

nt
 fa

ct
or

, p
er

fo
rm

an
ce

 sp
ee

d,
 b

ea
uf

or
t 

sc
al

e,
 w

in
d 

w
av

es
 h

ei
gh

t, 
sw

el
l h

ei
gh

t a
nd

 d
ire

ct
io

n,
 

C
O

2
 e

ffi
ci

en
cy

, f
ue

l e
ffi

ci
en

cy
, s

hi
p 

co
ur

se
, w

in
d 

di
re

c-
tio

n,
 si

gn
ifi

ca
nt

 w
av

e 
he

ig
ht

, d
is

pl
ac

em
en

t
D

u 
et

 a
l. 

(2
01

9)
✓

C
on

ta
in

er
2

Sa
ili

ng
 sp

ee
d,

 d
is

pl
ac

em
en

t, 
tri

m
, w

av
e 

he
ig

ht
 a

nd
 

di
re

ct
io

n,
 w

in
d 

fo
rc

e 
an

d 
di

re
ct

io
n,

 c
ur

re
nt

 sp
ee

d 
an

d 
di

re
ct

io
n,

 w
at

er
 te

m
pe

ra
tu

re
G

ke
re

ko
s e

t a
l. 

(2
01

9)
✓

✓
✓

Re
ef

er
, b

ul
k

2
Ve

ss
el

 sp
ee

d,
 e

ng
in

e 
sp

ee
d,

 c
ur

re
nt

 sp
ee

d,
 w

in
d 

sp
ee

d 
an

d 
di

re
ct

io
n,

 d
ai

ly
 tr

av
el

ed
 d

ist
an

ce
, s

ea
 st

at
e 

an
d 

di
re

ct
io

n,
 sl

ip
, d

ra
ft 

fo
rc

e 
an

d 
af

t
Fl

et
ch

er
 e

t a
l. 

(2
01

8)
✓

 ∗
C

ar
go

2
Sh

af
t s

pe
ed

, e
ng

in
e 

po
w

er
Ek

m
ek

çi
oğ

lu
 e

t a
l. 

(2
02

1)
✓

C
on

ta
in

er
10

24
G

T



147

1 3

Tiered prediction models for port vessel emissions inventories  

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Re
fe

re
nc

e
A

N
N

M
LR

SV
R

LA
SS

O
R

F
N

LR
Ve

ss
el

 ty
pe

Ve
ss

el
 c

ou
nt

Fe
at

ur
es

Fa
br

eg
at

 e
t a

l. 
(2

02
1)

✓
✓

✓
C

ru
is

e
–

W
in

d 
al

ig
nm

en
t p

or
t/p

ol
lu

ta
nt

 st
at

io
n 

an
d 

ai
rp

or
t/p

ol
lu

t-
an

t s
ta

tio
n,

 w
in

d 
ve

lo
ci

ty
, p

re
ci

pi
ta

tio
n,

 te
m

pe
ra

tu
re

, 
at

m
os

ph
er

ic
 p

re
ss

ur
e,

 so
la

r i
rr

ad
ia

nc
e,

 re
la

tiv
e 

hu
m

id
-

ity
, t

ra
ffi

c 
in

te
ns

ity
, n

um
be

r o
f v

es
se

ls
 a

nd
 c

ru
is

e 
sh

ip
s, 

m
ed

ia
n 

le
ng

th
 o

f v
es

se
ls

 a
nd

 c
ru

is
e 

sh
ip

s, 
fli

gh
t n

um
-

be
rs

 (a
ll 

ho
ur

ly
), 

bi
na

ry
 v

ar
ia

bl
es

 fo
r e

ac
h 

w
ee

kd
ay

, 
ye

ar
, d

ay
 o

f y
ea

r, 
ho

ur
 o

f d
ay

, d
ai

ly
 c

lo
ud

 c
ov

er
Sc

ha
ub

 e
t a

l. 
(2

01
9)

✓
Te

st 
be

d 
en

gi
ne

–
En

gi
ne

 to
rq

ue
, s

pe
ed

 a
nd

 fu
el

 c
on

su
m

pt
io

n 
by

 ti
m

e 
un

it
Th

is
 p

ap
er

✓
✓

✓
C

on
ta

in
er

10
4

M
ai

n 
en

gi
ne

 a
nd

 a
ux

ili
ar

y 
en

gi
ne

 p
ow

er
, a

ux
ili

ar
y 

en
gi

ne
 n

um
be

r, 
G

T,
 IM

O
 T

ie
r, 

ve
ss

el
 d

es
ig

n 
sp

ee
d 

(D
S)

, m
in

ut
es

 in
 a

ct
iv

ity
 m

od
e

∗
 P

rin
ci

pa
l C

om
po

ne
nt

 R
eg

re
ss

io
n 

M
od

el



148 P. Cammin et al.

1 3

Ta
bl

e 
2 

 S
um

m
ar

y 
of

 sh
ip

pi
ng

-u
nr

el
at

ed
 li

te
ra

tu
re

 c
on

ce
rn

in
g 

th
e 

pr
ed

ic
tio

n 
of

 e
m

is
si

on
s

Re
fe

re
nc

e
A

N
N

M
LR

SV
R

LA
SS

O
R

F
N

LR
Fe

at
ur

es
Ta

rg
et

Li
 e

t a
l. 

(2
01

7)
✓

✓
R

PM
, i

nt
ak

e 
ai

r t
em

pe
ra

tu
re

, m
an

ifo
ld

 a
bs

o-
lu

te
 p

re
ss

ur
e,

 a
m

bi
en

t a
ir 

te
m

pe
ra

tu
re

, i
dl

in
g 

du
ra

tio
n

Re
al

-ti
m

e 
ex

ha
us

t e
m

is
si

on
 ra

te
s o

f c
ar

bo
n 

m
on

ox
id

e 
(C

O
), 

ca
rb

on
 d

io
xi

de
 ( C

O
2
 ), 

ni
tro

-
ge

n 
ox

id
es

 ( N
O

x
 ), 

an
d 

hy
dr

oc
ar

bo
n 

(H
C

) f
or

 
lig

ht
-d

ut
y 

ve
hi

cl
es

B
ho

w
m

ik
 e

t a
l. 

(2
01

8)
✓

En
gi

ne
 lo

ad
, k

er
os

en
e 

sh
ar

e,
 e

th
an

ol
 sh

ar
e

B
ra

ke
 th

er
m

al
 e

ffi
ci

en
cy

, b
ra

ke
 sp

ec
ifi

c 
en

er
gy

 
co

ns
um

pt
io

n,
 N
O

x
 , u

nb
ur

ne
d 

H
C

 a
nd

 C
O

 fo
r 

di
es

el
 e

ng
in

e 
fu

el
ed

 w
ith

 d
ie

so
se

no
l b

le
nd

s
C

ey
la

n 
an

d 
B

ul
ka

n 
(2

01
8)

✓
✓

Te
m

pe
ra

tu
re

, v
is

ib
ili

ty
 d

ist
an

ce
, d

ew
 p

oi
nt

, 
w

in
d 

ve
lo

ci
ty

, p
re

ss
ur

e 
an

d 
re

la
tiv

e 
hu

m
id

ity
 

fo
r a

 tw
o-

ye
ar

 p
er

io
d

D
ai

ly
 m

ea
n 
P
M

1
0
 c

on
ce

nt
ra

tio
n 

le
ve

ls
 in

 
Sa

ka
ry

a 
ci

ty

H
os

se
in

i e
t a

l. 
(2

01
9)

✓
Po

pu
la

tio
n,

 C
O

2
 in

te
ns

ity
, g

ro
ss

 d
om

es
tic

 
pr

od
uc

t (
G

D
P)

 p
er

 c
ap

ita
, s

ha
re

 o
f f

os
si

l 
fu

el
s i

n 
el

ec
tri

ci
ty

 p
ro

du
ct

io
n,

 e
ne

rg
y 

co
n-

su
m

pt
io

n 
pe

r c
ap

ita

To
ta

l C
O

2
 e

m
is

si
on

s p
er

 y
ea

r i
n 

Ir
an

Zu
o 

et
 a

l. 
(2

01
9)

✓
Eq

ui
va

le
nc

e 
ra

tio
, b

le
nd

 ra
tio

B
ra

ke
 th

er
m

al
 e

ffi
ci

en
cy

, b
ra

ke
 sp

ec
ifi

c 
fu

el
 

co
ns

um
pt

io
n,

 C
O

, u
nb

ur
ne

d 
hy

dr
oc

ar
bo

n,
 

an
d 
N
O

x
 fo

r s
pa

rk
 ig

ni
tio

n 
en

gi
ne

 fu
el

ed
 w

ith
 

bu
ta

no
l-g

as
ol

in
e 

bl
en

ds
X

ie
 e

t a
l. 

(2
02

0)
✓

✓
✓

Pa
ss

en
ge

r c
ar

s p
er

 1
,0

00
 in

ha
bi

ta
nt

s, 
sto

ck
 o

f 
ve

hi
cl

es
, v

ol
um

es
 o

f f
re

ig
ht

 tr
an

sp
or

t a
nd

 
pa

ss
en

ge
r t

ra
ns

po
rt 

re
la

tiv
e 

to
 G

D
P

Tr
affi

c-
re

la
te

d 
em

is
si

on
s o

f n
on

-m
et

ha
ne

 v
ol

at
ile

 
or

ga
ni

c 
co

m
po

un
ds

 fo
r 2

8 
Eu

ro
pe

an
 U

ni
on

 
m

em
be

r c
ou

nt
rie

s
A

lti
ka

t (
20

21
)

✓
✓

C
ro

p 
sp

ec
ie

s, 
so

il 
te

m
pe

ra
tu

re
, s

oi
l m

oi
stu

re
 

co
nt

en
t, 

ph
ot

os
yn

th
et

ic
 a

ct
iv

e 
ra

di
at

io
n,

 a
nd

 
so

il 
ox

yg
en

 e
xc

ha
ng

e,
 p

la
nt

 ty
pe

C
O

2
 fl

ux
 fr

om
 so

il 
to

 a
tm

os
ph

er
e

D
o 

et
 a

l. 
(2

02
1)

✓
✓

Th
ro

ttl
e 

po
si

tio
n,

 a
ir 

in
ta

ke
 p

re
ss

ur
e,

 R
PM

, 
co

ol
in

g 
w

at
er

 te
m

pe
ra

tu
re

, i
nt

ak
e 

ai
r 

te
m

pe
ra

tu
re

, e
xh

au
ste

d 
em

is
si

on
s t

em
pe

ra
-

tu
re

, e
xh

au
st 

ga
s r

ec
irc

ul
at

io
n 

te
m

pe
ra

tu
re

, 
ex

ha
us

t g
as

 re
ci

rc
ul

at
io

n 
ra

te
, a

nd
 la

m
bd

a

To
rq

ue
 a

nd
 N
O

x
 e

m
is

si
on

s o
f d

ie
se

l e
ng

in
e 

fu
el

ed
 w

ith
 b

io
di

es
el

 b
le

nd
s



149

1 3

Tiered prediction models for port vessel emissions inventories  

Ta
bl

e 
2 

 (c
on

tin
ue

d)

Re
fe

re
nc

e
A

N
N

M
LR

SV
R

LA
SS

O
R

F
N

LR
Fe

at
ur

es
Ta

rg
et

Sa
ha

 e
t a

l. 
(2

02
1)

✓
So

il 
m

oi
stu

re
, d

ay
s a

fte
r f

er
til

iz
at

io
n,

 so
il 

te
x-

tu
re

, a
ir 

te
m

pe
ra

tu
re

, s
oi

l c
ar

bo
n,

 p
re

ci
pi

ta
-

tio
n,

 a
nd

 n
itr

og
en

 fe
rti

liz
er

 ra
te

D
ai

ly
 N

2
O

 fl
ux

 fo
r a

 c
or

n 
ro

ta
tio

n

Sh
am

s e
t a

l. 
(2

02
1)

✓
✓

U
rb

an
 tr

affi
c 

an
d 

gr
ee

n 
sp

ac
e 

pa
ra

m
et

er
s 

(e
.g

., 
nu

m
be

r o
f v

eh
ic

le
s a

t i
nt

er
se

ct
io

ns
, 

av
g.

 d
ist

an
ce

 b
et

w
ee

n 
pa

rk
s a

nd
 m

ea
su

rin
g 

st
at

io
n)

, t
im

e 
an

d 
m

et
eo

ro
lo

gi
ca

l p
ar

am
et

er
s 

(e
.g

., 
hu

m
id

ity
, r

ai
nf

al
l, 

ai
r t

em
pe

ra
tu

re
, 

w
in

d 
sp

ee
d)

S
O

2
 c

on
ce

nt
ra

tio
n 

le
ve

l i
n 

Te
hr

an

U
m

ar
 e

t a
l. 

(2
02

1)
✓

✓
✓

H
ou

rly
 N
O

x
 , n

itr
og

en
 m

on
ox

id
e 

(N
O

), 
ni

tro
-

ge
n 

di
ox

id
e 

( N
O

2
 ), 

CO
, S

O
2
 e

m
is

si
on

s, 
w

in
d 

sp
ee

d,
 te

m
pe

ra
tu

re
, v

ol
um

e 
of

 c
ar

s a
nd

 ta
xi

s

C
on

ce
nt

ra
tio

n 
le

ve
ls

 o
f P

M
2
.5
 a

nd
 P
M

1
0
 in

 
ce

nt
ra

l L
on

do
n

A
ğb

ul
ut

 (2
02

2)
✓

✓
G

D
P 

pe
r c

ap
ita

, p
op

ul
at

io
n,

 v
eh

ic
le

 k
ilo

m
et

er
, 

an
d 

ye
ar

C
O

2
 e

m
is

si
on

s a
nd

 e
ne

rg
y 

de
m

an
d 

of
 tr

an
sp

or
ta

-
tio

n 
se

ct
or

 in
 T

ur
ke

y



150 P. Cammin et al.

1 3

or disturbances in terminal operations such as the breakdown of quay cranes (Nour-
mohammadzadeh and Voß 2022). If the effort to obtain the berthing time is accept-
able, a regression model including time and GT could improve the performance for 
the berthing mode. Concerning cruising and maneuvering times, including the time 
as a feature would strengthen the model’s performance in ports with different sailing 
routes, and thus different sailing durations within the geographic domain of the EI.

Second, Fabregat et  al. (2021) use machine-learning algorithms to predict the 
hourly local pollutant concentration and estimate the impact of cruise ships’ activi-
ties on the air quality of the port of Barcelona. To this end, twenty-five features and 
the target from eight stations are employed. The application of six algorithms shows 
that the day of the year and the traffic intensity are the two most important features. 
The gradient boosting machine (GBM) has the best prediction performance with the 
R2 of 0.80 and the root mean squared error (RMSE) of 14%.

Third, Fletcher et  al. (2018) use regression algorithms to predict the emissions 
concentration of two cargo ships’ main engines and auxiliary engines in the activ-
ity modes of cruising, maneuvering, and berthing. The selected features are engine 
power and shaft speed. The results show that all five regression algorithms have a 
similar prediction performance for the cruising mode, while using supervised mix-
ture probabilistic latent factor regression has the best prediction performance for the 
maneuvering and berthing modes.

Fourth, Schaub et  al. (2019) apply the ANN to simulate the time series of the 
particulate matter (PM) concentration during a transient engine operation. The input 
features include the values of RPM and fuel consumption by time unit, while the 
prediction target is the PM concentration by time unit. The simulation results by 
using ANN are overall consistent with those by measurement while there are a lot 
of small amplitude oscillations and underestimation of the peak values of the PM 
concentration.

Another recent review of fuel consumption prediction (which also addresses opti-
mization) is carried out by Yan et al. (2021a). In line with the findings by Yan et al. 
(2021b), this review indicates that machine learning has not been applied extensively 
for port vessel EIs, showing potential in its further exploration. Moreover, the appli-
cation of machine-learning algorithms to predict emissions unrelated to shipping, as 
exemplified in Table 2, corroborates the idea of emissions prediction. It shows that 
machine-learning algorithms recently have received much attention for the predic-
tion of emissions in various fields. In general, the popular applied methods include 
but are not limited to ANN, MLR and SVR. It is observed that literature focuses on 
improving the prediction performance of single models, whereas the present study 
examines the prediction performances of models considering different levels of data 
scarcity.

3  Methodology

In this section, the methodology carried out is presented. Section  3.1 outlines 
the data acquisition and Sect.  3.2 presents the steps concerning data preproc-
essing. Section  3.3 presents and justifies the feature engineering. In Sect.  3.4, 
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the prediction models are defined and the algorithmic exposition is provided in 
Sect.  3.5. The performance assessment metrics are outlined in Sect.  3.6. The 
results are shown in the succeeding Sect. 4. The overall framework employed is 
compiled in Fig. 1.

3.1  Data acquisition

For this study, a three-month data set covering August to October 2019 from a 
large North American PA, residing in an emissions control area, is used. The data 
set includes the activity data per vessel and generated emissions. For each ves-
sel and call, the operational time in different activity modes is provided. Moreo-
ver, the data set includes the volume of emitted emissions (disaggregated by gas 
type) by each engine type during those activity modes. The activity modes com-
prise transiting, maneuvering and berthing. The engines considered are the main 
engine, auxiliary engine and boiler. Finally, the gas types include CO2 , SOx , NOx 
and PM2.5 . The emissions abatement measure shore-side electricity is not con-
sidered in the calculations; thus, the data set is considered as a preliminary EI. 
The majority of vessels calling at this port are container ships and bulk carriers, 
which is reflected in the EI. Vessel-characteristics data, such as the power of dif-
ferent engines are employed and, in this study, we focus on 104 container ships 
that are addressed in the preliminary EI for which we could acquire the data for 
all the features (see Sec.  3.3). These are responsible for 119 vessel port calls. 
The EI methodology of the PA follows an activity-based bottom-up calculation 

Fig. 1  Framework
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approach with assumptions concerning the load factor in different areas of the 
geographic domain and is based on AIS data gathered via the PA’s own terrestrial 
antennas, as well as satellite-AIS and vessel-characteristics data from external 
maritime data providers.

3.2  Data preprocessing

Concerning activity data preprocessing we differentiate between the common tasks 
of data smoothing and data transformation. Data smoothing is considered as an 
essential step for the data preparation, to address missing data and suppress outliers 
by data denoising schemes, such as the Empirical Mode Decomposition (Chen et al. 
2021; Zhao et al. 2022). This has been taken into account with the preparation of the 
provided preliminary EI; thus, data smoothing is not further implemented here.

The data set of the EI comprises different data tables that store the information 
for 119 port calls. These tables are transformed into a single table. The resulting 
fields are vessel identifier (IMO number), vessel port call, minutes, mode, engine, 
gas, and emissions in tons. In total, 3,808 samples are generated, which is based on 
the 119 vessel port calls and 32 combinations (purposes). Therefore, each sample 
refers to one of the 32 combinations based on the three engines, three modes and 
four gas types, where the main engine does not emit during berthing. A combina-
tion expresses the specific purpose of a model (see Fig.  1). The gas type further 
specifies the target variable tons of emissions. Furthermore, the data is merged with 
vessel-characteristics data fields based on the vessel identifier. The resulting data set 
is the input to the feature engineering which is described in the subsequent Sect. 3.3. 
Notably, a combination is used to filter the samples accordingly for model training, 
hence, Engine, Mode and Gas are considered technical constraint variables.

3.3  Feature engineering

Feature engineering can be differentiated into feature generation and feature selec-
tion. As we do not merely aim to provide one best model but several best model 
alternatives for each tier, the feature selection for dimensionality reduction is limited 
to excluding redundant features (see Venkatesh and Anuradha (2019)).

The feature selection could be driven by known physical (causal) relationships 
from domain knowledge, or by statistical correlations (Karagiannidis and Theme-
lis 2021; Lee and Lee 2021). The feature Min (minutes) relates to the operational 
runtime in the activity Mode and is suspected to have a major effect on a vessel’s 
fuel consumption. Dynamic activity times in all modes per vessel and port are pos-
sible and thus, Min could be beneficial in a port-independent prediction model. For 
instance, the terminal locations in the port EI geographic domain could require 
north- or south-bound transiting sailing routes with different sailing distances as 
found in this paper’s case port. The constraint variable Mode is included because it 
might reflect average load factors assumed in the activity-based bottom-up method-
ology. Moreover, the engine-power-related features, TKW ME (main engine power 
in kw), THP ME (main engine power in hp), TKW AE (auxiliary engines power in 
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kw), as well as AE Num (auxiliary engines quantity) and vessel DS (design speed) 
can be utilized. TKW ME and THP ME correlate by about 0.75 (compare Fig. 2), 
hence, TKW ME is selected arbitrarily for model training to reduce redundancy. The 
feature GT correlates with a vessel’s size, similar to DWT which is used, e.g., in 
Wan et al. (2020), to assume the engine power by using regression. Hence, GT is 
regarded as a potential option to substitute the aforementioned engine-power-related 
features. Table 4 presents the correlation of features. The strongest correlations can 
be observed between TKW ME and DS as well as between TKW ME and GT. In 
this study, the categorical feature IMOT (IMO Tier) is generated based on the vessel 
build year, relating to the nitrogen oxide ( NOx ) control requirements of MARPOL 
Annex VI (IMO 2019). The feature IMOT is label-encoded to reflect the ordinal 
dependency (see Stauder and Kühl (2021)). Furthermore, we apply the zero mean 
standardization to normalize the feature data (Wang et al. 2018).

The variable VT (vessel type) could be used as a feature or as a constraint vari-
able to filter out samples for training multiple models each for a different type of 
vessels. In this study, VT is used merely as a constraint variable and is fixed to con-
tainer ships. Thereby, the trained models potentially only respect potential vessel-
type-specific methodologies and assumptions such as operating patterns. However, 
in this study, no further categorization or voyage data is employed. This would be 
beneficial if the training data would respect voyage-related data; for instance, the 
number of powered reefer containers.

Although both GT and VT are somewhat visible by nature, options to obtain 
mass data legally, conveniently, and reliably in one batch, are most likely only acces-
sible through paid services.1

Given the unavailability of the exact EI methodology employed by the PA, statis-
tical correlation serves as an indicator for the usefulness of the features. However, in 
this paper, all feature set combinations are explored by computations with different 
algorithms so that alternative models can be suggested. Table 3 provides an over-
view of the used features and constraint variables.

3.4  Prediction models

Two sets of feature combination sets are defined. The following notation is used: 

F  Set of n features, F = {f1, f2, … , fn}.

F1  Set of feature sets based on select-k-best, 
F1 = {(f1), (f1, f2), … , (f1, … , fn)} , the elements in set F are in 
descending order based on their mutual information.

1 See latest terms of use of International Maritime Organisation (IMO)’s Global Integrated Shipping 
Information System (GISIS) that offers, e.g., MMSI, VT, build year and GT.
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F2  Set of feature sets, F2 = {F̂ | F̂ ⊆ F}.

Fi(e,m, g)  Models using features of set Fi constraint by engine e, mode m and gas 
g.

Ti  Tier of models with i being the number of used features.

The impact assessments refer to the applied algorithms, the combinations (pur-
poses) of the models, and the feature sets. For instance, F1(Mai,MAN,CO2) denotes 
models based on the feature sets of F1 with the purpose to predict CO2 emissions 
generated by the main engine when vessels maneuver (see, e.g., the use of this nota-
tion in Figs. 2 and 3).

The set F1 is defined based on the select-k-best method. The seven features are 
sorted (descending) based on their mutual information score which detects the 
statistical dependence between the feature and the target, as shown in Fig. 2. The 

Table 3  Features and constraints

Main (Mai), auxiliary (Aux), boiler (Boi)
Transiting (TRN), maneuvering (MAN), berthing (BRT)

Code Feature Constraint Unit Categorical values Description

Engine ✓ – Mai, Aux, Boi Engine type
Mode ✓ – TRN, MAN, BRT Mode type
Gas ✓ – CO2 , SOx , NOx , PM2.5 Gas type
VT ✓ – Container ship Vessel type
DS ✓ kn – Design speed
GT ✓ t – Gross tonnage
IMOT ✓ – 0, 1, 2, 3 IMO tier
Min ✓ min – Minutes
TKW ME ✓ kw – Main engine power
TKW AE ✓ kw – Auxiliary engines power
AE Num ✓ – – Auxiliary engines qty.

Table 4  Correlation of features

DS GT IMOT Min TKW ME TKW AE AE Num

DS 1.00 0.68 −0.42 −0.19 0.91 0.62 0.32
GT 0.68 1.00 −0.24 −0.11 0.81 0.48 0.13
IMOT −0.42 −0.24 1.00 0.10 −0.42 −0.21 0.02
Min −0.19 −0.11 0.10 1.00 −0.18 −0.11 −0.00
TKW ME 0.91 0.81 −0.42 −0.18 1.00 0.59 0.14
TKW AE 0.62 0.48 −0.21 −0.11 0.59 1.00 0.24
AE Num 0.32 0.13 0.02 −0.00 0.14 0.24 1.00



155

1 3

Tiered prediction models for port vessel emissions inventories  

mutual information is a non-negative value and estimated by the Shannon entropy 
from k-nearest neighbor distances (Kraskov et al. 2004; Ross 2014). If the mutual 
information is equal to zero, the two variables are independent; a higher value of the 
mutual information means a higher dependency between the two variables. Those 
features are then added cumulatively resulting in seven feature sets as shown in 
Table 5. The purpose of F1 is to exemplify a statistical approach based on models 
using F1(Mai,MAN,CO2) . The results are presented in Sect. 4.1.

The set F2 is defined by using the product of the seven features. Thereby, F2 con-
tains 127 feature sets.2 The purpose of F2 is fourfold:

Fig. 2  Mutual information used for univariate feature selection based on F1(Mai,MAN,CO2)

Table 5  Constraints and features utilized for models based on F1(Mai,MAN,CO2)

Tier Gas Mode Engine VT TKW ME GT TKW AE DS Min AE Num IMOT

1 ✓ ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

6 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

2 Based on 2n − 1 , i.e., 27 − 1 , where −1 is necessary to include at least one feature.
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• The best-performing models for all purposes F2(e,m, g) are identified to show 
the viability of the approach. The results are presented in Sect. 4.2.

• The performance of the models is differentiated by tier and algorithm for selected 
e, m and g. This may show the benefits of using different algorithms as well as the 
performance improvements with higher tiers. The results are presented in Sect. 4.3.

• The best models and alternatives for F2(Mai,MAN,CO2) , including the used fea-
tures, adopted algorithm, and hyperparameters are shown. By doing so, substi-
tuting important features to resolve data unavailability is exemplified. The results 
are presented in Sect. 4.4.

• A comparison with the study of Ekmekçioğlu et al. (2021), introduced in Sect. 2, 
who trained regression models with GT for container ships, is conducted. We 
exemplify the effect of using the feature Min on the prediction performance for 
time-dependent targets. The results are determined in Sect. 4.5.

3.5  Algorithms

This section briefly introduces the algorithms applied in this study. The selection 
of ANN, MLR and SVR is based on their widespread usage in the literature as pre-
sented in Sect. 2, and according to Yan et al. (2021), ANN is the most frequently 
used algorithm by far for fuel consumption prediction. Besides ANN, MLR and 
SVR are also popular supervised learning algorithms for the prediction of fuel con-
sumption. In contrast to ANN and SVR that both can pick up nonlinear and lin-
ear relationsships, MLR is only able to find linear relationsships. Moreover, ANN, 
SVR, and MLR are representative algorithms of the neural-network-based models 
(Panapakidis et al. 2020; Karagiannidis and Themelis 2021), instance-based models 
(Zhou et al. 2021; Zhu et al. 2021), and statistical-learning-based models (Uyanık 
et al. 2020; Kim et al. 2021), respectively. In this study, to compare and analyze the 
prediction performance of the three different types of models, ANN, MLR, and SVR 
are selected to predict the vessel emissions.

The ANN algorithm is developed by imitating the information handling process 
in human brain neurons to figure out the complex relationships implied between the 
input and output pairs of data (Rojas 1996). In the structure of the ANN algorithm, 
there are input layers, hidden layers, and output layers. Its training process is based 
on the forward transfer information and combined with the backpropagated errors 
between the predicted values and the actual values. During the training process, the 
connection weights between any two neurons are adjusted continuously until the 
errors are small enough to be accepted (Heidari et al. 2016). In this paper, the archi-
tecture of the ANN consists of one input layer with the nodes corresponding to the 
input feature set, a diverse number of hidden layers by hyperparameter tuning, and 
one output layer which is the predicted emissions. Given a neuron with m inputs, xi 
is the ith input, i ∈ {1, ....,m} , �i is the weight on the connection, bi is the bias, and 
f () is the activation function, then y is the output according to Eq. (1). The training 
process of the ANN is to find the proper values of � and b based on the loss function 
as shown in Eq. (2), where n is the number of samples, Di is the actual value and yi 
is the predicted value.
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The SVR algorithm is extended from the support vector machine (SVM) algorithm 
(Smola and Schölkopf 2004). In the SVR algorithm, the linearly inseparable fea-
tures ( x1, x2,… , xm ) are transferred to be linearly separable by mapping into a higher 
dimensional space as shown in Eq. (3). � is the weight vector, b is the bias and �(x) 
is the kernel function.

subject to:

In the higher dimensional space, a hyperplane is set approximately. The training pro-
cess of the SVR algorithm is to minimize the largest distance between the mapped 
points and the hyperplane to maximize the distance from the nearest mapped points 
to the hyperplane (Eq. (4)), with the constraint that the distance from any mapped 
point to the hyperplane is no more than a defined tolerant margin � (Eq. (5)).

The MLR algorithm uses the regression analysis in mathematical statistics to 
identify the relationship between one dependent variable (y) and multiple inde-
pendent variables ( x1, x2,… , xm ) as formulated by Eq.  (6) (Tranmer et  al. 2020). 
The training process of the MLR algorithm aims to identify the proper values of 
�0, �1,… , �m to minimize the residual sum of squares between the actual values and 
the predicted values as shown in Eq. (7).

3.6  Performance assessment

To evaluate the performance of the prediction model, we adopt the metrics RMSE 
and mean absolute error (MAE) and R2 . A five-fold cross-validation is applied with 
the performance assessment metrics being the average values. The RMSE is given by 
the standard deviation of the residuals that express the distance between the predicted 

(1)y = f

(
m∑

i=1

(
�ixi + bi

)
)

(2)argmin
�, b

1

n

n∑

i=1

(
Di − yi

)2

(3)y = ��(x) + b

(4)min
1

2
‖�‖2

(5)|Di − yi| ≤ �, i = 1,… , n

(6)y = �0 + �1x1 + �2x2 +⋯ + �jxj +⋯ + �mxm
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values and the actual values on the regression curve. The MAE is the absolute error 
between the predicted values and the actual values. Lower values for RMSE and MAE 
represent better prediction results. The R2 provides an assessment of the accuracy rate 
of the prediction model with the best value of 1. The calculations of RMSE, MAE and 
R2 are shown in Eqs. (8), (9), and (10), respectively, where y is the actual value, ŷ is the 
predicted value, ȳ is the mean of the y values, and n is the number of samples.

4  Numerical experiments

This section presents the numerical experiments based on the models using F1 and F2 , 
where the definitions are given in Sect. 3.4. The training uses subsets of the presented 
seven features on 3,808 samples and employs ANN, SVR and MLR. The numerical 
experiments are carried out using sklearn (Pedregosa et al. 2011) based on the default 
hyperparameters, although their optimization is exemplified in Sect. 4.4.

First, the results based on incremental select-k-best are exemplified with the models 
for a specific purpose in Sect. 4.1. Second, the best-performing models for all purposes 
are identified in Sect. 4.2. Subsequently, a differentiation by tier and algorithm is exem-
plified in Sect. 4.3. Next, the best-performing models and alternative models are exem-
plified in Sect. 4.4. Finally, the effect of the feature Min on a time-dependent target is 
assessed in Sect. 4.5.

4.1  Results for models based on incremental select‑k‑best

Using the seven feature sets (see Table 5) and a specific combination described by 
F1(Mai,MAN,CO2) as well as three algorithms (MLR, SVR, ANN), 21 models are 
trained. Differentiated by tier and algorithm, the values for the metrics R2 , MAE and 
RMSE are provided in Fig. 3.

Concerning the tiers, the models of this approach yield an acceptable perfor-
mance starting from T5 , from where ANN and MLR perform better than SVR. Con-
cerning R2 , Fig. 3a shows that the top best-performing models with an R2 between 
0.90 and 0.92 can be found in T5 , T6 and T7 using ANN and MLR. Notably, once the 
feature Min is added starting from T5 , a large performance increase can be observed. 

(8)RMSE(y, ŷ) =

√√√√1

n

n∑

i=1

(
yi − ŷi

)2

(9)MAE(y, ŷ) =
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Prior to decreasing the data dependency while trying to maximize the prediction 
performance, the next section presents the overall best-performing models for each 
purpose.

4.2  Best‑performing models differentiated by engine, mode and gas

Based on the 127 feature sets and 32 combinations described by F2(e,m, g) , the 
application of the three algorithms (MLR, SVR, ANN) results in 12,192 trained 
models. The subsequent Sects. 4.3, 4.4 and 4.5 make use of a subset of these models 
in the sense that the combinations and/or feature sets are limited with respect to dif-
ferent aims.

Let us now present the R2 values for the best-performing models, irrespective of 
features or algorithms in Table 6. The results illustrate that the formulation of F2 
provides a competitive performance in regard of the main and boiler engines exceed-
ing an arbitrary threshold of 0.85 R2 . Notably, in the activity-based bottom-up 

(a) (b) (c)

Fig. 3  Performance metrics for models based on F1(Mai,MAN,CO2)

Table 6  R2 of each best-
performing model based on 
F2(e,m, g)

Engine Mode Gas

CO2 NO
x

PM2.5 SO
x

Main Transiting 0.8688 0.8724 0.8688 0.8688
Maneuvering 0.9421 0.9145 0.9158 0.9158

Auxiliary Transiting 0.2564 0.2268 0.2330 0.2330
Maneuvering 0.6811 0.6556 0.6496 0.6496
Berthing 0.7384 0.7420 0.7384 0.7384

Boiler Transiting 0.8859 0.8859 0.8859 0.8859
Maneuvering 0.9829 0.9829 0.9829 0.9829
Berthing 1.0000 1.0000 1.0000 1.0000
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calculation, boiler emissions are based on a simple factor multiplication with the 
variable Min. In contrast, the main engine emissions depend on load factor changes 
during activity over time: This complication reduces the performance. Furthermore, 
the prediction performance regarding the auxiliary engine is significantly worse, 
ranging from about 0.2 to 0.75 R2 . In general, a strong correlation between the pre-
diction performances of different gases for the same combination of engine and 
mode is observed, indicating a calculation using factor multiplication.

4.3  Models differentiated by tier and algorithm

In this section, models are differentiated by tier and algorithm for selected 
F2(e,m, g) , i.e., F2(Mai,MAN,CO2) and F2(Mai, TRN,NOx) . The R2 values are pro-
vided in Fig. 4a and b.

Figure 4a shows no significant performance increase after models in T2 . In gen-
eral, the sub-figures exemplify the performance diversification between algorithms 
depending on the constraints. For instance, Fig. 4a shows that MLR provides bet-
ter results than SVR throughout most of the tiers. However, ANN achieves the best 
performance in most tiers. Notably, the sub-figure shows that most models reside in 
two clusters, either achieving an R2 value greater than 0.7 or less than 0.2. In com-
parison to F1(Mai,MAN,CO2) (see Fig. 3), the models with less features achieve a 
better performance. Furthermore, Fig.  4b exemplifies the advantage of MLR in a 
scenario, achieving the highest R2 value. Moreover, models after T3 show no signifi-
cant increase in their performance. While the sub-figures provide an overview about 
the achievable prediction performance per tier, they lack the capability to show on 
which features the models rely. Therefore, the next section explores models, based 
on F2(Mai,MAN,CO2) , in more detail.

4.4  Best‑performing and alternative models in each tier

In this section, the best models and alternative models for F2(Mai,MAN,CO2) , 
differentiated by tier and algorithm, are shown. A hyperparameter tuning is car-
ried out for ANN and SVR. A simple grid search is applied; concerning ANN, six 
variants concerning the number of hidden layers and neurons are used, i.e., one or 
two layers with each layer having 100, 25, or 5 neurons. Regarding SVR, 16 vari-
ants concerning C = {0.01, 0.1, 1, 10} and � = {0.01, 0.1, 1, 10} are used. Table 7 
shows the experimental results for models with a distinctive feature set. To be 
more clear, only the best models, trained with the same feature set but with dif-
ferent algorithms and hyperparameters, are shown. We exemplify the options to 
substitute features with one another in case of data unavailability as well as to add 
features in order to improve the prediction performance.

In general, one aims to minimize the number of features, preferably those 
requiring more effort to obtain, e.g., Min in different activity modes or TKW ME 
as vessel-characteristics data. This is in contrast to features such as GT and IMOT 
that may be easier to obtain (see Sect. 3.1). Thereby, after the training of mod-
els, a decision-making process per each port using a trade-off analysis should 
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(a)

(b)

Fig. 4  R2 for selected models in different tiers based on F2
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be conducted, between the number of expensive features and the prediction 
performance.

Regarding T1 models, the best two models have a large diverging performance; 
it is shown that the importance of the feature Min far exceeds those of the remain-
ing features. In general, a comparison of models within each tier shows that 
models with a feature set lacking Min perform significantly worse than the best 
models (see ‡ in Table 7). At least in this case study, this cannot be balanced by 
increasing the feature set with the remaining features.

As discovered in Sect. 4.3, using two features for model training can increase the 
performance significantly. In doing so, the results show that the best six models include 
Min. Notably, for each of these models in T2 , the importance rank of the additional fea-
ture changed, compared to the T1 models; see, e.g., TKW ME and GT. Only three mod-
els in T2 achieve a performance higher than the arbitrary threshold of 0.85 R2.

Considering GT and IMOT as being easier to obtain, their combination in con-
junction with Min ( T3 ) achieves a better performance with 0.93 R2 compared to their 

Table 7  Performance metrics for best-performing model and selected alternative models based on 
F2(Mai,MAN,CO2) , from T1 to T5 , ordered by tier and R2

∗ Model with the highest R2 value
† First model in its tier with a significant increase compared to the lower-tier’s best model
‡ First model in its tier without the feature Min

Tier Feature set Algorithm Hyperparameter R
2 MAE RMSE

1 Min ANN 100, 100 0.7761 0.3735 0.6582
1‡ GT SVR C = 10.0, � = 1.0 0.1916 1.0590 1.2520
1 DS SVR C = 10.0, � = 1.0 0.1251 1.0555 1.3087
1 TKW ME SVR C = 10.0, � = 1.0 0.0661 1.1419 1.3534
1 TKW AE SVR C = 0.1, � = 1.0 − 0.0530 1.2376 1.4530
2† Min, TKW ME ANN 100, 100 0.9450 0.1680 0.3357
2 GT, Min ANN 100 0.9108 0.3055 0.4154
2 Min, TKW AE ANN 100, 100 0.8640 0.3259 0.5095
2 DS, Min ANN 25, 25 0.8381 0.3396 0.5515
2 AE Num, Min ANN 100, 100 0.7661 0.4049 0.6746
2 IMOT, Min MLR – 0.7371 0.4603 0.6913
2‡ GT, IMOT ANN 100, 0.1570 1.0301 1.2628
3 Min, TKW AE, TKW ME ANN 100, 100 0.9535 0.1708 0.3014
3 GT, IMOT, Min ANN 100 0.9329 0.2634 0.3631
3 DS, GT, Min ANN 100, 100 0.9128 0.2363 0.3989
3 DS, IMOT, Min ANN 25, 25 0.8452 0.3261 0.5534
3‡ AE Num, GT, IMOT ANN 100, 100 0.2065 0.7849 1.2503
4∗ IMOT, Min, TKW AE, TKW ME ANN 100, 100 0.9577 0.1688 0.2867
5 GT, IMOT, Min, TKW AE, TKW ME ANN 100, 100 0.9516 0.1801 0.2978
5‡ AE Num, GT, IMOT, TKW AE, 

TKW ME
SVR C = 1.0, � = 0.1 0.0819 0.9089 1.3277
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separate utilization with Min ( T2 ) that achieves 0.91, 0.73 R2 , respectively. The T3 
model could be considered a viable substitute that achieves a similar performance than 
the T2 model using Min and TKW ME that achieves 0.945.

The model with the overall best performance achieves a R2 value of 0.9577 and 
belongs to T4 ; however, the difference to the best model in T2 that achieves 0.9450 is 
minor. Hyperparameter tuning increases the best model’s performance insignificantly.

4.5  Effect of the feature minutes on a time‑dependent target

Based on the numerical results obtained in Sect. 4.3, models using the features Min and 
GT, based on F2(Mai,MAN,CO2) , are revisited by listing the R2 values, the adopted 
algorithms and hyperparameters completely in Table 8. In regard of the activity-based 
bottom-up methodology, which considers the geographic environment with two main 
waterways of different sailing distances, the table shows the importance of the feature 
Min being included in the training of the models.

In doing so, the models achieve an increased performance using ANN with an R2 
value of 0.9108. Furthermore, the importance of experimenting with different algo-
rithms is exemplified as significant performance gaps are observed.

5  Discussion

Taken together, we show that in the given case study, some prediction models for the 
same purpose provide a similar performance while requiring less data. In light of the 
numerical experiments, three aspects should be discussed, namely, the case-by-case 
use of prediction models, the feature dependency between models for different pur-
poses, and the life cycle of prediction models.

Arguably, given inconsistent vessel-characteristics data pertinent to a single port 
and being the input to EI formulations, the use of different prediction models that 
fit the available data at hand on a case-by-case, i.e., vessel-by-vessel basis may con-
stitute an advantage: The prediction models using ANN and SVR are able to cap-
ture strong nonlinearity using few features considering the port and calling vessels’ 
characteristics and their typical trajectories. This may be difficult to realize with tra-
ditional calculation formulation methods (Le et  al. 2020; Jassim et  al. 2022). For 

Table 8  Performance metrics for models based on F2(Mai,MAN,CO2) using features Min and GT 

Tier Feature set Algorithm Hyperparameter R
2 MAE RMSE

1 GT SVR C = 10.0, � = 1.0 0.1916 1.0590 1.2520
1 GT ANN 25, 25 0.0575 1.0694 1.3426
1 GT MLR – − 0.0934 1.2257 1.4665
2 GT, Min ANN 100 0.9108 0.3055 0.4154
2 GT, Min MLR – 0.8653 0.3752 0.5050
2 GT, Min SVR C = 10.0, � = 0.1 0.7809 0.3278 0.6520
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instance, if the essential input parameters of an activity-based bottom-up calculation 
formulation, such as the speed or load factor in small time intervals are missing, the 
formulation requires assumptions as substitutes. For nonlinear relationships, setting 
up groups of vessels to approximate, e.g., load factors, even by few of the avail-
able features, such as ship size or engine power, requires additional effort and may 
lead to inferior approximations than using ANN. Along this line of thinking, it is 
expected that establishing a range of prediction models with different feature sets, 
as presented here, takes less effort than adapting calculation formulations or setting 
up assumptions for the same. We exemplify this idea by exploring a range of pre-
diction models for the purpose of predicting CO2 emissions by the main engine in 
the activity mode maneuvering. Here, the prediction performance is 0.94 and 0.91 
R2 under the use of ANN and the features activity time in minutes in conjunction 
with the total power of the main engine and the GT, respectively. Moreover, it is 
shown that the prediction performance concerning emissions originating from the 
main engine and the boiler by far exceeds those concerning the auxiliary engine. 
Models for boiler emissions achieve the best performance, which can be explained 
with a simple linear relationship with the activity time in minutes that is easy to 
grasp by MLR. A major drawback is that the activity time is still required to achieve 
an acceptable performance, which in turn requires, e.g., obtaining and processing 
AIS data.

Furthermore, we demonstrate that higher tier models could achieve a higher per-
formance until the relevant features are exhausted. Some features can hardly be sub-
stituted (Min) while other features may be substituted (TKW ME) with an acceptable 
loss in the prediction performance; thus, some solution space for a trade-off analysis 
is provided. However, it is important to highlight that such a trade-off analysis for 
one purpose cannot be carried out independently if models for other purposes are 
necessary; thus maximizing the overlap of features between those models has to be 
considered as well. One way to remedy this issue could be the simplification of the 
framework to reduce the number of models, by predicting activity mode emissions 
irrespectively of the engine or vice versa.

Another important concern, not limited to this study, represents the life cycle of 
prediction models. Generic EI formulations and their implementations in informa-
tion systems can be adapted to the geographic and operational characteristics of any 
port. In contrast, the trained models are a black box that cannot be adapted. The 
performance of those trained models likely declines with the application in ports 
with changing characteristics. This even applies to the same port, e.g., through the 
implementation of speed reduction policies, or with the retrofitting of vessels with 
scrubbers. Similarly, caution is necessary if employing volatile vessel ratings as fea-
tures that are influenced by policies, for instance, this relates to the operational car-
bon intensity rating of a vessel. The rating code (A–E) can change over time with-
out changing a vessel’s characteristics and fuel efficiency, that is, the rating code is 
planned to be influenced by both the carbon intensity indicator (carbon emissions 
per unit transport work), as well as by policy-based declining upper bounds for each 
rating code over the years (Wang et al. 2021). In these cases, carrying out the entire 
process presented in Fig. 1, including the EI calculation based on an updated meth-
odology and model training, is required.
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6  Conclusions

In this paper, we introduce a framework to create port-related vessel EIs, which 
is motivated by the lack of continuous EIs in ports. We investigate whether our 
approach yields acceptable prediction models with a similar performance while 
reducing data requirements. The managerial impact is that a range of acceptable 
prediction models can be subject to a trade-off analysis under the constraints dis-
cussed in Sect. 5. For carrying out the proposed approach, different algorithms, such 
as ANN, MLR and SVR, should be employed to achieve better prediction perfor-
mances of the models.

One important limitation of this work is that the investigation is constrained to 
container ships and to a time scope of three months. This is in contrast to EIs in 
practice that usually exhibit an annual quantification of multiple vessel types; thus, 
by extending the scope, uncertainty about the applicability can be mitigated and 
relevance to practice can be improved. Second, while the prediction models for 
the main engine provide an acceptable performance, the auxiliary engine models 
require improved feature engineering based on the applied EI methodology that pro-
vides the target data. For instance, feature sets could be extended to account for the 
number of reefer containers that consume energy, i.e., the load factor of auxiliary 
engines for reefer container ships is about twice as high as for container ships (EPA 
2009). Although this work explores a range of popular algorithms, including ANN 
and SVR that can pick up nonlinear patterns, the hyperparameter tuning could be 
improved by adopting more sophisticated methods such as the Gaussian process-
based Bayesian optimization (Snoek et  al. 2012), the tree-structured Parzen esti-
mator approach (Bergstra et al. 2011) and the sequential model-based optimization 
(Hutter et al. 2011). Finally, algorithms other than ANN, MLR and SVR and their 
tailoring could be employed to improve the prediction performance.

While addressing the above-mentioned limitations will benefit the applicability of 
the approach within a port, an interesting research avenue concerns sharing trained 
models between ports. Future work could evaluate the performance of prediction 
models applied in one port but trained in another, to avoid the need to carry out 
another activity-based bottom-up calculation. This may spark interest in the commu-
nity of ports and promote the use of predictive tools to create EIs, contributing to the 
development of green ports. Another avenue for future research could be the imple-
mentation of EIs for other modes of transportation such as rail and public transport 
(see, e.g., Chipindula et al. 2022).
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