Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/312456 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Optimization Letters [ISSN:] 1862-4480 [Volume:] 17 [Issue:] 3 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2022 [Pages:] 771-788
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Pareto efficiency for robust linear programs was introduced by Iancu and Trichakis in [Manage Sci 60(1):130–147, 9 ]. We generalize their approach and theoretical results to robust optimization problems in Euclidean spaces with affine uncertainty. Additionally, we demonstrate the value of this approach in an exemplary manner in the area of robust semidefinite programming (SDP). In particular, we prove that computing a Pareto robustly optimal solution for a robust SDP is tractable and illustrate the benefit of such solutions at the example of the maximal eigenvalue problem. Furthermore, we modify the famous algorithm of Goemans and Williamson [Assoc Comput Mach 42(6):1115–1145, 8 ] in order to compute cuts for the robust max-cut problem that yield an improved approximation guarantee in non-worst-case scenarios.
Schlagwörter: 
Semidefinite programming
Pareto optimality
Robust optimization
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.