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Abstract
Pareto efficiency for robust linear programs was introduced by Iancu and Tricha-
kis in [Manage Sci 60(1):130–147, 9]. We generalize their approach and theoretical 
results to robust optimization problems in Euclidean spaces with affine uncertainty. 
Additionally, we demonstrate the value of this approach in an exemplary manner 
in the area of robust semidefinite programming (SDP). In particular, we prove that 
computing a Pareto robustly optimal solution for a robust SDP is tractable and illus-
trate the benefit of such solutions at the example of the maximal eigenvalue prob-
lem. Furthermore, we modify the famous algorithm of Goemans and Williamson 
[Assoc Comput Mach 42(6):1115–1145, 8] in order to compute cuts for the robust 
max-cut problem that yield an improved approximation guarantee in non-worst-case 
scenarios.

Keywords  Semidefinite programming · Pareto optimality · Robust optimization

1  Introduction

Pareto efficiency is a well-established concept in a variety of fields such as econ-
omy, engineering and biology, see e.g. [18] for a broad overview. In [9], Iancu and 
Trichakis adapted this concept to robust optimization (RO) for linear programs.  
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In particular, they consider the robust linear program

where the feasible set X  and the uncertainty set U are assumed to be polytopes. 
In this setting they characterize and compute so-called Pareto robustly optimal or 
PRO solutions. These are robustly optimal solutions x ∈ X  for which there exists no 
x̄ ∈ X  such that p⊤x̄ ≥ p⊤x for all p ∈ U and p̄⊤x̄ > p̄⊤x for at least one p̄ ∈ U . The 
main purpose of this article is to generalize this definition and retrieve a characteri-
zation of PRO solutions in a setting that is similar to the one in [9]. Moreover, we 
show that in the case of robust semidefinite programs, computing PRO solutions is 
tractable.

Although the work of Iancu and Trichakis on the linear framework is rather new, 
it has triggered further research such as an analysis for adjustable settings, see e.g. 
[16] for a rolling horizon approach and [3] for a Fourier-Motzkin Elimination based 
approach.

Structure
In Sect. 2, we generalize the approach of Iancu and Trichakis to X  being a sub-

set of a finite dimensional Euclidean vector space and an uncertain parameter that 
affects the objective affinely and is contained in a compact, convex uncertainty set 
U . In particular, we provide a characterization of Pareto robustly optimal (PRO) 
solutions in this broader setting, which is our main result. This result enables us to 
prove the tractability of computing a PRO solution in the case of robust semidefinite 
programming. In Sects. 3 and 4, we illustrate how to compute the robust maximal 
eigenvalue of a class of matrices and consider a variant of the SDP that is at the 
core of the Goemans-Williamson Algorithm [8]. The PRO solutions of the latter are 
then used as an input for the algorithm and improve the computed cuts for the robust 
max-cut problem.

Notation
In the remainder of this article, the feasible set X  and the uncertainty set U are 

contained in finite dimensional Euclidean vector spaces. In the present article, we 
will mostly choose for both spaces the space of real symmetric n × n-matrices Sn 
equipped with the Frobenius inner product ⟨⋅, ⋅⟩ , i.e., (Sn, ⟨⋅, ⋅⟩) . For a positive sem-
idefinite matrix X ∈ ℝ

n×n , we write X ⪰ 0 and we denote the set of symmetric posi-
tive semidefinite matrices by Sn

⪰0
 . Given a subset S of an Euclidean vector space V 

with inner product ⟨⋅, ⋅⟩V , we denote its dual cone by 
S∗ = {y ∈ V ∶ ⟨y, x⟩V ≥ 0 ∀x ∈ S} and its relative interior by relint(S) . For a real 
matrix A ∈ ℝ

n×n , we denote its trace by Tr(A) . For a positive integer n ∈ ℕ , we use 
[n] ∶= {1, ..., n} to denote a set of indices and In to denote the n-dimensional identity 
matrix. The vector ei ∈ ℝ

n , i ∈ [n] , denotes the i-th unit vector and 

(1)max
x∈X

min
p∈U

p⊤x,
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1 ∶=
∑n

i=1
ei ∈ ℝ

n denotes the all-ones vector. We further denote by 
Eij∶=

1

2
(eie

⊤
j
+ eje

⊤
i
) ∈ S

n , i, j ∈ [n] , the standard basis of Sn.

2 � Pareto optimal solutions for affine uncertainty

As a generalization of Program (1), we consider the following robust optimiza-
tion problem

where X  is the feasible set, U ⊆ V  is the convex and compact uncertainty set located 
in a Euclidean vector space. Let further f (⋅, p) ∶ X → ℝ be a function that is well-
defined for all p ∈ U . Naturally, we assume that U is not a singleton. The parameter 
p ∈ U encodes an affine uncertainty, i.e., f (x, ⋅) ∶ U → ℝ is affine in p for all x ∈ X  . 
The involved affinity gives rise to an alternative formulation of (2), namely

where f̄ (x) ∈ V  and g(x) ∈ ℝ are the unique elements that correspond to the affine 
functional f (x, ⋅) ∶ p ↦ f (x, p) as given by the Riesz’ representation theorem. Hence 
(2) can be seen as an generalization of (1) to Euclidean vector spaces. However, over 
the course of the present article we mainly stick to Formulation (2). We note further, 
that if X  is compact and f is continuous on X  , we replace ’ sup ’ by ’ max ’ in (2). We 
denote the set of robustly optimal solutions, i.e., the set of optimal solutions of (2), 
by XRO.

In robust optimization, one usually focuses on the worst-case scenario, i.e., it 
suffices to find any robust solution x ∈ X

RO . In contrast to this approach, we aim 
for a specific x ∈ X

RO that also performs well under all other scenarios p ∈ U  . To 
this end, we use the definition of Pareto robustness from [3], which is a generali-
zation of the definition from [9] as mentioned in the introduction:

Definition 1  A robustly optimal solution x ∈ X
RO is called a Pareto robustly optimal 

solution (PRO) of (2) if there exists no x̄ ∈ X  such that

In this case, we also write x ∈ X
PRO . If x ∉ X

PRO , we say for an x̄ , which fulfills (4) 
and (5), that it Pareto dominates x.

It is natural to ask whether such solutions exist, if they can be characterized 
and whether they can be determined properly.

(2)sup
x∈X

min
p∈U

f (x, p),

(3)sup
x∈X

min
p∈U

⟨f̄ (x), p⟩V + g(x),

(4)∀p ∈ U ∶ f (x̄, p) ≥ f (x, p),

(5)∃p̄ ∈ U ∶ f (x̄, p̄) > f (x, p̄).
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We first give an introductory example that fits into the setting of (2). We 
thereby demonstrate that the choice of a Pareto optimal solution can significantly 
improve the objective value. After proving our main result Theorem 1 on a char-
acterization of PRO solutions, we apply it to the example. In Sect.  4, a more 
broad discussion of applications will be done.

Example 1  Consider the robust quadratic knapsack problem:

quadratic knapsack problems arise in various applications. For illustrative purposes, 
we consider an example from [15], where a logistics company wants to construct 
hubs, that on the one hand maximize the reward function x⊤Rx but on the other hand 
are restricted by budgetary constraints w⊤x ≤ d . Here, rewards Rij are paid for ship-
ping a good from hub i to hub j and rewards Rii,Rjj are paid for additional services at 
the hubs i and j if there is a shipping. Uncertainties in the reward matrix R may for 
example originate from the type of lorry the company uses.

In the following, we demonstrate that there are PRO solutions x ∈ X
PRO for 

quadratic knapsack, that Pareto dominate other robust solutions x ∈ X
RO ⧵ XPRO . 

Moreover, we show that the improvement in the objective can be significant, if p 
does not attain its worst-case realization. As an example, let w = 1, d = 5 and 
R(p) = 11

⊤ + Eii(p1 − 1) + Ejj(p1 − 1) + Eij(p2 − 1) for a fixed pair of indices 
i, j ∈ [n] . This affine relation is a common form to formulate matrix uncertain-
ties (see e.g. [6]). It can be generalized by considering arbitrary matrices instead 
of the standard basis matrices Eij ∈ S

n . We consider a convex uncertainty set 
U∶={p ∈ ℝ

2 ∶ p1 ≥ 1, p2
1
≤ p2, p2 ≤ 4} and observe that for this particular U the 

worst case is attained by p = (1, 1)⊤ since

and x ≥ 0 . Hence, in the worst case we have R(p) = R((1, 1)⊤) = 11
⊤ and conse-

quently every x ∈ {0, 1}n with 
∑

i∈[n] xi = 5 is a robustly optimal solution with 
objective value x⊤11⊤x = 25 . However, every solution that in addition satisfies 
xi = xj = 1 Pareto dominates the other robust solutions since the respective objective 
value is equal to

In our example, the advantage of choosing such an x ∈ X
PRO compared to a solution 

x ∈ X
RO ⧵ XPRO can increase to 30 > 25 , if p1 = 2 and p2 = 4.

The key to characterize and determine PRO solutions is the following theorem 
which is a generalization of Theorem 1 in [9] and our main result.

qkp(R,w, d,U) ∶= sup
x∈{0,1}n

min
p∈U

x⊤R(p)x

s.t. w⊤x ≤ d.

min
p∈U

x⊤R(p)x = min
p∈U

(p1 − 1)(x2
i
+ x2

j
) + (p2 − 1)xixj + x⊤11⊤x

x⊤R(p)x = (p1 − 1)(x2
i
+ x2

j
) + (p2 − 1)xixj + 25 = 2(p1 − 1) + (p2 − 1) + 25.
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Theorem 1  A solution x∗ ∈ X
RO of (2) is PRO if and only if it is an optimal solution 

to the optimization problem

for an arbitrary p̂ ∈ relint(U) . Every feasible solution y to (6) with an objective 
value greater than f (x∗, p̂) Pareto dominates x∗ . Moreover, if Program (2) yields an 
optimal solution then it is PRO.

Proof  We begin by pointing out that relint(U) ≠ � since U is convex. Furthermore, 
for the inner minimization program, there exists an optimal solution p∗ since the 
objective is affine and U is compact.

If y is feasible for Program (6) with an objective value greater than f (x∗, p̂) , then 
the following holds:

In other words, y Pareto dominates x∗.
Next, we show that x∗ ∈ X

PRO if and only if x∗ is an optimal solution of Pro-
gram (6). However, we have already shown that, if there exists a feasible solution 
with greater objective value than x∗ , i.e., if x∗ is not optimal for Program (6), then 
x∗ ∉ X

PRO . Thus, we only need to show that optimality of x∗ for Program (6) implies 
x∗ ∈ X

PRO . We assume that x∗ is not Pareto robustly optimal. Then there exists a 
solution y ∈ X  that Pareto dominates x∗ and we obtain

Since, on the right-hand side of (7), we optimize an affine function over a convex 
set U , an optimal solution p̄ is w.l.o.g. an extreme point of U . Additionally, the con-
vexity of U implies that for p̂ ∈ relint(U) , there exist p ∈ U and � ∈ (0, 1) such that 
p̂ = 𝜀p̄ + (1 − 𝜀)p . In particular, we obtain

where the inequality follows from the fact that p̄ is a maximizer in (7) and that y is a 
feasible solution of Program (6). Hence, x∗ is not an optimal solution of Program (6) 
and the claim follows.

For the last claim in Theorem 1, assume that y∗ is an optimal solution of Pro-
gram  (6). Assume for contradiction that y∗ ∉ X

PRO . Then, there exist p̄ ∈ U and 
z ∈ X  with f (z, p̄) > f (y∗, p̄) and f (z, p) − f (y∗, p) ≥ 0 for all p ∈ U . However, since

(6)

sup
y

f (y, p̂)

s.t. min
p∈U

f (y, p) − f (x∗, p) ≥ 0,

y ∈ X

f (y, p) ≥ f (x∗, p) ∀p ∈ U,

f (y, p̂) > f (x∗, p̂).

(7)0 < max
p∈U

f (y, p) − f (x∗, p).

f (y, p̂) − f (x∗, p̂) = 𝜀(f (y, p̄) − f (x∗, p̄)) + (1 − 𝜀)(f (y, p) − f (x∗, p)) > 0,
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z is feasible for Program (6). Furthermore, analogously to before, f (z, p̄) > f (y∗, p̄) 
implies that f (z, p̂) > f (y∗, p̂) , i.e., the objective value of z is higher than the objec-
tive value of y∗ – contradiction to the optimality of y∗ . 	�  ◻

We observe that since the function f is affine on a convex set U , one could refor-
mulate the minimization problem with its dual cone, KKT–conditions or reformula-
tions given in [2]. This property would be beneficial to solve Program  (6). In the 
following, we apply Theorem 1 to the problem given in Example 1.

Example 1 continued. Without loss of generality we set i = 1 and 
j = 2 . We prove that x∗ = (1, 1, 1, 1, 1, 0,… , 0)⊤ is a PRO solution to 
qkp(R,1, 5,U) with R(p) = 11

⊤ + E11(p1 − 1) + E22(p1 − 1) + E12(p2 − 1) and 
U∶={p ∈ ℝ

2 ∶ p1 ≥ 1, p2
1
≤ p2, p2 ≤ 4} . Consider an arbitrary point p̂ ∈ relint(U) . 

Due to Theorem 1 it suffices to show that x∗ is an optimal solution to 

 Here, we can reformulate Constraint (8b) since

where the last equation holds since p = (2, 4)⊤ is a minimizer for every binary y. 
Moreover, since Constraint  (8d) implies that (1⊤y)2 − 25 ≤ 0 , we conclude that 
y1 = y2 = 1 for every feasible y ∈ {0, 1}n . Thus, we reformulate Program (8) to 

f (z, p) − f (x∗, p) ≥ f (z, p) − f (y∗, p) ≥ 0 ∀p ∈ U,

(8a)max
y

y⊤R(p̂)y,

(8b)s.t. min
p∈U

y⊤R(p)y − (x∗)⊤R(p)x∗ ≥ 0,

(8c)y ∈ {0, 1}n,

(8d)1
⊤y ≤ 5.

min
p∈U

(1⊤y)2 − (1⊤x∗)2 + (p1 − 1)(y2
1
− (x∗

1
)2) + (p1 − 1)(y2

2
− (x∗

2
)2)

+ (p2 − 1)(y1y2 − x∗
1
x∗
2
)

=min
p∈U

(1⊤y)2 − 25 + (p1 − 1)(y2
1
− 1) + (p1 − 1)(y2

2
− 1) + (p2 − 1)(y1y2 − 1)

=(1⊤y)2 − 25 + (y2
1
− 1) + (y2

2
− 1) + 3(y1y2 − 1),

(9a)max
y

y⊤R(p̂)y

(9b)s.t. y1 = y2 = 1,

(9c)y ∈ {0, 1}n,

(9d)
n∑
i=3

yi ≤ 3.
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 Hence, we have that y⊤R(p̂)y = (x∗)⊤R(p̂)x∗ for all feasible y and conclude that x∗ is 
optimal for (8).

We observe that the reformulated Program (9) is also a quadratic knapsack prob-
lem. Furthermore, the uncertainty set chosen in Example 1 is an intersection of the 
second order cone with two halfspaces. We computed a Pareto optimal solution and 
also checked the Pareto optimality by applying Theorem 1, both by hand. However, 
an SOCP structure in the uncertainty set as illustrated in the above example may 
in some cases also allow us to dualize the inner minimization program. Since this 
dualization approach would result in a convex MINLP even for wider classes of pro-
grams under uncertainty, the example suggests that obtaining PRO solutions might 
be computationally tractable in practice for a variety of problems. However, investi-
gating such properties would be the content of future research.

Another way to determine a PRO solution is given by the following theorem in 
case one can provide a closed form of XRO:

Theorem 2  Let p̂ ∈ relint(U) . Then argsupx∈XRO f (x, p̂) is a subset of Pareto robustly 
optimal solutions of (2).

Proof  Assume that x∗ ∈ argsupx∈XRO f (x, p̂) but x∗ ∉ X
PRO . Then there exists 

y ∈ X
RO with f (x∗, p) ≤ f (y, p) for all p ∈ U and p̄ ∈ U with f (x∗, p̄) < f (y, p̄) . Sim-

ilar to the proof of Theorem 1, p̂ = 𝜀p̄ + (1 − 𝜀)p for a p ∈ U and � ∈ (0, 1) holds. 
Hence,

where the first inequality holds since x∗ was a maximizer of f (⋅, p̂) . 	�  ◻

In contrast to Theorems 1 and 2, which aim to determine PRO solutions, the fol-
lowing theorem addresses the question whether there exist non-trivial PRO solutions 
x for (2), i.e., x ∈ X

PRO but XPRO
≠ X

RO.

Theorem 3  Let p̂ ∈ relint(U) and consider the optimization problem

Then XPRO = X
RO if and only if the optimal value of (10) equals zero.

Proof  Suppose that there exists a feasible solution (x∗, y∗) of (10) with strictly posi-
tive objective value. We observe that

0 ≥ f (y, p̂) − f (x∗, p̂) = 𝜀(f (y, p̄) − f (x∗, p̄)) + (1 − 𝜀)(f (y, p) − f (x∗, p)) > 0,

(10)

sup
x,y

f (y, p̂) − f (x, p̂)

s.t. min
p∈U

f (y, p) − f (x, p) ≥ 0,

y ∈ X,

x ∈ X
RO.

min
p∈U

f (y∗, p) − f (x∗, p) ≥ 0 and f (y∗, p̂) − f (x∗, p̂) > 0
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implies that y∗ Pareto dominates x∗ ∈ X
RO and thus x∗ ∈ X

RO ⧵ XPRO . For the oppo-
site direction, we consider an arbitrary x̄ ∈ X

RO and suppose that the optimal value 
of (10) is zero. This implies that

Moreover, equality holds since y = x̄ is a feasible and optimal solution and thus we 
can apply Theorem 1 to obtain that x̄ ∈ X

PRO and conclude XPRO = X
RO . 	�  ◻

2.1 � A tractable reformulation for SDPs under linear perturbations

We illustrate the above results by the example of semidefinite programming with 
uncertainties that solely affect the cost matrix. In addition, we provide a tractability 
result for this class of optimization problems. We consider a feasible set given by an 
arbitrary spectrahedron

and an uncertainty set

with fixed parameters P0,… ,PN ∈ S
n,�−,�+ ∈ ℝ

N . This uncertainty set has been 
widely used for matrix uncertainty, cf. [6]. We observe that since the Frobenius 
inner product f (X,P) = ⟨P,X⟩ is bilinear, it encodes linearity in X and in the uncer-
tain parameter P. Hence, it can be used as an objective function for (2). Thus, we 
consider the following SDP under cost uncertainty which fits in our setting

It is worth noting that the above problem formulation differs from the more estab-
lished ones in, e.g., [6] or [1] by considering uncertainties in the objective instead 
of uncertainties in the constraints. Although we do not investigate the exact relation 
between these two approaches here, we want to point out that the considered prob-
lem is a semidefinite version of the setting investigated by [9]. We recall that we aim 
to compute a Pareto robustly optimal solution for (12), i.e., a robustly optimal solu-
tion X ∈ X

RO , such that there is no other X̄ ∈ X  that satisfies

f (x̄, p̂) ≥ sup
y

f (y, p̂)

s.t. min
p∈U

f (y, p) − f (x̄, p) ≥ 0,

y ∈ X.

X = {X ∈ S
n
⪰0

∶ ⟨Aj,X⟩ = bj, ∀j ∈ [k]},

(11)U =

{
P = P0 +

N∑
i=1

�iPi ∶ � ∈ [�−,�+]

}

(12)
sup
X∈Sn

⪰0

min
P∈U

⟨P,X⟩

s.t. ⟨Aj,X⟩ = bj, ∀j ∈ [k].
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The following proposition shows how Theorem 1 can be used to achieve this.

Proposition 1  A solution X ∈ X
RO is Pareto robustly optimal for (12) if and only if 

the optimal value of

is 0. If it is positive with optimal solution Z, then X + Z ∈ X
PRO . Moreover, if a PRO 

solution to (12) exists, Program (13) computes a PRO solution to (12). The corre-
sponding runtime is polynomial in n.

Proof  Applying Theorem 1, one obtains that X ∈ X
RO is Pareto robustly optimal if 

and only if 

 has an optimal value of ⟨P̂,X⟩ . Let Z ∶= Y − X . Then, ⟨P̂, Y⟩ ≥ ⟨P̂,X⟩ is equiva-
lent to ⟨P̂, Z⟩ ≥ 0 and the inequality minP∈U⟨Y − X,P⟩ ≥ 0 is equivalent to Z ∈ U

∗ , 
which proves the first part of the claim. In order to prove tractability, we observe

and consequently, Program  (13) can be written as an SDP which is polynomially 
solvable in the encoding length of its input:

∀P ∈ U ∶ ⟨P, X̄⟩ ≥ ⟨P,X⟩,
∃P̄ ∈ U ∶ ⟨P̄, X̄⟩ > ⟨P̄,X⟩.

(13)

sup
Z

⟨P̂, Z⟩
s.t. Z ∈ U

∗,

X + Z ∈ X

(14a)sup
Y

⟨P̂, Y⟩,

(14b)s.t. min
P∈U

⟨Y − X,P⟩ ≥ 0,

(14c)Y ∈ X

(14b) ⇔ 0 ≤ min
𝜇∈[𝜇−,𝜇+]

⟨Y − X,D0⟩ +
N�
i=1

𝜇i⟨Y − X,Di⟩

⇔ −⟨Y − X,D0⟩ ≤ min
𝜇∈[𝜇−,𝜇+]

N�
i=1

𝜇i⟨Y − X,Di⟩

⇔ −⟨Y − X,D0⟩ ≤ max
y∈ℝ2n

≥0

⎧⎪⎨⎪⎩
y⊤

�
−𝜇+

𝜇−

�
∶

�
−In In

�
y =

⎛⎜⎜⎝

⟨Y − X,D1⟩
⋮

⟨Y − X,Dn⟩
⎞
⎟⎟⎠

⎫⎪⎬⎪⎭
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We note that this maximization program is computationally tractable since the num-
ber of additional variables and constraints is polynomial in the encoding length of 
the input (namely, n + 1 additional constraints and 2n additional variables). 	�  ◻

Thus, we have proved that computing a Pareto robustly optimal solution for 
robust semidefinite programs (12) with cost uncertainty (11) is tractable. In the fol-
lowing section we illustrate its use for a robust eigenvalue problem and the computa-
tion of max-cuts on graphs with uncertain weights.

3 � Application I: The Robust maximum eigenvalue problem

In the following paragraphs, we show that computing the maximal eigenvalue of a 
set of affine combinations of matrices fits into the setting of (2). The largest eigen-
value problem of a matrix C can be written as (see, e.g., [14]):

An optimal matrix X ∈ S
n
⪰0

 for the first optimization problem corresponds to the 
eigenvector x with respect to the largest eigenvalue �max of C by X = xx⊤ . In the 
remainder of this section, we consider the following robust variant of (15) with 
respect to a compact and convex uncertainty set U.

Note that for compact and convex uncertainty sets U , Sion’s minimax theorem [17] 
allows us to interchange the max and min operators. Thus, the problem boils down 
to minimizing the maximal eigenvalue of an affine family of symmetric matrices 
– a problem with a wide range of applications, e.g. in stability analysis of dynamic 
systems or the computation of structured singular values, see [7]. In the following 
example, we provide an instance with non-trivial ( XPRO

≠ X
RO ) Pareto robustly 

optimal solutions for this eigenvalue problem.

sup
Y ,y

⟨P̂, Y⟩

s.t. y⊤
�
−𝜇+

𝜇−

�
≥ −⟨Y − X,D0⟩,

�
−In In

�
y =

⎛
⎜⎜⎝

⟨Y − X,D1⟩
⋮

⟨Y − X,Dn⟩
⎞
⎟⎟⎠
,

Y ∈ X, y ∈ ℝ
2n
≥0
.

(15)
�max = max

X∈Sn
⪰0

⟨C,X⟩ = min
y

y

s.t. Tr(X) = 1 (⇔ ⟨In,X⟩ = 1) s.t. yIn − C ⪰ 0.

(16)
�max = max

X∈Sn
⪰0

min
C∈U

⟨C,X⟩
s.t. Tr(X) = 1.
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Example 2  Let C ∈ U =

{(
1 0

0 1

)
+ �

(
1 − 1

−1 1

)
∶ � ∈ [0, 1]

}
 . Then, the matrix 

X� =
1

2

(
1 − 1

−1 1

)
 is a robustly optimal solution to (16) since for every � ∈ [0, 1] 

and X ∈ S
n
⪰0

 with Tr(X) = 1 we have:

Note that the inequality holds because the matrix 
(

1 − 1

−1 1

)
 is positive semidefi-

nite. Thus, for every feasible X, � = 0 is the worst-case realization of uncertainty 
that can occur. Consequently, every feasible solution X, such as X′ , is also a robustly 
optimal solution. However, X′ Pareto dominates every other solution X ∈ X

RO , since 
for every 𝜇 > 0 and X ≠ X′ , we have

We note that one could check X� ∈ X
PRO by an application of Proposition 1.

Note that the existence of more than one robustly optimal solution is non-trivial as 
for uncorrelated uncertainties, i.e. uncorrelated uncertainty sets for the entries of C, we 
often obtain a unique robustly optimal solution. In the above example, the uncertainties 

in the entries are linked through the matrix 
(

1 − 1

−1 1

)
 and thus correlated.

4 � Application II: Robust max‑cut

The weighted max-cut problem is one of the fundamental combinatorial problems 
from Karp’s list of 21 NP-complete problems [10]. Given an undirected graph 
G = (V ,E) equipped with a weight function w ∶ E → ℝ , the task is to find a cut 
�(V �) = {e ∈ E ∶ |e ∩ V �| = 1} defined by V ′ ⊆ V  with maximal weight, i.e.,

where Lw denotes the weighted Laplacian of the graph, i.e.,

⟨C,X⟩ = ⟨I2,X⟩ + �

��
1 − 1

−1 1

�
,X

�
≥ ⟨I2,X⟩ = 1.

⟨C,X⟩ = ⟨I2,X⟩ + 𝜇

��
1 − 1

−1 1

�
,X

�
< 1 + 𝜇

��
1 − 1

−1 1

�
,X�

�
= ⟨C,X�⟩.

mc(G,w) ∶= max
V �⊆V

∑
e∈𝛿(V �)

we = max
x∈{−1,1}V

1

4
x⊤Lwx,
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In combinatorial optimization under uncertainty, it is common to restrict oneself to 
uncertainties in the objective in order to keep the structure of the underlying combi-
natorial problem, see [11] for a survey. In the remainder of this section, we consider 
uncertain weights, i.e., w ∈ Z ⊆ ℝ

E for a convex and compact uncertainty set Z . 
Similar to [13], we define the robust counterpart of the uncertain weigthed max-cut 
problem that corresponds to mc(G, w) by

where L(w) =
∑

{i,j}∈E wijE
�
ij
 denotes the uncertain Laplacian. Note that the set 

U = {L(w) ∶ w ∈ Z} represents a more general uncertainty compared to (11) in the 
previous section. Again, we address the question whether for a given graph G, we 
can improve a robustly optimal solution to (17) in terms of Pareto dominance. In 
some instances such as �-stable graphs introduced by Bilu and Linial [4], there exist 
solutions x̂ that are not only Pareto optimal but moreover ensures that there is no 
solution x̄ ∈ X  such that there exists p̄ ∈ U ∶ f (x̄, p̄) > f (x̂, p̄) . Although our tech-
niques would apply for their instances, there are more efficient ways to compute 
these solutions. However, in general, graphs are not �-stable and hence we first dem-
onstrate the existence of two optimal solutions to an instance of robust weighted 
max-cut problem of which one Pareto dominates the other with the following 
example:

Example 3  Consider the complete graph with three nodes equipped with uncertain 
weights w12(�) = w13(�) = 4 + 2� and w23(�) = 3 + � that affinely depend on � 
with � ∈ [−1, 1] . We observe that

where equality holds if and only if � = −1 . Since this describes the worst case for 
all these three cuts, we have that every cut is a robustly optimal solution. However, 
the cut �(v1) Pareto dominates the other cuts, since w(𝛿(v1)) > w(𝛿(v2)) = w(𝛿(v3)) 
whenever 𝜇 > −1.

Additionally to Example  3, we briefly discuss pure interval uncertainty sets 
which are commonly used for combinatorial optimization under uncertainty, cf. [11] 
and [5]. The following shows that in this case Pareto dominance between robustly 
optimal solutions is only possible under very specific conditions.

Proposition 2  Consider Program (2) with X ⊆ {0, 1}n , f (x, p) = p⊤x , interval uncer-
tainty U ∶= [p̄ − Δp, p̄] ⊆ ℝ

n , and let x∗ ∈ X
RO . Then, x∗ + z with z ∈ {−1, 0, 1}n 

Pareto dominates x∗ if and only if

Lw =
∑

{i,j}∈E

wijE
�
ij
with E�

ij
= Eii + Ejj − 2Eij.

(17)mc(G,Z) = max
x∈{−1,1}V

min
w∈Z

1

4
x⊤L(w)x,

8 + 4� = w(�(v1)) ≥ w(�(v2)) = w(�(v3)) = 7 + 3�,
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•	 x∗ + z ∈  RO,
•	 {i ∈ [n] ∶ zi = −1} ⊆ {i ∈ [n] ∶ Δpi = 0} , and,
•	 there exists at least one i ∈ [n] with zi = 1 and Δpi > 0.

Proof  Theorem 1 in [9], which in this case is equivalent to our Theorem 1, states that 
x∗ ∈ X

RO is Pareto dominated by x∗ + z∗ if and only if, for an arbitrary p̂ ∈ relint(U) , 
z∗ is feasible to the program

and its objective value is positive. We determine the dual cone:

where we apply strong duality to obtain (19). Since for all i ∈ [n] , there exists 
�i ∈ (0, 1) , such that p̂i = p̄i − 𝜆iΔpi , Program (18) is equivalent to

for � ∈ (0, 1)n . Now, x∗ + z∗ Pareto dominates x∗ if and only if there exists y∗ ∈ ℝ
n 

such that (y∗, z∗) is a feasible solution to Program (20) with positive objective value. 
Since � is arbitrary, this holds for every � ∈ (0, 1)n . Using this property, we prove 
the proposition in the following.

We assume that x∗ + z∗ Pareto dominates x∗ . Thus, x∗ + z∗, x∗ ∈ X
RO and, in 

particular,

Since x∗ , and x∗ + z∗ are nonnegative, the worst-case uncertainty is attained at 
p̄ − Δp . We obtain (p̄ − Δp)⊤(x∗ + z∗) = (p̄ − Δp)⊤x∗ , implying p̄⊤z∗ = Δp⊤z∗ . 
Thus, we can set yi = |z∗

i
| , i ∈ [n] , and z = z∗ to obtain a feasible solution to (20) 

with objective value

(18)

max
z

p̂⊤z

s.t. z ∈ U
∗,

x∗ + z ∈ X,

(19)

z ∈ U
∗
⇔ z⊤u ≥ 0 ∀u ∈ U,

⇔ min
u∈[p̄−Δp,p̄]

z⊤u ≥ 0,

⇔ max
(y,s)∈ℝ2n

≥0
∶ y−s=z

(p̄ − Δp)⊤y − p̄⊤s ≥ 0,

⇔ ∃y ≥ 0 ∶ p̄⊤z − Δp⊤y ≥ 0, y ≥ z,

(20)

max
y,z

∑
i∈[n]

(p̄i − 𝜆iΔpi)zi

s.t. p̄⊤z − Δp⊤y ≥ 0,

x∗ + z ∈ X,

y ≥ z,

y ≥ 0.

(21)min
p∈U

p⊤(x∗ + z∗) = min
p∈U

p⊤x∗.
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which is strictly positive for every � ∈ (0, 1)n by Theorem 1. This implies

for all � ∈ [0, 1]n . Thus, Inequality  (23) is also true for � =
∑

j∈[n]⧵{i} ej for all 
i ∈ [n] . This implies Δpiz∗i ≥ 0 for all i ∈ [n] and thus, whenever z∗

i
= −1 , Δpi = 0 . 

Furthermore, (22) can only be positive when there exists an index i ∈ [n] with zi = 1 
and Δpi > 0.

Proving the other direction is rather direct, since x∗ + z∗ ∈ X
RO implies Equa-

tion  (21) and (y,  z) with yi = |z∗
i
| , i ∈ [n] , and z = z∗ is again a feasible solution 

to Program (20). Since the resp. objective value is strictly positive for � ∈ (0, 1)n , 
x∗ + z∗ Pareto dominates x∗ . 	�  ◻

We observe that x� ∈ X
RO Pareto dominates x ∈ X

RO only if there exists at least 
one index i ∈ [n] with x�

i
= 1 , xi = 0 and Δpi > 0 , i.e., there is a scenario p ∈ U 

with pi > p̄i − Δpi and pj = p̄j − Δpj for all j ≠ i increasing only the solution x′ 
compared to the worst case. Additionally, all indices i ∈ [n] with xi = 1 and x�

i
= 0 

cannot be affected by uncertainty. This second observation leads to the following 
corollary.

Corollary 1  Consider the setting of Proposition 2. If Δp > 0 , a solution x ∈ X
RO is 

Pareto dominated by another solution x� ∈ X  if and only if

•	 {i ∈ [n] ∶ xi = 1} ⊊ {i ∈ [n] ∶ x�
i
= 1} , and,

•	 Δpj = p̄j for all j ∈ {i ∈ [n] ∶ x�
i
= 1} ⧵ {i ∈ [n] ∶ xi = 1}.

If, in addition to Δp > 0 , Δpi ≠ p̄i for all i ∈ [n] , XRO = X
PRO.

Since max-cut can be phrased as a binary program by using the cut polytope, the 
statements above hold true for the robust max-cut problem for uncorrelated uncer-
tainties. Although the nominal max-cut problem is widely considered in the litera-
ture, its robust counterpart is to the best of our knowledge not well-investigated. For 
the nominal case, the famous algorithm of Goemans and Williamson [8] enables us 
to compute a cut that satisfies an �-approximation ratio with � = 0.878... . Moreover, 
if Khot’s unique games conjecture [12] holds, this is the best approximation ratio we 
could hope to achieve with a polynomial time algorithm. In the remainder of this 
section, we first derive robustly optimal cuts with the same approximation ratio and 
then apply our results from Sect. 2 to compute new cuts with improved approxima-
tion guarantees if the worst-case uncertainty is not attained. To this end, we consider 
the SDP relaxation of (17):

(22)
∑
i∈[n]

(1 − �i)Δpiz
∗
i

(23)
∑
i∈[n]

(1 − �i)Δpiz
∗
i
≥ 0
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If the inner problem in (24) is a tractable conic program, such as an LP or SDP, it 
can often be dualized and we can properly compute a robustly optimal solution to 
(24) by solving the resulting SDP. This solution could then be used to compute a cut 
via Goemans-Williamson’s Algorithm that guarantees the same approximation ratio 
for the robust max-cut.

Proposition 3  Let w ≥ 0 for every w ∈ Z and Ȳ  be a robust optimal solution to (24). 
Then,

Proof  The first inequality follows by a simple relaxation argument. For the second 
inequality we strictly follow the arguments of Goemans and Williamson [8]:

Let ȳk denote the columns of the Cholesky decomposition of Ȳ  . Then, we observe 
that x ∈ {−1, 1}V defined by xk = sign(ȳk

⊤r) forms a cut in G. The proof of Goe-
mans and Williamson then relies on the fact that for vectors r ∈ Sn−1 drawn from 
the rotationally invariant probability distribution on the unit sphere and their cor-
responding cuts, we have that

Finally, we conclude

	�  ◻

It is worth noting that there are already similar approximation results known, see 
e.g. [11]. We observe that the quality of a cut in a graph with uncertain edge weights 
may not only rely on its performance in a worst-case scenario but also on its perfor-
mance in every other scenario w ∈ Z . Hence, we show that a Pareto optimal solu-
tion Y∗ to (17) outperforms any other robustly optimal solution Ȳ  of sdp(G,Z) in 
terms of the approximation ratio of their corresponding cuts:

(24)
sdp(G,Z) = max

Y∈Sn
⪰0

min
w∈Z

�
1

4
L(w),Y

�

s.t. ⟨Eii, Y⟩ = 1 ∀i ∈ [n].

min
w∈Z

⟨
L(w)

4
, Ȳ

⟩
= sdp(G,Z) ≥ mc(G,Z) ≥ 0.878… sdp(G,Z).

�
(
1 − xixj

)
≥ 0.878…(1 − ȳi

⊤ȳj) = 0.878… sdp(G,Z).

�

(
min
w∈Z

1

4
x⊤L(w)x

)
= �

(
min
w∈Z

1

4

∑
{i,j}∈E

wij(1 − xixj)

)

= min
w∈Z

1

4

∑
{i,j}∈E

wij�
(
1 − xixj

)

≥ 0.878…min
w∈Z

1

4

∑
{i,j}∈E

wij(1 − ȳi
⊤ȳj)

= 0.878… sdp(G,Z).
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Proposition 4  Let Y∗ Pareto dominate Ȳ  for (24) and let x∗ and x̄ denote the corre-
sponding cuts derived from Y∗ and Ȳ  respectively via the Goemans-Williamson Algo-
rithm. Denote

Then, for every w ∈ Z we have

and there exists a w ∈ Z , for which the last inequality holds strictly.

Proof 

where the last inequality and its strict counterpart for at least one realization of the 
uncertain parameter follows from the Pareto dominance of Y∗ . 	� ◻

5 � Conclusion

In this paper, we generalized the methods introduced in [9] to determine Pareto 
robustly optimal solutions for linear programs with an uncertain objective to general 
optimization problems whose objective function is affected affinely by the uncer-
tainty. Moreover, we proved the tractability of these methods in the case of sem-
idefinite programming with matrix box uncertainties and illustrated their use at the 
examples of the maximal eigenvalue of an affine set of matrices and the classical 
max-cut problem.
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sdp(G,w,Y) =
1

4

∑
{i,j}∈E

wij(1 − y⊤
i
yj).

mc(G,w) ≥ 0.878...sdp(G,w,Y∗) ≥ 0.878...sdp(G,w, Ȳ)

�

(
1

4

∑
{i,j}∈E

wij(1 − xixj)

)
=

1

4

∑
{i,j}∈E

wij�
(
1 − xixj

)

≥ 0.878…
1

4

∑
{i,j}∈E

wij(1 − (y∗
i
)⊤y∗

j
)

≥ 0.878…
1

4

∑
{i,j}∈E

wij(1 − ȳi
⊤ȳj),
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