Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/311075 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Computational Management Science [ISSN:] 1619-6988 [Volume:] 19 [Issue:] 4 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2022 [Pages:] 539-565
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Lift-and-project (L &P) cuts are well-known general 0–1 programming cuts which are typically deployed in branch-and-cut methods to solve MILP problems. In this article, we discuss ways to use these cuts within the framework of Benders' decomposition algorithms for solving two-stage mixed-binary stochastic problems with binary first-stage variables and continuous recourse. In particular, we show how L &P cuts derived for the master problem can be strengthened with the second-stage information. An adapted L-shaped algorithm and its computational efficiency analysis is presented. We show that the strengthened L &P cuts can significantly reduce the number of iterations and the solution time.
Schlagwörter: 
Stochastic programming
L-shaped method
Lift-and-project cuts
Benders’ decomposition
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.