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Abstract
Lift-and-project (L&P) cuts are well-known general 0–1 programming cuts which are
typically deployed in branch-and-cut methods to solve MILP problems. In this article,
we discuss ways to use these cuts within the framework of Benders’ decomposition
algorithms for solving two-stage mixed-binary stochastic problems with binary first-
stage variables and continuous recourse. In particular, we show how L&P cuts derived
for the master problem can be strengthened with the second-stage information. An
adapted L-shaped algorithm and its computational efficiency analysis is presented.We
show that the strengthened L&P cuts can significantly reduce the number of iterations
and the solution time.

Keywords Stochastic programming · L-shaped method · Lift-and-project cuts ·
Benders’ decomposition

1 Introduction

In this article, we address the class of two-stage mixed-binary stochastic problems
with binary variables in the first stage (master problem) and continuous recourse (sub-
problems on the second stage). Solution algorithms based on Benders’ decomposition
(Benders 1962; Rahmaniani et al. 2017b), in this context commonly known as the
L-shaped method (Van Slyke and Wets 1969), have been successfully applied for this
class of models [e.g, in Rahmaniani et al. (2017a); Bihlmaier et al. (2009); Weskamp
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et al. (2019)]. Binary variables in the master problem considerably raise the solu-
tion complexity. Often, more than 90% of the execution time is spent to solve the
mixed-integer linear (MIP) master problem (Zarandi 2010).

McDaniel andDevine (1977) specifically targeted this class of problemswith a two-
phase method. According to their approach, Benders cuts are constructed for the LP
relaxation of the master problem in the initial iterations the first phase. The algorithm
continues with theMIP formulation of themaster problem the second phase. This two-
phasemethod stays popular inmany contemporary implementations (Rahmaniani et al.
2017b; Angulo et al. 2016; Cordeau et al. 2006; Costa 2005) but can be inefficient if the
master problem has a large integrality gap (Bodur and Luedtke 2016). We will refer to
this issue as the weak integer relaxation. The natural solution to lower the integrality
gap is to tighten the relaxation of the master problem with valid inequalities (Costa
et al. 2012). Most implementations use problem-specific valid inequalities (Saharidis
et al. 2011; Tang et al. 2013; Adulyasak et al. 2015) but there exist several general
purpose extensions utilizing, e.g., mixed integer rounding inequalities (Vadlamani
et al. 2018; Bodur and Luedtke 2016) or split cuts (Bodur et al. 2017).

Alternatively, cutting planes constructed for the second stage can potentially be
modified accordingly and applied to the master problem to improve the weak integer
relaxation. For example, (Gade et al. 2014) generate Gomori cuts to approximate the
second-stage integer subproblems. Zhang and Küçükyavuz (2014) use Gomory cuts to
convexify the first and the second stages. Qi and Sen (2017) developed two convexifi-
cation schemes based on disjunctive cuts to obtain approximations of the second-stage
mixed-integer problem. Fenchel cuts a class of disjunctive cuts are generated for the
fractional second-stage variables in Ntaimo (2013).

In addition, decomposition possesses further known drawbacks, one of which is
a lack of information between two subsequent stages in the initial iterations of the
algorithm (Rahmaniani et al. 2017b), sometimes referred to as the weak Benders
relaxation. Researchers suggested alternative decomposition strategies, in particular,
partial decomposition (Crainic et al. 2016), dual decomposition (Carøe and Schultz
1999), and nonstandard decomposition (Gendron et al. 2016). In their essence, these
strategies append constraints and variables from the subsequent stages into the current
stage. Of course, the more information from the subsequent stage the current stage
contains, the less decomposed (and hence, larger) every subproblem is.

In this work, we suggest to improve the weak integer and the weak Benders relax-
ation of the MIP master problem by deriving a special variant of lift-and-project cuts.
Lift-and-project (L&P) cuts have been introduced in the seminal work of Balas (1979)
as general binary programming cuts, i.e., not depending on a special problem struc-
ture. Balas et al. (1993) demonstrated the efficiency of these cuts in branch-and-cut
frameworks for mixed binary programmingmodels. L&P cuts have become a standard
technique in commercial solution software for MIP and are as such also automatically
deployed when the MIP master problem is solved within a decomposition approach.
One of the first adaptions of these cuts for stochastic problems specifically was done
by Carøe and Tind (1997) and is in the active research since then (see, for example,
articles of Sen and Higle (2005) and Sen and Sherali (2006)). To the best of our knowl-
edge, these and the recent works focus on stochastic problems with (mixed) integer
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An L-shaped method with strengthened lift-and-project cuts 541

recourse and revolve around convexification of the value functions of the second-stage
IP.

Our approach is strategically different from existing techniques utilizing L&P cuts
in that we consider problems with binary variables on the first stage and strengthen
L&P cuts for master problem by incorporating second-stage information in their cut
generating problem. This tactic counters both the weak integer and the weak Ben-
ders relaxations. Similar approach was applied in Kılınç et al. (2017) for convex
mixed integer nonlinear programs. The stochastic master problem and the second
stage approximation in our formulation corresponds to the mixed-integer nonlinear
program and the linearizations of the nonlinear constraints, respectively, in their work.
The authors strengthen the lift-and-project cuts by using an outer approximationwithin
the lift-and-project cut generating problem. Key differences of our research are the
application domain stochastic optimization, and the rank of the cuts applied. Kılınç
et al. (2017) focus on the rank-one cuts, i.e., only linearization constraints without lift-
and-project cuts are included in the cut generating problem. While the work described
above fits within the lift-and-project framework, it appears that this work is the first
to consider using such strengthening for the stochastic problems.

The contribution of the article can be characterized as follows:

• Wedevise a reformulated cut generating problem forL&Pcuts applied to aBenders
master problem and strengthened by the addition of the second stage information.

• The integration of the strengthened L&P cuts into a Benders’ decomposition
scheme is showed, leading to a new variant of the L-shaped method.

• The new method is implemented within the framework of the PNB Solver, a
solver system for two- and multi-stage stochastic programming problems (Wolf
and Koberstein 2013).

• A numerical study is conducted on a benchmark set of suitable model instances.
We investigate the effect of the strengthened L&P cuts on the number of iterations
and the solution time. Our enhanced method decreases the required number of
iterations and shortens the solution time for some groups of instances.

The rest of this article is organized as follows. To familiarize the reader with the
concepts and the notation used, we provide a description of the two-stage stochastic
optimization problem and the L-shapedmethod in Sect. 2 followed by the introduction
to L&P cuts in Sect. 3. In Sect. 4, the formal description of domain and epigraph L&P
cuts for themaster problem of a stochastic optimization problem is provided. Themain
idea of L&P cut strengthening and a cut generation algorithm is developed in Sect. 5.
In Sect. 6, we present and discuss the setup and the results of the computational study.
Summary is offered in Sect. 7.

2 The L-shapedmethod

The two-stage stochastic mixed binary linear optimization problems are considered
for a discrete finite scenario set. Let the first-stage decision variables be indexed by
the set N = {1, . . . , n} where all these variables are non-negative, and the binary
variables are indexed by the set B ⊆ N .
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542 P. Glushko et al.

The first stage subproblem can be expressed

min cT x + q(x)

such that
Ax ≥ b,
x ≥ 0,

xi ∈ {0, 1} (i ∈ B),

(1)

where q(.) is the polyhedral convex expected recourse function, c is the vector of
the objective function coefficients, A is the coefficient constraint matrix, and b is the
vector of RHS coefficients. The function q : I Rn → I R is assumed to be finite valued
and defined on the whole space. Let Γ = { (ϑ, x) | ϑ ≥ q(x) } denote the epigraph
of q(.), which is a convex polyhedron.

Let us reformulate (1) as
min ϑ + cT x

such that
(ϑ, x) ∈ Γ ,

Ax ≥ b,
x ≥ 0,

xi ∈ {0, 1} (i ∈ B)

(2)

and consider the convex hull of the integer feasible solutions:

Γ B = conv ({ (ϑ, x) ∈ Γ | Ax ≥ b, x ≥ 0, xi ∈ {0, 1} (i ∈ B) }) . (3)

The traditional L-shaped method (Van Slyke and Wets 1969) finds the solu-
tion for (2) by iteratively approximating (3) using optimality cuts of the form
ϑ ≥ (a linear function of x). Hence, the first line in (2) is substituted with the ever-
extending set of these cuts in the form

ϑ1 ≥ V x + w, (4)

where 1 stands for (1, . . . , 1)T ∈ I Rk , and V ∈ I Rk×n, w ∈ I Rk , with k increasing
with every new cut appended to the model of the epigraph. We call problem (2) with
cut set (4) the current (for some k) master problem.

Algorithm 1 outlines the L-shaped method. For the sake of simplicity, we assumed
complete recourse,which implies that the second-stage subproblems defining the value
of q(x) are feasible for any value x.

Algorithm 1 The L-shaped method

1.1 Initialization.
Set UB = +∞.
Initialize optimality tolerance ε.
1.2 Solve current master problem.
Solve the current master problem.
If the master problem is infeasible or unbounded, stop.
Let (ϑ, x) denote the optimal solution of master problem.
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1.3 Generate optimality cuts.
Evaluate q(x), i.e., solve the recourse problem at point x.
If cT x + q(x) < UB,

set UB = cT x + q(x) and x∗ = x.

Let LB = cT x + ϑ .
If UB − LB < ε, stop. x∗ is a near-optimal solution.
Generate an optimality cut and append it to the cut set (4). Go to step 1.2.

Multiple variants and extensions of the L-shaped method exist. Choosing the most
suitable one for a specific problem instance can significantly decrease the number of
iterations and the solution time. We discuss two such variants below while important
implementation aspects are addressed later in Sect. 6.

Algorithm 1 represents the single-cut variant of the L-shaped method in which all
the information from the second-stage subproblems is aggregated into one optimality
cut. As a result, much of the information about the second stage is lost. The opposite
approach is the multi-cut variant, in which one optimality cut is constructed for every
second-stage subproblem defining the value of q(x). Thus, the number of aggregates
is equal to the number of discrete scenarios. The master problem of this variant has
multiple ϑ-variables (one per subproblem) in the objective function. The advantage
of the multi-cut variant is that most information about the second stage is preserved.
On the other hand, appending multiple cuts instead of one to the master problem in
every iteration makes the problem larger and harder to solve.

The rule of thumb is to use single-cut when the number of scenarios is significantly
larger than the number of first-stage constraints (Birge and Louveaux 2011). In prin-
ciple, the number of aggregates can lie between one and the number of scenarios. This
so-called hybrid-cut approach was introduced by Birge and Louveaux (1988).

A common computational technique for mixed-integer stochastic programming
problems is the two-phase method. Its first phase is equivalent to the Algorithm 1
except that the LP relaxation of the master problems is solved in step 1.2. Normally,
solving the relaxation is much faster. The continuous optimality cuts found in the first
phase are then appended to the cut set (4) and the problem is solved again, this time
with the integrality requirements. The first phase improves the approximation of Γ B
with continuous optimality cuts that are relatively cheap to construct.

3 Lift-and-project cuts for binary programmingmodels

In this section we overview the derivation of lift and project cuts (L&P cuts) within a
classic branch-and-cut framework for deterministic mixed binary programming prob-
lems. The discussion is based on Balas (1979) and Balas et al. (1993, 1996).

Decision variables will be indexed by the set N = {1, . . . , n}. Non-negative vari-
ables and binary variables will be indexed by the sets P and B, respectively. Here
B ⊆ P ⊆ N .
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The mixed integer programming problem is formulated with some redundancy as

min cT x
such that
Mx ≥ d,

xi ≥ 0 (i ∈ P),

xi ∈ {0, 1} (i ∈ B),

(5)

where c is the vector of the objective function coefficients, M is the coefficient con-
straint matrix, and d is the vector of RHS coefficients.

To get the LP relaxation of (5) the bottom line is substituted with xi ≤ 1 (i ∈ B).
In what follows, the inequality system Mx ≥ d is assumed to contain−xi ≥ −1 (i ∈
B), hence the bottom line in the relaxation can be omitted. Let m denote the number
of the rows of M .

We will consider cuts in the form αT x ≥ β, where α ∈ I Rn and β ∈ I R. The cut
is called valid if αT x◦ ≥ β holds for any integer feasible solution x◦.

Let K denote the feasible polyhedron of the LP relaxation of (5). The idea is to
consider cuts satisfied by the points of the polyhedra K ∩ { x ∈ I Rn | − xi ≥ 0 }
and K ∩ { x ∈ I Rn | xi ≥ 1 } for i ∈ B. A dual-type characterization of such cuts is
given in Balas et al. (1993). An overview with explanations and proofs is provided in
the Online Supplement (available as supplemental material at https://doi.org/10.1007/
s10287-022-00426-y).

The cut αT x ≥ β is satisfied by the above polyhedra iff there exist u, v ∈
I Rm, u, v ≥ 0 and u0, v0 ∈ I R, u0, v0 ≥ 0 such that

MT u − u0ei [≤ / =] α,

MT v + v0ei [≤ / =] α,

dT u ≥ β,

dT v + v0 ≥ β,

(6)

where ei is the i th unit vector in I Rn , and in the top two lines, we have ’≤’ in the
individual constraints belonging to indices in P , and ’=’ in the constraints belonging
to indices not in P . The system (6) is solvable in any non-trivial case.

Let x ∈ K be a feasible solution of the of the LP relaxation of (5). Assume that x
is not a feasible solution of the integer programming problem (5) because 0 < xi < 1
for some i ∈ B. The aim is to find a cut that separates x from the integer feasible
solutions. This will be obtained by solving an LP model, where decision variables are
α ∈ I Rn, β ∈ I R and u, v ∈ I Rm, u0, v0 ∈ I R with lower bounds u, v ≥ 0
and u0, v0 ≥ 0. The constraints are the inequality system (6) and the normalization
constraints for (α, β). Note 1: The latter are needed since, otherwise, the feasible
domain would be a cone. Note 2: The goal is to find a cut as deep as possible, which
is formulated by maximizing the objective β − xTα.

Two types of normalization constraints were investigated in Balas et al. (1993).
The β-normalization prescribes either β = 1 or β = −1. This is technically easy
to handle, but may result an infeasible problem, or may not bound the objective.
The general normalization prescribes

∑n
i=1 |αi | = 1; it is called α-normalization.
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Another normalization type is the standard normalization condition of form
∑m

i=1 ui+∑m
i=1 vi +u0+v0 = 1. It is often considered to bemore effective than others (Fischetti

et al. 2011).

4 Lift-and-project cuts for master problem

As the master problem in the L-shaped method is a mixed integer problem, L&P cuts
approximating Γ B of the stochastic problem (2) can be constructed. Using the objects
from Sect. 2, the current master problem LP relaxation can be expressed as

min ϑ + cT x
such that ϑ1 − V x ≥ w,

Ax ≥ b,
x ≥ 0.

(7)

Note that −xi ≥ −1 (i ∈ B) is included in Ax ≥ b.
Let L denote the feasible polyhedron of this LP problem, and let

K = { x | Ax ≥ b, x ≥ 0 }. (8)

The L&P cut will be constructed in the form (ζ,α)T (ϑ, x) ≥ β, where ζ ∈ I R, α ∈
I Rn and β ∈ I R. Such cut is called valid if ζϑ◦ + αT x◦ ≥ β holds for any feasible
solution (ϑ◦, x◦) where x◦ is integer.

Let (ϑ, x) be a feasible solution of the problem (7) in which x is not integer.
Therefore, this solution is not feasible for problem (2). The aim is to find cuts that
separate (ϑ, x) from the integer feasible solutions. We distinguish two types of L&P
cuts for master problem: domain and epigraph cuts.

4.1 Domain lift-and-project cuts

The first type domain cuts do not include the ϑ in their formulation, i.e., it has coeffi-
cient 0. These cuts approximate the projection of Γ B to the x-space. The projection is,
of course, the convex hull of the integer feasible solutions of (2). The ever-extending
set of domain cuts will be formulated as

Ax ≥ b. (9)

Let m denote the number of the rows of A, increasing with every new domain cut that
is generated. The initial set of domain cuts is inherited from (7).

If x /∈ conv ({x ∈ K | − xi ≥ 0} ∪ {x ∈ K |xi ≥ 1}) for some i ∈ B, then a
domain cut can be constructed. To do this, the construction of Sect. 3 is applied with
the following objects. LetN := P denote the set of the indices of the x-components.
Let M := A and d := b.
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546 P. Glushko et al.

4.2 Epigraph lift-and-project cuts

The second type of L&P cuts for master problem are epigraph cuts. They have the
form ϑ ≥ (a linear function of x) and are approximating Γ B. Since epigraph cuts
have the same form as optimality cuts, they are appended to the optimality cut set (4).

Let i ∈ B such that 0 < xi < 1. The idea is to consider cuts satisfied by the points
of the polyhedra L0 = L ∩{ (ϑ, x) ∈ I R1+n | − xi ≥ 0 } and L1 = L ∩{ (ϑ, x) ∈
I R1+n | xi ≥ 1 }. The construction of Sect. 3 is applied with the following objects.
LetN denote the whole index set, belonging to the variables (ϑ, x), and let P denote
the set of the indices of the x-components. Moreover, let

M :=
(
1 −V

A

)

, d :=
(

w

b

)

. (10)

The characterization of the resulting cuts is discussed in 1. The plain epigraph cut
generating LP problem (plain epigraph CGP) is described in 1. A natural means of
normalization here is prescribing ζ = 1. Let us call it ζ -normalization. Having found
an optimal solution to the plain epigraph CGP a ζ -normalized epigraph cut for (7) can
be constructed. The proof of the following observation can be found in 1.

Observation 1 Suppose that the objective of the plain epigraph CGP is still not
bounded. Then a domain cut can be constructed, separating x from the polyhedra
{x ∈ K | − xi ≥ 0} and {x ∈ K |xi ≥ 1}.

5 Strengthened epigraph cuts

The procedure described so far can only use the information already included in the LP
relaxation of the current master problem (7), which is limited to first-stage constraints,
epigraph cuts and the current approximation of the recourse function through optimal-
ity cuts. Especially in the initial iterations of the algorithm, the latter is non-existent
or very coarse. Therefore, in this section we suggest a strengthening procedure for
epigraph L&P cuts to overcome the weak Benders relaxation. Strengthening is based
on the inclusion of the second-stage information into the plain epigraph CGP.

The dual of the plain epigraph CGP is the following problem. Decision variables
are τ, υ ∈ I R, z, y ∈ I Rn and z0, y0 ∈ I R with the bounds z, y ≥ 0, z0, y0 ≥ 0.
The constraint set is

1τ −V z −w z0 ≥ 0,
Az −b z0 ≥ 0,

−zi ≥ 0,
1υ −V y −w y0 ≥ 0,

A y −b y0 ≥ 0,
yi −y0 ≥ 0,

z + y = x,

z0 +y0 = 1,

(11)
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where i ∈ B has been selected such that 0 < xi < 1. The objective is min τ + υ.
Let us bring (11) to a simpler form. To alleviate notation, let λ = xi .

1. From −zi ≥ 0 in line 3 of (11), and the non-negativity bound, it follows that
zi = 0.

2. Consider the equality system z + y = x in line 7 of (11). The equation belonging
to the index i is zi + yi = xi . Hence from item 1, above, we get yi = xi = λ.

3. We have A y − by0 ≥ 0 in line 5 of (11). Since i ∈ B, this inequality system
contains −yi + y0 ≥ 0 (see the dual problem depicted in the ’graph cut & dual’
sheet). Moreover, we have yi − y0 ≥ 0 in line 6 of (11). Hence y0 = yi , and form
item 2, above, we get y0 = λ.

4. Notice that z0 + y0 = 1 in the bottom line of (11). Hence from item 3, above, it
results z0 = 1 − λ.

Summing up: y0 = λ and z0 = 1− λ, removing the variables in z0 and y0 in (11), by
shifting the right-hand-side vector with the corresponding columns, it results in the
constraint system:

1τ −V z ≥ (1 − λ)w,

Az ≥ (1 − λ)b,
zi = 0,

1υ −V y ≥ λw,

A y ≥ λb,
yi = λ,

z + y = x.

(12)

Let us divide lines 1, 2, 3 of (12) by (1 − λ), and lines 4, 5, 6 by λ. (Note that it is
assumed that 0 < λ < 1.)

By substituting the objects

ϑ ′ = 1
1−λ

τ, x′ = 1
1−λ

z,

ϑ ′′ = 1
λ
υ, x′′ = 1

λ
y,

the system (12) transforms to (13).

min (1 − λ)ϑ ′ +λϑ ′′
such that ϑ ′ 1 −V x′ ≥ w,

Ax′ ≥ b,
ϑ ′′ 1 −V x′′ ≥ w,

Ax′′ ≥ b,
(1 − λ)x′ +λx′′ = x,

x ′
i = 0,

x ′′
i = 1,

x′, x′′ ≥ 0.

(13)

Decision variables of the CGP (13) are ϑ ′, ϑ ′′ ∈ I R and x′, x′′ ∈ I Rn . Having
found its optimal solution with a simplex-type method, a ζ -normalized epigraph cut
for (7) can be constructed using LP duality.
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Instead of the above CGP (13), we are going to solve a stronger problem that
additionally includes second-stage information in the form of the convex constraints

ϑ ′ ≥ q(x′) and
ϑ ′′ ≥ q(x′′). (14)

This strengthened problem can be effectively solved by decomposition again (we
present a modified variant of the L-shaped algorithm below), meanwhile generating
new optimality cuts for the expected recourse function q(.). Let ϑ1 ≥ Ṽ x + w̃

denote the system of the optimality cuts generated until a near-optimal solution has
been found. Let us append the following constraints to the system (13) :

ϑ ′1 −Ṽ x′ ≥ w̃,

ϑ ′′1 −Ṽ x′′ ≥ w̃.
(15)

Having found an optimal solution to the CGP (13) plus (15) with a simplex-type
method, a ζ -normalized strengthened epigraph cut canbe constructed usingLPduality.
This strengthened cut is then appended to the model as an epigraph cut.

Remark 1 Optionally, the optimality cuts ϑ1 ≥ Ṽ x + w̃ may also be appended as
epigraph cuts, where V and w are enhanced as follows,

V :=
(
V
Ṽ

)

, w :=
(

w

w̃

)

. (16)

Let us name the process of L&P cut generation for all or some {xi | i ∈ B, 0 <

xi < 1} in the current master problem (7) an L&P round. Strengthened epigraph
cuts are integrated into the traditional L-shaped method by starting it with several
L&P rounds. In every round, the LP relaxation of the current master problem (7) is
solved for deriving L&P cuts as discussed above. In principle, the strengthened L&P
cuts suffice to reach an integer optimal solution of problem (2) by a pure cutting
plane procedure. It is however well-known, that such a procedure is not an efficient
approach to solve problem (2). Therefore, after a certain number of L&P rounds, it
is recommended to switch to the traditional L-shaped type iterations, involving the
solution of theMIPmaster problem and the derivation of optimality cuts. The resulting
L-shaped method with L&P cuts is stated in Algorithm 2.

Algorithm 2 The L-shaped method with L&P cuts

2.1 Initialization.
Set UB = +∞.
Initialize optimality tolerance ε.
Set L&P rounds limit .
Set L&P rounds counter = 0.
2.2 Solve current master problem.
If L&P rounds counter ≥ L&P rounds limit , solve the master problem, else
solve its LP relaxation (7).
If the master problem is infeasible or unbounded, stop.
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Otherwise, let (ϑ, x) denote its optimal solution.
Let LB = cT x + ϑ .
Set F = {i ∈ B| 0 < xi < 1} .
If F = ∅, then set L&P rounds counter = L&P rounds limit and go to
step 1.4.
2.3 L&P round.
For all or some i ∈ F do:

2.3.1 Solve the CGP (13) plus (15) using Algorithm 3.
2.3.2 If CGP (13) plus (15) is infeasible, construct a domain cut, else construct
an epigraph cut using LP duality.

Append domain cuts to the constraint set (9) and epigraph cuts to (4) in the manner
of (16).
Set L&P rounds counter = L&P rounds counter + 1. Go to step 2.2.
2.4 Generate optimality cuts.
Evaluate q(x), i.e., solve the recourse problem at point x.
If cT x + q(x) < UB,

set UB = cT x + q(x) and x∗ = x.

If UB − LB < ε, stop. x∗ is a near-optimal solution.
Generate an optimality cut and append it to the master problem. Go to step 2.2.

In Algorithm 2, the parameter L&P rounds limit controls the number of rounds.
As soon as the L&P rounds counter reaches the limit or when there are no fractional
variables in the solution of the current master problem LP relaxation, the algorithm
switches to the L-shaped method (see step 2.2). When L&P rounds limit = 0, Algo-
rithm2 is equivalent to the traditional L-shapedmethod (Algorithm1). Alternatively, if
L&P rounds limit = ∞, Algorithm 2 is equivalent to a pure cutting plane approach
with L&P-cuts. In all experiments the CGP (13) plus (15) never was unbounded, thus,
domain cuts were never constructed in step 2.3.2.

It is assumed that a comparatively small number of L&P rounds significantly
reduces the number of iterations afterwards or makes the solution of the MIP master
problem easier in these iterations.

As suggested in Balas et al. (1996), L&P cuts can be generated for a subset of the
fractional variables. The parameter% of fract with L&P cuts defines the proportion of
the fractional variables in F for which cuts are generated in step 2.3 in Algorithm 2.
For instance, if |F | is 10 and % of fract with LP cuts = 50, then the binary variables
in F are sorted according to their fractionality (closeness to 0.5) and for the first half
(in this case, 5) of them cuts are generated.

Note, that the strengthenedCGP is characterised by adouble block-angular structure
and is, therefore, itself amenable to decomposition. Algorithm 3 describes an adapted
L-shaped method to solve this problem. The main difference in comparison with the
traditional L-shaped method is that the recourse function needs to be evaluated twice
in step 3.3 of Algorithm 3, each evaluation entailing the solution of all second-stage
subproblems. Since CGP (13) plus (15) is a pure LP, Algorithm 3 can be sped up by
all the extensions known for the classical L-shaped method, including regularization,
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on-demand accuracy and adaptedmulti-cut aggregation (see e.g.,Wolf and Koberstein
2013 and Wolf et al. 2014 and the references therein). Note, that a distinct optimality
tolerance εCGP is used as a stopping criterion in Algorithm 3. We assume that the
higher the value of εCGP is theweaker epigraph cuts are generated. Epigraph cuts from
the previous rounds are included in the constraints of (13), therefore, epigraph cuts
found with Algorithm 2 are higher rank cuts derived by using previously-generated
cuts.

To construct plain epigraph cuts instead of strengthened, CGP (13) should not be
strengthened with (15) on step 2.3.1. CGP (13) is then solved as standard LP with a
simplex-type method.

Algorithm 3 Decomposition method for solving the CGP for strengthened epigraph
cuts

3.1 Initialization.
Set UBCGP = +∞.
Initialize optimality tolerance εCGP .
Initialize Ṽ and w̃ as empty.
3.2 Solve CG current master problem.
Solve the CG master problem (13) plus (15).
Constraint set (15) in this problem is empty in the first iteration.
Let (ϑ

′
, ϑ

′′
, x′, x′′) denote the optimal solution.

If the CG master problem is infeasible, stop.
3.3 Solve recourse problems.
Evaluate q(x′) and q(x′′), i.e., solve the recourse problem at the points x′ and x′′.
If (1 − λ)max(ϑ

′
, q(x′)) + λmax(ϑ

′′
, q(x′′)) < UB,

set UBCGP = (1 − λ)max(ϑ
′
, q(x′)) + λmax(ϑ

′′
, q(x′′)) and x′∗ = x′,

x′′∗ = x′′.

Let LBCGP = (1 − λ)ϑ
′ + λϑ

′′
.

If UBCGP − LBCGP < εCGP , stop. (x′∗, x′′∗) is a near-optimal solution.
3.4 Generate optimality cuts.
Generate optimality cuts from the dual information of the recourse problems q(x′)
and q(x′′) and append them to the constraint set (15). Go to step 3.2.

6 Computational study

In this section we evaluate the efficiency of epigraph cut strengthening. We start by
identifying the best set of parameters for Algorithm 2.

Let us call a particular set of parameters a test case. Then, a test is a solution of a
specific problem instance using the test case parameters.

The following measures of efficiency are collected for every test:

• Number of iterations—the number of times Algorithm 2 executed step 2.4, i.e.,
second-stage subproblemswere solved, until the near optimal solution for problem
(1) is found.
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• Solution time—the wall-clock time of the algorithm run until the near optimal
solution is found.

We aggregate these measures using the arithmetic mean (AM) and the geometric
mean (GM). The GM is sensitive to changes in computing times for small instances.
Bigger instances on the contrary dominate the results aggregatedwith theAM (Achter-
berg 2007). The latter is more suitable for this study as we aim to improve the solution
time of difficult instances.

6.1 Implementation

We integrated the generation of strengthened epigraph cuts as an additional routine in
the solver system PNB Solver (Wolf and Koberstein 2013). The solver itself is written
in C++ and uses components from the COIN-OR project, such as COIN SMI for
reading the SMPS files and COIN OSI for communicating with the external solvers.
The core component is an implementation of a nested L-shaped algorithm for two
and multi-stage stochastic LP problems, allowing for integer variables on the first
stage. The solver possesses advanced techniques including level-decomposition and
regularization, warm start, parallelization, cut aggregation and consolidation, and on-
demand accuracy (Wolf et al. 2014). To track the effectiveness of strengthened L&P
cuts we apply the single- and the multi-cut L-shaped method depending on what better
suits the specific test set. The master problem and every subproblem are solved with
the external solver IBM CPLEX version 12.9 (https://www.ibm.com/products/ilog-
cplex-optimization-studio). Unless particularly specified, the optimality gap tolerance
is set to 1e−6.

The PNB solver code is compiled in Visual Studio 19 in release mode. All test
cases are solved on a workstation with AMD Ryzen 9 3950X 16-Core (32 Threads)
3.5 GHz processor working on a 64-bit Windows 10 operating system. The time limit
is set to three hours per test.

Warm start is used for all experiments. The warm start technique uses the optimal
basis information of previously solved subproblems. Every time a subproblem needs
to be solved the simplex algorithm is initialized with the last optimal basis if one
is available. Since every subproblem has only minor differences from iteration to
iteration, warm start has a significant positive effect on the second-stage solution
time.

Parallelization is applied to multiple mutually independent steps in the algorithm.
For instance, the second-stage subproblems evaluating q(.) are solved in all versions
of the L-shaped algorithm in parallel. Solution of L&P cut generating problems for
variables in F in Algorithm 2 is also parallelized. Considering that the strengthened
CGP for epigraph cut itself is solved using the L-shaped method, multiple instances
of this algorithm can run simultaneously.

6.2 Test instances

Appropriate instances for our experiments are two-stage stochastic programmingprob-
lems with complete continuous recourse and binary variables on the first stage. Table 1
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provides the key dimensions of the instances we use, including the number of binary
variables on the first stage BV1, the number of continuous variables on the second
stage per scenario, BV2, the number of constraints (rows) on the first and the second
stage per scenario, R1 and R2, respectively, and the number of scenarios S. Every row
in the table corresponds to the instance group that consists of multiple instances. None
of the instances has first-stage continuous variables.

The main class of test instances is the multi-commodity flow network design
problems with demand uncertainty (MCFNDSD) based on the R instances from Rah-
maniani et al. (2017a).We generated a complete recourse version to avoid the necessity
of feasibility cuts by adding slack variables to the right-hand side of the flow conser-
vation constraints at the origin and the destination nodes of each commodity (see
constraint set (4) in Rahmaniani et al. (2017a)). Therefore, the dimensions of these
instances slightly differ from the dimensions of the original ones. The names of the
MCFNDSD instances start with ’r’, followed by a class number, cost/capacity ratio,
demand correlation (always 0), and the number of scenarios. The R instances are
gathered according to their classes in r01 to r04 groups. Every group is a combination
of instances that have 1, 3, 5, 7, and 9 cost/capacity ratios and 16, 32, and 64 scenarios
fifteen instances per group. The modified instances are available for download in smps
format at https://github.com/pavloglushko/mcfndsd_complete_recourse/releases/tag/
0.0.1.

Additionally, we use model instances arising in stochastic server location prob-
lems (SSLP) taken from Ntaimo (2004). The second-stage integrality constraints
were relaxed to comply with the problem requirements. These instances are named
’sslp_m_n_s_i’, where m is the number of potential server locations, n is the number
of potential clients, s is the number of scenarios, and i is the version of the sce-
nario set (same size but different stochastic parameter values). The SSLP instances
are grouped by m_n. We generated instances with 1000 and 2000 scenarios for the
groups sslp_5_25, sslp_5_50, and sslp_15_45 using the authors’ methodology. The
sslp_5_25 and sslp_5_50 groups consist of 20 instances with a various number of
scenarios and a - e scenario sets each; sslp_15_45 and sslp_10_50 include 35 and 25
instances, respectively.

6.3 Parameter tuning

Before we evaluate the impact of epigraph cuts strengthening on the L-shapedmethod,
it is necessary to identify the set of parameters that works best for these cuts. Different
usage options of optimality cuts generated in strengthened CGP are examined below.
Furthermore, the influence of the parameters εCGP , % of f ract wi th L&P cuts,
and L&P rounds limit is investigated.

The parameters in the default test case are set to the following values: εCGP = 0.01,
L&P rounds limit = 20, and % of f ract wi th L&P cuts = 0.1. The two-phase
method described in Sect. 2 is applied as it showed to be beneficial. The MCFNDSD
instances converge much faster when the multi-cut variant is used, while the SSLP
problems are solved fasterwith the single-cutL-shapedmethod as theyhave a relatively
large number of scenarios. Therefore, we use the multi-cut variant for the MCFNDSD
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instances and the single-cut variant for the SSLP instances. Any other test case is
generated by changing only one parameter value of the default test case. This approach
helps us precisely track the influence of every parameter on the solution process.

6.3.1 Usage of CGP optimality cuts

As mentioned in Remark 1, optimality cuts from every run of Algorithm 3 for the
the CGP (13) plus (15) can be stored and appended to the constraint set (13) in the
manner of (16). Their inclusion into the master problem might have positive effects
regarding the number of iterations while simultaneously increasing the size of the
master problem. Two approaches were tested to avoid cut proliferation of the master
problem:

• Distance violation filtering Only efficient CGP cuts are appended to the master
problem. Efficient cuts are those that have a distance violation of at least 1e−4,
which is defined as the absolute violation of the cut divided by the 2-norm of
its coefficients (Wesselman 2010). The absolute violation is calculated for the
solution of the current master problem. About 90% of the cuts are not efficient.
The threshold value of distance violation itself turned out to be not overly important
because most of the cuts have a negative absolute violation, i.e., they are not active
for the current master problem.

• Cut consolidation A technique used to reduce the number of optimality cuts
appended to the master problem (Wolf and Koberstein 2013). According to this
technique, CGP cuts are generated in the same iteration of Algorithm 3 but for
different aggregates are consolidated by summing up their coefficients. Naturally,
this technique is only applicable to the multi-cut variant of the L-shaped method.
As a result, S (number scenarios) optimality cuts are transformed into one, which
leads to a smaller master problem but also to a loss of the information. Consoli-
dated cuts have the same form as the traditional optimality cuts in the multi-cut
schema except that coefficients for all ϑs are 1. After the consolidation the system
of the CGP cuts has a form

ϑ11 + · · · + ϑS1 ≥ V x + w, (17)

where 1 stands for (1, . . . , 1)T ∈ I Rk , S is the number of scenarios, and
V ∈ I Rk×n, w ∈ I Rk , with k increasing with every new consolidated cut
appended to the model. Cut set (4) can simultaneously include consolidated and
not consolidated optimality cuts, and epigraph cuts.When this approach is utilized,
we consolidated CGP cuts on step 2.3.2 of Algorithm 2 before appending them to
the current master problem.

We provide the results of our experiments regarding these above approaches in
Table 2. For each group of instances, we present the arithmetic means of the solution
time and the number of iterations for the case when no CGP cuts are appended at all
(no cuts), only efficient cuts are appended (eff ), all cuts are appended in a consolidated
fashion (cons), or simply all cuts are appended (all). Besides, the combined approach
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Table 2 Effect of adding CGP cuts to the master problem. The solution time (in seconds) and the number
of iterations (in parenthesis) are reported in arithmetic (AM) and geometric (GM) means

Group AM Time (AM Iterations)

Use CGP optimality cuts
No cuts Eff + Cons Eff Cons All

r01 37(11) 37(10) 37(9) 50(10) 57(5)

r02 277(44) 278(45) 269(42) 303(43) 227(24)

r03 534(42) 539(43) 548(40) 551(40) 577(28)

r04 2404(76) 2305(75) 2483(74) 2781(76) 2323(44)

sslp_5_25 62(10) NA 62(10) NA 52(6)

sslp_5_50 80(12) NA 76(11) NA 65(6)

sslp_15_45 642(195) NA 647(199) NA 532(163)

sslp_10_50 187(138) NA 243(177) NA 140(103)

AM (all inst.) 580(72) NA 510(89) NA 372(71)

GM (all inst.) 171(141) NA 180(145) NA 101(122)

Best results are emphasized with bold font. Consolidation of CGP cuts is not applicable to single-cut,
therefore, sslp instances have NA values

was tested, when only efficient CGP cuts were consolidated (eff+cons). Since the
SSLP instances are solved with the single-cut variant, the consolidation of CGP cuts
is not applicable for them.

As expected, the application of all CGP cuts considerably lowers the number of
iterations (by around 40%). For the tests with the SSLP instances, smaller numbers of
iterations result in shorter solution times. On the other hand, the effectiveness of the
CGP cuts in the tests with the MCFNDSD instances is arguable and often increases
solution time. This observation can be explained by the fact that these instances are
solved with the multi-cut variant of the L-shaped method. Therefore, Algorithm 3 also
applies the multi-cut approach, which leads to the creation of a relatively large number
of CGP cuts. If appended to the master problem, these cuts make it considerably larger
and thereby more difficult to solve. Limiting the number of the cuts appended or even
not using them at all is preferable for comparatively large MCFNDSD instances. We
consider not to use CGP cuts in tests with MCFNDSD instances and apply all of them
in tests with SSLP instances.

6.3.2 CGP optimality tolerance

The impact of the tolerance εCGP , which is the optimality tolerance for Algorithm 3,
has been tested by considering the values 0.5, 0.2, 0.01, 1e−4, and 1e−6. Taking into
account results in Sect. 6.3.1, CGP cuts are appended to the master problem in the
tests with SSLP instances.

The average values in Table 3 indicate that, for larger instances, the lower εCGP is,
the fewer iterations Alogrithm 2 needs to converge. However, the higher precision of
the algorithm comes at the cost of an increased solution time as the algorithm requires
more iterations. Taking into consideration the two observations above, we conclude
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Table 3 Effect of εCGP . The solution time (in seconds) and the number of iterations (in parenthesis) are
reported in arithmetic (AM) and geometric (GM) means

Group AM time (AM iterations)

εCGP

1E-06 1E-04 0.01 0.1 0.5

r01 37(10) 38(11) 37(11) 36(11) 34(11)

r02 263(43) 272(44) 277(44) 258(44) 238(43)

r03 548(41) 519(40) 534(42) 499(41) 493(41)

r04 2603(77) 2566(76) 2404(76) 2529(77) 2563(76)

sslp_5_25 67(5) 56(6) 52(6) 57(9) 57(8)

sslp_5_50 82(6) 67(5) 65(6) 71(9) 70(9)

sslp_15_45 736(111) 524(112) 532(163) 514(160) 505(158)

sslp_10_50 172(75) 126(77) 140(103) 159(127) 159(125)

AM (all inst.) 530(53) 468(54) 458(69) 465(73) 463(72)

GM (all inst.) 155(155) 124(124) 123(110) 125(125) 122(122)

Best results emphasized with bold font

that it is recommendable to solve the strengthenedCGPonly approximatelywith εCGP

set to 0.01.

6.3.3 Selection of fractional variables

Next, we investigate the impact of the parameter%of fract with L&P cuts that controls
the number of fractional variables, for which L&P cuts are generated. As mentioned
above, only in the tests with the SSLP instances CGP cuts are appended to the master
problem. Increasing the percentage of considered fractional variables does not show a
profound impact on the number of iterations in the tests with theMCFNDSD instances
(see Table 4). On the other hand, the solution time of these instances increases as more
cut generating problems need to be solved. The number of iterations for the tests
with the SSLP instances drops greatly with the increase of the number of considered
fractional variables. More importantly, this effect leads to a decrease in solution time.
We explain this observation by the fact that these instances have a small number of
binary variables, so that even a large %-value of the parameter corresponds to at most
15 binaries.We conclude that a reasonable setting for this parameter is to generate cuts
for the 10% most fractional variables. A lower value does not seem recommendable
since all test instances have less than 100 first-stage binary variables.

6.3.4 Number of cut generating rounds

For every selected instance we run tests with three values of the parameter L&P
rounds limit: 20, 40, and 100. According to the results in Table 5, increasing the
number of L&P rounds tends to lower the total number of iterations. As with
% of f ract wi th L&P cuts, the number of cut generating problems solved has
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Table 4 Effect of % of f ract wi th L&P cuts. The solution time (in seconds) and the number of iterations
(in parenthesis) are reported in arithmetic (AM) and geometric (GM) means

Group AM Time (AM iterations)

% of fract with L&P cuts

5 10 20 100

r01 29(11) 37(11) 44(11) 227(12)

r02 275(45) 299(44) 271(43) 726(56)

r03 512(42) 587(41) 517(40) 1178(44)

r04 2974(78) 2457(75) 2546(78) 4376(76)

sslp_5_25 52(6) 53(6) 53(6) 80(2)

sslp_5_50 73(6) 73(6) 65(6) 103(3)

sslp_15_45 550(171) 452(131) 478(146) 227(48)

sslp_10_50 192(141) 190(140) 124(83) 86(32)

AM (all inst.) 520(77) 448(69) 455(62) 712(34)

GM (all inst.) 119(119) 123(110) 125(125) 182(182)

Best results emphasized with bold font

Table 5 Effect of L&P rounds
limit. The solution time (in
seconds) and the number of
iterations (in parenthesis) are
reported in arithmetic (AM) and
geometric (GM) means

Group AM Time (AM iterations)

L&P rounds limit

20 40 100

r01 37(11) 51(10) 85(10)

r02 277(44) 317(44) 324(42)

r03 534(42) 599(42) 680(40)

r04 2404(76) 2489(77) 2529(73)

sslp_5_25 52(6) 59(3) 72(2)

sslp_5_50 65(6) 72(4) 89(3)

sslp_15_45 532(163) 445(125) 298(71)

sslp_10_50 140(103) 193(122) 165(101)

AM (all instances) 458(69) 478(63) 470(47)

GM (all instances) 123(110) 138(138) 147(147)

Best results emphasized with bold font

a negative impact on the solution time. These results support the assumption that
strengthened epigraph cuts decrease the number of iterations and demonstrate a trade-
off between solving amixed integermaster problem versus solving linear strengthened
cut generating problems. It can be concluded that the generation of strengthened epi-
graph cuts should be carefully controlled for every instance individually. We set the
parameter L&P rounds limit to 20 in the following experiments.
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Table 6 Comparison of the algorithms. The solution time (in seconds) and the number of iterations (in
parenthesis) are reported in arithmetic (AM) and geometric (GM) means

Group AM Time (AM Iterations)

Algorithm

DETEQ BENDERS EPIG EPIG-STR

r01 3 25(11) 34(11) 37(11)

r02 11 369(45) 416(45) 277(44)

r03 38 716(40) 671(42) 534(42)

r04 45 3852(72) 4489(69) 2404(76)

sslp_5_25 29 39(14) 40(14) 52(6)

sslp_5_50 52 49(16) 50(16) 65(6)

sslp_15_45 313 683(191) 786(202) 532(163)

sslp_10_50 205 174(140) 189(141) 140(103)

AM (all inst.) 120 653(83) 739(86) 458(69)

GM (all inst.) 15 92(92) 102(102) 123(110)

Best results among L-shaped methods emphasized with bold font. Number of iteration is not applicable for
DETEQ, therefore, not provided

6.4 Efficiency of epigraph cut strengthening

Finally, the efficiency of the epigraph cut strengthening is evaluated by comparing
the performance of the L-shaped algorithm without additional cuts (BENDERS),
with plain epigraph cuts (EPIG), and with strengthened epigraph cuts (EPIG-STR).
The two-phase method is applied for all tests. The MCFNDSD instances are solved
with the multi-cut and the SSLP instances with the single-cut L-shaped method. In
EPIG and EPIG-STR runs, the parameter L&P rounds limit is set to 20. We set
the best parameters found in Sect. 6.3 for the EPIGR-STR runs: εCGP = 0.01,
% of f ract wi th L&P cuts = 0.1, and CGP optimality cuts are appended to master
problem in the tests with the SSLP instances. Results of solving the deterministic
equivalent with CPLEX (DETEQ), are also provided for reference.

As can be observed in Table 6, the approachwith strengthened epigraph cuts outper-
forms the other L-shaped variants when applied to the relatively complicated instances
that need more iterations to be solved. The application of epigraph cuts and their
strengthening does not seem to pay off for the smaller instances. Two and four r04
instances were not solved within the time limit with BENDERS and EPIG algorithms,
respectively. Their solution time was set to the time limit. Non-aggregated detailed
results for every test can be found in the Online Supplement.

To get better insights, the detailed profiling results for selected instances are pro-
vided in Table 7. Other tests in the test set show similar behavior. In this table, we report
the number of iterations (Iter.), total wall-clock time (Time), including the wall-clock
time for solving the MIP master problem (T. Master), and for the L&P cut generation
(T. L&P Cuts). In addition, we provide the average wall-clock time per iteration (ø
T. Master) that is calculated as T .Master/I ter . From the result on solution time
we can conclude that the application of strengthened L&P cuts can provide two ben-
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efits: a decrease of the number of iterations and/or a shorter average solution time
per MIP master problem in every iteration (in comparison to the L-shaped method
with plain epigraph cuts). No decrease of iterations is observable in the tests with the
MCFNDSD instances. However, the master problem is often solved faster (see, for
example, instance r02_1_0_32). When strengthening is applied to the SSLP instances,
the algorithm converges after a smaller number of iterations and the master problem
is sometimes solved in a shorter time compared to the standard L-shaped method. Of
course, cut generation takes a considerable amount of time and the net change in time
should be considered. For example, the decrease of iterations achieved in the tests with
the instances sslp_5_25_100b is insufficient to result in a reduction of solution time.

Our implementation of the L-shaped method performs better than the commercial
CPLEX solver only for tests on sslp_5_50 and sslp_10_50 groups. See, for example,
instances sslp_10_50_1000a-b, sslp_10_50_2000a-b, sslp_5_50_2000a-b in Table 7.
We explain this behavior by the fact that solely in these groups most of the instances
have over 1000 scenarios. In addition, results in Table 1 in the Online Supplement
indicate that the L-shaped method is almost always faster for instances with over 1000
scenarios. The L-shaped method worth using when applied to problems that have
many scenarios as it was designed to overcome the curse of dimensionality (Powell
and Topaloglu 2003). Additionally, CPLEX, as one of the leading commercial solvers,
has advanced preprocessing and cutting plane techniques that are not implemented in
our algorithm.Wedonot aim to competewith the commercial solver but to demonstrate
that L&P cut strengthening has a potential upon a reasonable implementation.

7 Summary and outlook

The computational results demonstrate that the application of strengthened epigraph
L&P cuts in the preprocessing phase of the L-shaped method can decrease the number
of iterations and the solution time. The effectiveness varies for different instances and
depends on the number and the accuracy of the generated cuts, which can be controlled
by limiting the number of cut generation rounds, the number of considered fractional
variables and the optimality tolerance of the cut generating problem. The main trade-
off comes from the fact that in every iteration, a mixed-binary (master) problem is
solved, while all problems that are solved during the cut generation round are linear
though quite large.

It is efficient to append the optimality cuts constructed for solving the strengthened
cut generating problem to the master problem in the single-cut L-shaped method. Too
many of these cuts are generated during the multi-cut L-shaped method and, therefore,
their usage in the master problem should be avoided.

Strengthened L&P cuts can also be integrated into the single-search-tree version
of the L-shaped method for integer problems (see a Branch-and-Benders-cut method
mentioned in Bodur et al. (2017); Gendron et al. (2016)). According to this approach,
the branch-and-bound tree is initialized for the integer master problem once and
domain or (strengthened) epigraph cuts are appended to the nodes during the solution
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process. Such an implementation would require both theoretical and computational
developments that we leave for future research.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10287-022-00426-y.
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A cuts for the stochastic programmingmaster problem

A.1 Characterization of the plain epigraph cuts

The notation of Sect. 4 is to be used. The supplemental material referenced in the
Appendix is available at https://doi.org/10.1007/s10287-022-00426-y.

The construction of lift-and-project cuts for the generic inequality system Mx ≥ d
is described in Section 1.1 of the supplement. For the present master problem, the
procedure with M and d is applied as defined in (10). Its dual-type characterization is
the conjunctive inequality system below.
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The cut ζϑ + αT x ≥ β is satisfied by the facets L0, L1 iff there exist s, t ∈
I Rk, s, t ≥ 0, u, v ∈ I Rm, u, v ≥ 0 and u0, v0 ∈ I R, u0, v0 ≥ 0 such that

1T s = ζ,

−V T s + AT u − u0ei ≤ α,

1T t = ζ,

−V T t + AT v + v0ei ≤ α,

wT s + bT u ≥ β,

wT t + bT v + v0 ≥ β,

(18)

where ei is the i th unit vector in I Rn . The above system is solvable in any non-trivial
case. The feasible set is a non-empty cone.

A.2 The plain epigraph cut generating problem

Let (ϑ, x) ∈ L be a feasible solution of the master problem LP relaxation. Assume
that (ϑ, x) is not an integer feasible solution because we have 0 < xi < 1 for some
i ∈ B. The aim is to find a cut that separates (ϑ, x) from the integer feasible solutions.
Deepest cuts are obtained by maximizing β − (ϑ, x)T (ζ,α) over the above defined
cone, having added some normalization constraints. A natural means of normalization
here is prescribing ζ = 1.

The cut generating LP problem (plain epigraph CGP) is as follows. Decision vari-
ables of this problem will be: ζ ∈ I R, α ∈ I Rn, β ∈ I R and s, t ∈ I Rk, u, v ∈
I Rm, u0, v0 ∈ I R with lower bounds s, t ≥ 0 and u, v ≥ 0, u0, v0 ≥ 0. The
constraints are: the inequality system (18), and normalization constraint ζ = 1. The
objective to maximized is β − ϑζ − xTα.

This ζ -normalized problem is still solvable provided k > 0, i.e., the epigraphmodel
is non-trivial, and hence the matrix V T has at least one column. So, it is assumed
hereafter.

Since ζ is constant in this problem, the corresponding column vector can be elim-
inated from the matrix by shifting the right-hand-side vector.

A.3 Proof of Observation 1 in Sect. 4

Suppose that the objective of the plain epigraph CGP is still not bounded. Hence there
exists a feasible ray (s, u, u0, t, v, v0,α, β)with positive objective value. Any feasible
ray must satisfy 1T s = 0, and together with the non-negativity of s, this implies s = 0.
Similarly, we must have t = 0.

Figure 1 depicts the inequality system characterizing such a ray. The columns
corresponding to s or t have been eliminated. The bottom constraint −xTα + β > 0
represents non-negativity of the ray. Let’s apply the characterization (6) with M =
A, d = b and P = N . It states that the cut αT x ≥ β is valid for the facets
K ∩ { x ∈ I Rn | − xi ≥ 0 } and K ∩ { x ∈ I Rn | xi ≥ 1 }. The bottom constraint

−xTα + β > 0 states that x is cut away by this cut. This verifies Observation 1.
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Fig. 1 Inequality system of the feasible ray for unbounded epigraph CGP
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