Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/310996 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Mathematical Methods of Operations Research [ISSN:] 1432-5217 [Volume:] 95 [Issue:] 3 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2022 [Pages:] 503-532
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
A decision support system relies on frequent re-solving of similar problem instances. While the general structure remains the same in corresponding applications, the input parameters are updated on a regular basis. We propose a generative neural network design for learning integer decision variables of mixed-integer linear programming (MILP) formulations of these problems. We utilise a deep neural network discriminator and a MILP solver as our oracle to train our generative neural network. In this article, we present the results of our design applied to the transient gas optimisation problem. The trained generative neural network produces a feasible solution in 2.5s, and when used as a warm start solution, decreases global optimal solution time by 60.5%.
Schlagwörter: 
Mixed-integer programming
Deep learning
Primal heuristic
Gas networks
Generative modelling
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.