
Anderson, Lovis; Turner, Mark; Koch, Thorsten

Article — Published Version

Generative deep learning for decision making in gas
networks

Mathematical Methods of Operations Research

Provided in Cooperation with:
Springer Nature

Suggested Citation: Anderson, Lovis; Turner, Mark; Koch, Thorsten (2022) : Generative deep learning
for decision making in gas networks, Mathematical Methods of Operations Research, ISSN
1432-5217, Springer, Berlin, Heidelberg, Vol. 95, Iss. 3, pp. 503-532,
https://doi.org/10.1007/s00186-022-00777-x

This Version is available at:
https://hdl.handle.net/10419/310996

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.1007/s00186-022-00777-x%0A
https://hdl.handle.net/10419/310996
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Mathematical Methods of Operations Research (2022) 95:503–532
https://doi.org/10.1007/s00186-022-00777-x

ORIG INAL ART ICLE

Generative deep learning for decision making in gas
networks

Lovis Anderson2 ·Mark Turner1,2 · Thorsten Koch1,2

Received: 28 January 2021 / Revised: 3 February 2022 / Accepted: 23 February 2022 /
Published online: 19 April 2022
© The Author(s) 2022

Abstract
A decision support system relies on frequent re-solving of similar problem instances.
While the general structure remains the same in corresponding applications, the input
parameters are updated on a regular basis. We propose a generative neural network
design for learning integer decision variables of mixed-integer linear programming
(MILP) formulations of these problems.Weutilise a deep neural network discriminator
and a MILP solver as our oracle to train our generative neural network. In this article,
we present the results of our design applied to the transient gas optimisation problem.
The trained generative neural network produces a feasible solution in 2.5s, and when
used as a warm start solution, decreases global optimal solution time by 60.5%.

Keywords Mixed-integer programming · Deep learning · Primal heuristic · Gas
networks · Generative modelling

The work for this article has been conducted in the Research Campus MODAL funded by the German
Federal Ministry of Education and Research (BMBF) (fund numbers 05M14ZAM, 05M20ZBM), and was
supported by the German Federal Ministry of Economic Affairs and Energy (BMWi) through the project
UNSEEN (fund no 03EI1004D): Bewertung der Unsicherheit in linear optimierten
Energiesystem-Modellen unter Zuhilfenahme Neuronaler Netze.

B Mark Turner
turner@zib.de

Lovis Anderson
anderson@zib.de

Thorsten Koch
koch@zib.de

1 Chair of Software and Algorithms for Discrete Optimization, Institute of Mathematics,
Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

2 Applied Algorithmic Intelligence Methods Department, Zuse Institute Berlin, Takustr. 7, 14195
Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00186-022-00777-x&domain=pdf
http://orcid.org/0000-0002-4316-1862
http://orcid.org/0000-0001-7270-1496
http://orcid.org/0000-0002-1967-0077

504 L. Anderson et al.

1 Introduction

Mixed-Integer Linear Programming (MILP) is concerned with the modelling and
solving of problems from discrete optimisation. These problems can represent real-
world scenarios, where discrete decisions can be appropriately captured and modelled
by integer variables. In real-world scenarios a MILP model is rarely solved only
once. More frequently, the same model is used with varying data to describe different
instances of the same problem, which are solved on a regular basis. This holds true
in particular for decision support systems, which can utilise MILP to provide real
time optimal decisions on a continual basis, see (Beliën et al. 2009) and (Ruiz et al.
2004) for examples in nurse scheduling and vehicle routing. The MILPs that these
decision support systems solve have identical structure due to both their underlying
application and cyclical nature, and thus often have similar optimal solutions. Our
aim is to exploit this repetitive structure, and create generative neural networks that
generate binary decision encodings for subsets of important variables. These encod-
ings can be used in a primal heuristic by solving the induced subproblem following
variable fixations. Additionally, the result of the primal heuristic can be used in a
warm start context to help improve solver performance in achieving global optimality.
We demonstrate the performance of our neural network (NN) design on the transient
gas optimisation problem (Ríos-Mercado and Borraz-Sánchez 2015), specifically on
real-world instances embedded in day ahead decision support systems.

The design of our framework is inspired by the recent development of Generative
Adversarial Networks (GANs) (Goodfellow 2016). Our design consists of two NNs,
a generator and a discriminator. The generator is responsible for generating binary
decision values, while the discriminator is tasked with predicting the optimal objective
function value of the reduced MILP that arises after fixing these binary variables to
their generated values. Our NN design and its application to transient gas network
MILP formulations is an attempt to integrate Machine Learning (ML) into the MILP
solving process. This integration has recently received an increased focus (Tang et al.
2019; Bertsimas and Stellato 2019; Gasse et al. 2019), which has been encouraged
by the success of ML integration into other aspects of combinatorial optimisation, see
(Bengio et al. 2018) for a thorough overview.

The paper is structured as follows: Sect. 2 contains an overview of the literature
with comparisons to our work. In Sect. 3, we introduce our main contribution, a new
generative NN design for learning binary variables of parametric MILPs. Afterward,
we outline a novel data generation approach for generating synthetic gas transport
instances in Sect. 4. Section 5 outlines the exact training scheme for our new NN and
how our framework can be used to warm start MILPs. Finally, in Sect. 6, we show
and discuss the results of our NN design on real-world gas transport instances. This
represents a major contribution, as the trained NN generates a primal solution in 2.5s
and via warm start reduces solution time to achieve global optimality by 60.5%.

123

Generative deep learning for decision making in gas networks 505

2 Background and related work

Asmentioned in the introduction, the intersection ofMILP andML is currently an area
of active and growing research. For a thorough overview of deep learning (DL), the
relevant subset ofMLused throughout this article, we refer readers toGoodfellow et al.
(2016), and for MILP to Achterberg (2007). We will highlight previous research from
this intersection that we believe is either tangential, or may have shared applications
to that presented in this paper. Additionally, we will briefly detail the state-of-the-art
in transient gas transport, and highlight why our design is of practical importance. It
should be noted as well that there are recent research activities aiming at the reverse
direction, with MILP applied to ML instead of the orientation we consider, see (Wong
and Kolter 2017) for an interesting example.

Firstly, we summarise applications of ML to adjacent areas of the MILP solving
process. Gasse et al. (2019) creates a method for encoding MILP structure in a bipar-
tite graph representing variable-constraint relationships. This structure is the input to
a Graph Convolutional Neural Network (GCNN), which imitates strong branching
decisions. The strength of their results stem from intelligent network design and the
generalisation of their GCNN to problems of a larger size, albeit with some general-
isation loss. Zarpellon et al. (2020) take a different approach, and use a NN design
that incorporates the branch-and-bound tree state directly. In doing so, they show that
information contained in the global branch-and-bound tree state is an important factor
in variable selection. Furthermore, their publication is one of the few to present results
on heterogeneous instances. Etheve et al. (2020) show a successful implementation
of reinforcement learning for variable selection. Tang et al. (2019) show prelimi-
nary results of how reinforcement learning can be used in cutting plane selection.
By restricting themselves exclusively to Gomory cuts, they are able to produce an
agent capable of selecting better cuts than default solver settings for specific classes
of problems.

There exists a continuous trade-off between model fidelity and complexity in the
field of transient gas optimisation, and there is no standard model for transient gas
transport problems. Moritz (2007) presents a piecewise linear MILP approach to the
transient gas transport problem, (Burlacu et al. 2019) a nonlinear approach with a
novel discretisation scheme, and (Hennings et al. 2020) and (Hoppmann et al. 2019)
a linearised approach. For the purpose of our experiments, we use the model of Hen-
nings et al. (2020), which uses linearised equations and focuses on gas subnetworks
with many controllable elements. The current research ofML in gas transport is still in
the early stages. Pourfard et al. (2019) use a dual NN design to perform online calcula-
tions of a compressors operating point to avoid re-solving the underlying model. The
approach constrains itself to continuous variables and experimental results are pre-
sented for a gunbarrel gas network. MohamadiBaghmolaei et al. (2014) present a NN
combined with a genetic algorithm for learning the relationship between compressor
speeds and the fuel consumption rate in the absence of complete data. More often, ML
has been used in fields closely related to gas transport, as in Hanachi et al. (2018), with
ML used to track the degradation of compressor performance, and in Petkovic et al.
(2019) to forecast demand values at the boundaries of the gas network. For a more

123

506 L. Anderson et al.

complete overview of the transient gas literature, we refer readers to Ríos-Mercado
and Borraz-Sánchez (2015).

Our framework, which predicts the optimal objective value of an induced sub-
MILP, can be considered similar to Baltean-Lugojan et al. (2019) in what it predicts
and similar to Ferber et al. (2019), in how it works. In the first paper (Baltean-Lugojan
et al. 2019), a NN is used to predict the associated objective value improvements on
cuts. This is a smaller scope than our prediction, but is still heavily concerned with the
MILP formulation. In the second paper (Ferber et al. 2019), a technique is developed
that performs backward passes directly through aMILP. It does this by solvingMILPs
exclusively with cutting planes, and then receiving gradient information from theKKT
conditions of the final linear program. This application of a NN, which produces input
to theMILP, is very similar to our design. The differences arise in that we rely on a NN
discriminator to appropriately distribute the loss instead of solving a MILP directly,
and that we generate variable values instead of parameter values with our generator.

While our framework is heavily inspired from GANs (Goodfellow 2016), it is also
similar to actor-critic algorithms, see (Pfau and Vinyals 2016). These algorithms have
shown success for variable generation in MILP, and are notably different in that they
sample from a generated distribution for downstream decisions instead of always
taking the decision with highest probability. Recently, (Chen et al. 2020) generated a
series of coordinates for a set of UAVs using an actor-critic based algorithm, where
these coordinates were continuous variables in a Mixed-Integer Non-Linear Program
(MINLP) formulation. The independence of separable subproblems and the easily
realisable value functionwithin their formulation resulted in a naturalMarkovDecision
Process interpretation. For a better comparison on the similarities between actor-critic
algorithms and GANs, we refer readers to Pfau and Vinyals (2016).

Finally, we summarise existing research that also deals with the generation of
decision variable values for Mixed-Integer Programs. Bertsimas and Stellato (2018,
2019) attempt to learn optimal solutions of parametric MILPs and Mixed-Integer
Quadratic Programs (MIQPs), which involves both outputting all integer decision
variable values and the active set of constraints. Theymainly use optimal classification
trees in Bertsimas and Stellato (2018) and NNs in Bertsimas and Stellato (2019). Their
aim is tailored towards smaller problems classes, where speed is an absolute priority
and parameter value changes are limited. Masti and Bemporad (2019) learn binary
warm start decisions for MIQPs. They use NNs with a loss function that combines
binary cross entropy and a penalty for infeasibility. Their goal of obtaining a primal
heuristic is similar to ours, and while their design is much simpler, it has been shown to
work effectively on very small problems. Our improvement over this design is our non-
reliance on labelled optimal solutions, which are needed for binary cross entropy. Ding
et al. (2019) present a GCNN design which is an extension of Gasse et al. (2019), and
use it to generate binary decision variable values. Their contributions are a tripartite
graph encoding of MILP instances, and the inclusion of their aggregated generated
values as branching decisions in the branch-and-bound tree, both in an exact approach
and in an approximate approach with local branching (Fischetti and Lodi 2003). Very
recently, (Nair et al. 2020) combined the branching approach ofGasse et al. (2019)with
a novel neural diving approach, in which integer variable values are generated. They
use a GCNN for generating both branching decisions and integer variables values.

123

Generative deep learning for decision making in gas networks 507

Different to our generator-discriminator based approach, they generate values directly
from a learned distribution, which is based on an energy function that incorporates
resulting objective values.

3 The solution framework

We begin by formally defining both a MILP and a NN. Our definition of a MILP is an
extension of more traditional formulations, see (Achterberg 2007), but still encapsu-
lates general instances.

Definition 1 Let π ∈ R
p be a vector of problem-defining parameters, where p ∈ Z≥0.

We use π as a subscript to indicate that a variable is parameterised by π . We call Pπ

a MILP parameterised by π .

Pπ :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min cT1x1 + cT2x2 + cT3z1 + cT4z2

s.t. Aπ

⎡

⎢
⎢
⎢
⎣

x1
x2
z1
z2

⎤

⎥
⎥
⎥
⎦

≤ bπ

ck ∈ R
nk , k ∈ {1, 2, 3, 4}, Aπ ∈ R

m×n, bπ ∈ R
m

x1 ∈ R
n1 , x2 ∈ R

n2 , z1 ∈ {0, 1}n3 , z2 ∈ {0, 1}n4 , nk ∈ Z≥0

Furthermore let � ⊂ R
p be a set of valid problem-defining parameters. We then call

{Pπ | π ∈ �} a problem class for �. Lastly, we denote the optimal objective function
value of Pπ by f (Pπ).

Note that the explicit parameter space � is usually unknown, but we assume in the
following to have access to a random variable � that samples from �. In addition,
note that ci and ni are not parameterised by π , and as such the objective function
and variable dimensions do not change between scenarios. In Definition 3 we define
an oracle NN Gθ1 , which predicts a subset of the binary variables of Pπ , namely z1.
Additionally, the continuous variables x2 are separated in order to differentiate the
slack variables in our example, which we will introduce in Sect. 4.

We now provide a simple definition for feed forward NNs. For a larger variety of
definitions, see (Goodfellow et al. 2016).

Definition 2 Let Nθ be defined by:

Nθ : R|a1| −→ R
|ak+1|; a1 −→ Nθ (a1) = ak+1

hi : R|ai | −→ R
|ai | ∀i ∈ {2, ..., k + 1}

ai+1 := hi+1(Wiai + bi) ∀i ∈ {1, ..., k}
Wi ∈ R

|ai+1|×|ai |, bi ∈ R
|ai+1| ∀i ∈ {1, ..., k}

(1)

123

508 L. Anderson et al.

Fig. 1 The general design of N{θ1,θ2}

We then call Nθ a k-layer feed forward NN. Here, θ is the vector of all weightsWi and
biases bi of the NN. The functions hi are non-linear element-wise functions, called
activation functions. Additionally, ai , bi , and Wi are tensors for all i ∈ {1, . . . , k}.

Definition 3 For a problem class {Pπ | π ∈ �}, let the generator Gθ1 be a NN
predicting z1, and the discriminator Dθ2 be a NN predicting f (Pπ) for π ∈ �, i.e.

Gθ1 : Rp −→ (0, 1)n3

Dθ2 : (0, 1)n3 × R
p −→ R

(2)

Furthermore, a forward pass of both Gθ1 and Dθ2 is defined as follows:

ẑ1 := Gθ1(π) (3)

f̂ (Pẑ1
π) := Dθ2(ẑ1, π) (4)

The hat notation is used to denote quantities that were approximated by a NN. We use
superscript notation to create the following instances:

P
ẑ1
π := Pπ s.t. z1 = [ẑ1] (5)

The additional notation of the square brackets around ẑ1, refers to the rounding of
values from the range (0, 1) to {0, 1}, which is required as the variable values must be
binary.

The goal of this framework is to generate good initial solution values ẑ1, which
lead to an induced sub-MILP, Pẑ1

π , whose optimal solution is a good feasible solution
to the original problem Pπ . Further, the idea is to use this feasible solution as a first
incumbent for warm starting the solution process of Pπ . To ensure feasibility for all
choices of z1, we divide the continuous variables into two sets, x1 and x2, as seen in
Definition 1. The variables x2 are potential slack variables that ensure all generated
decisions result in feasible Pẑ1

π instances, and are penalised in the objective. We now
describe the design of Gθ1 and Dθ2 .

123

Generative deep learning for decision making in gas networks 509

Fig. 2 Method of merging two 1-D input streams

3.1 Generator and discriminator design

Gθ1 andDθ2 are NNswhose structure is inspired byGoodfellow (2016), as well as both
inception blocks and residual NNs, which have greatly increased large-scale model
performance (Szegedy et al. 2017). We use the block design Resnet-v2 from Szegedy
et al. (2017), see Fig. 3, albeit with amodification that primarily uses 1-D convolutions,
with that dimension being time. Additionally, we separate initial input streams by
their characteristics, and when joining two streams use 2-D convolutions. These 2-D
convolutions reduce the data back to 1-D, see Fig. 2 for an visualisation of this process.
The final layer ofGθ1 contains a softmax activation function with temperature. As the
softmax temperature parameter increases, this activation function’s output approaches
a one-hot vector encoding. Thefinal layer ofDθ2 contains a softplus activation function.
All other intermediate layers use the ReLU activation function. We refer readers to
Goodfellow et al. (2016) for a thorough overview of deep learning, and to Fig. 14 in
Appendix 1 for our complete design.

For a vector x = (x1, · · · , xn), the softmax function with temperature T ∈ R,
σ1, the ReLU function, σ2, and the softplus function with parameter β ∈ R, σ3, are
defined as:

σ1(xi , T) := exp(T xi)
∑n

j=1 exp(T x j)
(6)

σ2(xi) := max(0, xi) (7)

σ3(xi , β) := 1

β
log(1 + exp(βxi)) (8)

We compose Gθ1 and Dθ2 to make N{θ1,θ2}. The definition of this composition is
given in (9), and a visualisation in Fig. 1.

N{θ1,θ2}(π) := Dθ2(Gθ1(π), π) (9)

3.2 Interpretations

In a similar manner to GANs and actor-critic algorithms, see (Pfau and Vinyals 2016),
the design of N{θ1,θ2} has a bi-level optimisation interpretation, see (Dempe 2002) for
an overview of bi-level optimisation. Here we list the explicit objectives of both Gθ1

and Dθ2 , and how their loss functions represent these objectives.

123

510 L. Anderson et al.

Fig. 3 1-D Resnet-v2 Block Design

The objective of Dθ2 is to predict f (Pẑ1
π), the optimal induced objective value of

P
ẑ1
π . Its loss function is thus:

L(θ2, π) := ∣
∣Dθ2(Gθ1(π), π) − f (P

Gθ1 (π)
π)

∣
∣ (10)

The objective ofGθ1 is to minimise the induced prediction of Dθ2 . Its loss function
is thus:

L ′(θ1, π) := Dθ2(Gθ1(π), π) (11)

123

Generative deep learning for decision making in gas networks 511

The corresponding bi-level optimisation problem can then be viewed as:

min
θ1

Eπ∼�[Dθ2(Gθ1(π), π)]

s.t. min
θ2

Eπ∼�[|Dθ2(Gθ1(π), π) − f (P
Gθ1 (π)
π)|]

(12)

3.3 Trainingmethod

For effective training ofGθ1 , a capable Dθ2 is needed. We therefore pre-trainDθ2 . The
following loss function, which replaces Gθ1(π) with synthetic z1 values in (10), is
used for this pre-training:

L ′′(θ2, π) := ∣
∣Dθ2(z1, π) − f (Pz1

π)
∣
∣ (13)

However, performing this initial training requires generating instances of Pz1
π , and is

therefore done in a supervised manner offline manner on synthetic data.
After the initial training of Dθ2 , we train Gθ1 as a part of N{θ1,θ2}, using samples

π ∼ �, the loss function (11), and fixed θ2. The issue of Gθ1 outputting continuous
values for ẑ1 is overcome by the choice of the final activation function of Gθ1 . The
softmax with temperature (6) ensures that adequate gradient information still exists to
update θ1, and that the results are near binary. When using these results to explicitly
solve P

ẑ1
π , we round our result to a one-hot vector encoding along the appropriate

dimension.
After the completion of both initial trainings, we alternatingly train both NNs using

updated loss functions in the following way:

– Dθ2 training:

– As in the initial training, using loss function (13).
– In an online fashion, using predictions from Gθ1 and loss function (10).

– Gθ1 training:

– As explained above with loss function (11).

Our design allows the loss to be back-propagated throughDθ2 and distributed to the
individual nodes of the final layer ofGθ1 that correspond to z1. This is largely different
to other methods, many of which rely on using loss against optimal solutions of Pπ ,
see (Masti and Bemporad 2019; Ding et al. 2019). Our advantage over these is that the
contribution to f̂ (Pẑ1

π) of each predicted decision ẑ1 can be calculated. Additionally,
we believe that it makes our generated suboptimal solutions more likely to be near
optimal. We believe this because the NN is trained to minimise a predicted objective
rather than copy previously observed optimal solutions.

123

512 L. Anderson et al.

4 The gas transport model and data generation

To evaluate the performance of our approach, we test our framework on the tran-
sient gas optimisation problem, see (Ríos-Mercado and Borraz-Sánchez 2015) for an
overviewof the problem and associated literature. This problem is difficult to solve as it
combines a transient flowproblemwith complex combinatorics representing switching
decisions. The natural modelling of transient gas networks as time-expanded networks
lends itself well to our framework, however, due to the static underlying gas network
and repeated constraints at each time step. In this section we summarise important
aspects of our MILP formulation, and outline our methods for generating artificial gas
transport data.

4.1 The gas transport model

We use the description of transient gas networks by Hennings et al. (2020). This
model contains operation modes, which are binary decisions corresponding to the
z1 of Definition 1. Exactly one operation mode is selected each time step, and this
decision decides on the discrete states of all controllable elements in the gas network
for that time step. We note that we deviate slightly from the model by Hennings et al.
(2020), and do not allow the inflow over a set of entry-exits to be freely distributed
according to which group they belong. This is an important distinction as each single
exit-entry in our model has a complete forecast.

The model by Hennings et al. (2020) contains slack variables that change the pres-
sure and flow demand scenarios at entry-exits. These slack variables are represented
by x2 in Definition 1, and because of their existence we have yet to find an infeasible
instance Pz1

π for any choice of z1. We believe that infeasible scenarios can be induced
with sufficiently small time steps, but this is not the case in our experiments. The slack
variables x2 are penalised in the objective.

4.2 Data generation

In this subsection we outline our methods for generating synthetic transient gas
instances for training purposes, i.e. generating π ∼ � and artificial z1 values. Section
4.2.1 introduces a novel method for generating balanced demand scenarios, followed
by Sect. 4.2.2 that outlines how to generate operation mode sequences. Afterward,
Sect. 4.2.3 presents an algorithm, which generates initial states of a gas network.
These methods are motivated by the lack of available gas network data, see (Yuek-
sel Erguen et al. 2020; Kunz et al. 2017), and the need for large amounts of data to
train our NN.

4.2.1 Boundary forecast generation

Let dv,t ∈ R, be the flow demand of entry-exit v ∈ Vb at a time t ∈ T , where Vb are
the set of entry-exit nodes and T is our discrete time horizon. Note that in Hennings
et al. (2020), these variables are written with hat notation, but we have omitted them

123

Generative deep learning for decision making in gas networks 513

to avoid confusion with predicted values. We generate a balanced demand scenario,
where the demands are bounded by the largest historically observed values, and the
demand between time steps has a maximal change. Additionally, two entry or exits
from the same fence group, g ∈ G, see (Hennings et al. 2020), have maximal demand
differences within the same time step. Let I denote the set of real-world instances,
where the superscript i ∈ I indicates that the value is an observed value in real-world
instance i , and the superscript ‘sample’ indicates the value is sampled. A complete
flow forecast consists of dsample

v,t values for all v ∈ Vb and t ∈ T that satisfy the
following constraints:

∑

v∈Vb

dsample
v,t = 0 ∀t ∈ T (14)

Mq = max
v∈Vb,t∈T ,i∈I

|div,t |

dsample
v,t ∈

[

−21

20
Mq,

21

20
Mq

] (15)

|dsample
v,t − dsample

v,t−1 | ≤ 200 ∀t ∈ T , v ∈ Vb

sign(dsample
v,t) =

{
1 if v is an entry

−1 if v is an exit
∀t ∈ T , v ∈ Vb

|dsample
v1,t − dsample

v2,t | ≤ 200 ∀t ∈ T , v1, v2 ∈ g, g ∈ G, v1, v2 ∈ Vb

(16)

To generate demand scenarios that satisfy constraints (14) and (15), we use the
method proposed in Rubin (1981). Its original purpose was to generate samples from
the Dirichlet distribution, but it can be used for a special case of the Dirichlet dis-
tribution that is equivalent to a uniform distribution over a simplex in 3 dimensions.
Such a simplex is exactly described by (14) and (15) for each time step. Hence we
can apply the sampling method for all time steps and reject all samples that do not
satisfy constraints (16). We note that 3 dimensions are sufficient for our gas network,
and that the rejection method would scale poorly to higher dimensions.

In addition to flow demands, we require a pressure forecast for all entry-exits. Let
pv,t ∈ R be the pressure demand of entry-exit v ∈ Vb at time t ∈ T . We generate
pressures that respect bounds derived from the largest historically observed values, and
have a maximal change for the same entry-exit between time steps. These constraints
are described below:

M+
p = max

v∈Vb,t∈T ,i∈I
piv,t M−

p = min
v∈Vb,t∈T ,i∈I

piv,t

psample
v,t ∈

[

M−
p − 1

20
(M+

p − M−
p), M+

p + 1

20
(M+

p − M−
p)

] (17)

|psample
v,t − psample

v,t−1 | ≤ 5 ∀t ∈ T , v ∈ Vb (18)

We now have the tools required to generate artificial forecast data, with the process
described in Algorithm 1.

123

514 L. Anderson et al.

Algorithm 1: Boundary Value Forecast Generator

Input: Set of entry-exits Vb, discrete time horizon T
Result: A forecast of pressure and flow values over the time horizon
flow_forecast ← Sample simplex (14), (15) uniformly until (16) holds for a sample
pressure_forecast ← Sample (17) uniformly until (18) holds for a sample
return (flow_forecast, pressure_forecast)

4.2.2 Operation mode sequence generation

During offline training, Dθ2 requires optimal solutions for a fixed z1. In Algorithm
2 we outline a naive yet effective approach of generating reasonable z1 values, i.e.,
operation mode sequences:

Algorithm 2: Operation Mode Sequence Generator
Input: Set of operation modesO, discrete time horizon T
Result: An operation mode per time step
for t ← 1; t < |T |; t ← t + 1 do

if t == 1 then
Select random operation mode from O for time step t

else if uniform random choice in range [0,1] ≥ 0.9 then
Select random operation mode from O for time step t

end
else

Select operation mode of previous time step for time step t
end

end
return operation mode per time step

4.2.3 Initial state generation

In addition to the boundary forecast and operation mode sequence generators, we
require a gas constants generator. As these values are assumed to be constant over the
time horizon, we generate them only under the constraint that they are bounded by
maximumhistorically observedvalues.Letgask represent the value for the gas constant
k ∈ {temperature, inflow norm density, molar mass, pseudo critical temperature,
pseudo critical pressure}, then the following is the single constraint on sampling such
values.

M+
gask

= max
i∈I

gasik M−
gask

= min
i∈I

gasik

gassample
k ∈

[

M−
gask

− 1

20
(M+

gask
− M−

gask
), M+

gask
+ 1

20
(M+

gask
− M−

gask
)

] (19)

We now have all the tools to generate synthetic initial states, which is the purpose
Algorithm 3.

123

Generative deep learning for decision making in gas networks 515

Algorithm 3: Initial State Generator
Input: time_step (j ∈ [1, · · · , |T |]), set of operation modes O, set of entry-exits Vb, discrete time

horizon T
Result: An initial state to the transient gas optimisation problem
flow_forecast, pressure_forecast ← Boundary Value Forecast Generator(Vb, T) a

gas_constants ← Sample (19) uniformly for all gas constants
initial_state ← Select random state from real-world data
π ← (flow_forecast, pressure_forecast, gas_constants, initial_state)b

z1 ← Operation Mode Sequence Generator(O, T)c

P
z1
π ← Generate from π and z1

(state_1, · · · , state_k) ← Optimal solution states from solving P
z1
π

return state_j // time_step many steps from the initial state

——————————
a See Algorithm 1
b Note thatπ explicitly includes gas_constants here. In all other cases initial_state contains this information.
c See Algorithm 2

5 Training scheme andwarm start algorithm

In this section we introduce how our framework can be used to warm start MILPs and
help achieve global optimality with lower solution times. Additionally, we outline the
training scheme used for our NN design, as well as the real-world data used as a final
validation set. For our application of transient gas instances, π is fully described by
the flow and pressure forecast, combined with the initial state.

5.1 Primal heuristic and warm start

We consider the solution of Pẑ1
π as a primal heuristic for the original problem Pπ . We

aim to incorporate N{θ1,θ2} in a global MILP context and do this by using a partial

solution of Pẑ1
π to warm start Pπ . The partial solution consists of ẑ1, an additional set

of binary variables called the flow directions, which are a subset of z2 in Definition 1,
and the realised pressure variables of the entry-exits, which are a subset of x1. Note
that partial solutions are used, since instances are numerically difficult. The primal
heuristic and warm start algorithm are given in Algorithms 4 and 5 respectively.

Algorithm 4: Primal Heuristic
Input: Problem parameters π

Result: An optimal solution of Pẑ1π
ẑ1 ← Gθ1 (π)

P
ẑ1
π ← Create MILP from π and ẑ1

solution ← Solve Pẑ1π
return solution

123

516 L. Anderson et al.

Algorithm 5: Warm Start Algorithm
Input: Paramterised MILP Pπ

Result: An optimal solution of Pπ

primal_solution ← Primal Heuristic(π) a

optimal_solution ← Solve Pπ with primal_solution as warm start
return optimal_solution

——————————
a See Algorithm 4

Algorithm 6: Neural Network Training

Input: Untrained N{θ1,θ2}, prelabelled_data (contains sampled: π , z1, and f (P
z1
π)), set of

entry-exits Vb, discrete time horizon T
Result: Trained N{θ1,θ2}
Dθ2 ← Discriminator Pretraining(Dθ2 , prelabelled_data)

a

softmax_temp ← 0
for i ← 0; i < num_epochs; i ← i + 1 do

for j ← 0; j < num_generator_epochs; j ← j + 1 do
softmax_temp ← softmax_temp + 1
loss ← Generator Training(N{θ1,θ2}, prelabelled_data, Vb, T)b

if loss ≤ stopping_loss_generator then
break

end
Gθ1 ← Update Gθ1 with Adam descent methodc

end
data ← Prepare Discriminator Training Data(N{θ1,θ2}, prelabelled_data)d
train_data, test_data ← Split data with ratio_test proportionally in test_data
for j ← 0; j < num_discriminator_epochs; j ← j + 1 do

Dθ2 ← Discriminator Training Loop(Dθ2 , train_data)
e

learning_rate ← Update learning_rate with patience and factor f

test_loss ← Loss between f̂ (P
z1
π) and f (P

z1
π) from test_datag

if test_loss ≤ stopping_loss_discriminator then
break

end
end

end
return N{θ1,θ2}

——————————
a See Algorithm 8
b See Algorithm 10
c Introduced in Kingma and Ba (2014)
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam
d See Algorithm 7
e See Algorithm 9
f See https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
g See https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html

5.2 Training scheme

We generate our initial training and validation sets offline. This involves generating
104 initial states with parameter time_step set to 8 in Algorithm 3. Additionally, we

123

https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html

Generative deep learning for decision making in gas networks 517

Table 1 MILP instance statistics over real-world data

Mean

Number of constraints 6773.0

Number of continuous variables 2388.0

Number of binary variables 1285.0

Number of nonzeros 25436.3

Number of z1 variables 672.0

Number of constraints (after presolve) 5183.4

Number of continuous variable (after presolve) 1222.9

Number of binary variables (after presolve) 1178.1

Number of nonzeros (after presolve) 37987.7

generate 4×106 coupled demand scenarios and operation mode sequences with Algo-
rithms 1 and 2. All instances contain 12 time steps (excluding the initial state) with
30 minutes between each step. This training data is exclusively used by Dθ2 , and is
split into a training set of size 3.2 × 106, a test set of 4 × 105, and a validation set of
4× 105. The test set is checked against at every epoch, while the validation set is only
referred to at the end of the initial training. Following this initial training, we begin to
trainN{θ1,θ2} as a whole as described in Algorithm 6, alternating betweenGθ1 andDθ2 .
The complete list of parameters used are in Table 3, with default values being used
otherwise. The exact block design of N{θ1,θ2} can be seen in Fig. 3, and the general
layout in Fig. 1. For the complete NN design we refer readers to Fig. 14 and Table 6
in the Appendix.

5.3 Real world data

Real-world instances, similar to the artificial data, contain 12 time steps with 30 min-
utes between each step. We focus on Station D from Hennings et al. (2020), and
present only results for this station. The topology for Station D can be seen in Fig.
13 in Appendix 1. Station D can be thought of as a T intersection, and is of average
complexity compared to the stations presented in Hennings et al. (2020). The sta-
tion contains 6 boundary nodes, but they are paired, such that for each pair only one
can be active, i.e., have non-zero flow. Our validation set for the final evaluation of
N{θ1,θ2} consists of 15 weeks of live real-world data from our project partner OGE,
where instances are on average 15 minutes apart and total 9291. Statistics on the these
real-world MILP instances are provided in Table 1.

6 Computational results

We partition our results into three subsections. Section 6.1 focuses on the data gener-
ation methods, Sect. 6.2 on N{θ1,θ2} during training and its performance on synthetic

123

518 L. Anderson et al.

data, and Sect. 6.3 on the performance of trained N{θ1,θ2} on 15 weeks of real-world
transient gas data.

For our experiments we use PyTorch 1.4.0 (Paszke et al. 2019) as ourMLmodelling
framework, Pyomo v5.5.1 Hart et al. 2017, 2011 as our MILP modelling framework,
and Gurobi v9.02 (Gurobi Optimization 2020) as our MILP solver. The MILP solver
settings are available in Table 5 in Appendix 1.N{θ1,θ2} is trained on amachine running
Ubuntu 18,with 384GBofRAM, composed of 2x Intel(R) Xeon(R)Gold 6132 running
@ 2.60GHz, and 4xNVIDIA Tesla V100 GPU-NVTV100-16. The final evaluations are
performed on a cluster using 4 cores and 16GB of RAM of a machine composed of
2x Intel Xeon CPU E5-2680 running @ 2.70GHz.

6.1 Data generation results

Figure 4 (left) shows how our generated flow prognosis compares to that of historic
real-world data. We see that Nodes A, B, and C function both as entries and exits, but
are dominated by a single orientation for each node over historical data. Specifically,
Node C is the general entry, and Nodes A and B are the exits. In addition to the
general orientation, we see that each node has significantly different real-world flow
distributions, as opposed to the near identical distributions over our artificial data.
Figure 4 (right) shows our pressure prognosis compared to that of historic values.
Unlike historic flow values, we observe little difference between historic pressure
values of different nodes. This is supported by the optimal choices z∗1 over the historic
data, see Fig. 11, as in most cases the gas network station is in bypass.

These differences between our synthetic data and real-world data are somewhat
expected. The underlying distribution of the demand scenarios for both flow and
pressure cannot be assumed to be uniform nor conditionally independent unlike in
Algorithm 1. Moreover, the sampling range we use is significantly larger than that of
the real-world observed values as we take a single maximum and minimum value over
all entry-exits. We expect these differences to continue with our other data generation
methods. Algorithm 3 was designed to output varied and valid initial states w.r.t. our
MILP formulation; however, the choice of operation modes that occur in reality is
unlikely to be uniform as generated in Algorithm 2. In reality, some operation modes
occur with a much higher frequency than others. Additionally, we rely on a MILP
solver to generate new initial states, and therefore cannot rule out the possibility of a
bias. We believe these probable differences in distributions call for further research in
realistic prognosis generation methods.

6.2 Training results

Figure 5 visualises the losses ofDθ2 throughout the initial offline training. We observe
that the loss decreases throughout training, highlighting the improvement in Dθ2 for
predicting f (Pz1

π). This is a required result, as without a trained discriminator we
cannot expect to train a generator. Both the training and test loss converge to approxi-
mately 1000, which is excellent considering the generated f (Pz1

π) range well into the
millions. The validation loss on synthetic data also converges to approximately 1000,

123

Generative deep learning for decision making in gas networks 519

Fig. 4 Comparison of generated value distributions per node vs. the distribution seen in real-world data.
For flow (Left), and pressure (Right)

Fig. 5 The loss per epoch of Dθ2
during the initial training of
Algorithm 8. The dashed lines
show the performance of Dθ2
after N{θ1,θ2} has been
completely trained. A log scale
is used for better visibility of
later epochs

indicating that Dθ2 generalises to unseen P
z1
π instances; however, we note that this

generalisation doesn’t translate perfectly to real-world data. Despite this we believe
that an average distance between f̂ (Pz1

π) and f (Pz1
π), of 10000 is still very good.

We discuss the issues of different underlying distributions of real-world data and our
generated data distributions in Sect. 6.1.

The training loss during Algorithm 6 for Dθ2 is shown in Fig. 6, and forGθ1 in Fig.
7. The observable cyclical increases in the training and test loss of Dθ2 occur during
the periodic retraining of Gθ1 . We believe that Gθ1 learns how to induce suboptimal
predictions during this periodic retraining. Dθ2 in turn quickly relearns, but this high-

lights that learning how to predict f (Pẑ1
π) is unlikely without some error. Figure 7

(left) shows the loss over time of Gθ1 as it is trained, with Fig. 7 (right) displaying
magnified losses for the final epochs. We observe thatGθ1 quickly learns important z1
decision values.We hypothesise that this quick descent is helped by ẑ1 that are unlikely

123

520 L. Anderson et al.

Fig. 6 The loss per epoch of Dθ2
as it is trained using Algorithm 6

Fig. 7 (Left) The training loss per epoch of Gθ1 as it is trained using Algorithm 6. On the left the loss over
all epochs is shown. (Right) A magnified view of the loss starting from epoch 20

given our generation method in Algorithm 2. The loss increases following this initial
decrease in the case of Gθ1 , showing the ability of Dθ2 to further improve. It should
also be noted that significant step-like decreases in loss are absent in both (left) and
(right) of Fig. 7. We believe such steps would indicateGθ1 discovering new important
z1 values (operation modes). The diversity of produced operation modes, however,
see Fig. 11, implies that early in training a complete spanning set of operation modes
is derived, and the usage of their ratios is then learned and improved.

6.3 Real-world results

We now present results of our fully trained N{θ1,θ2} applied to the 15 weeks of real-
world data. Note that 651 instances have been removed as warm starting resulted in an
inconsistency with the set optimality tolerances. These instances have been kept in the

123

Generative deep learning for decision making in gas networks 521

Fig. 8 f̂ (P
ẑ1
π) for the validation set, and f̂ (P

z∗1
π) for real-world data, compared to f (P

ẑ1
π) and f (Pπ)

respectively. Linear scale (Left) and log-scale (Right)

graphics, but are marked and conclusions will not be drawn from them. We also note
that the linear programming relaxation of the MILP formulation from Hennings et al.
(2020) is rather weak, largely due to the big-M constraints that model the controllable
network elements.Webelieve that theweak relaxation is partly responsible for long run
times, especially for scenarios that require a lot of slack and need to branch extensively
to prove global optimality. This hypothesis is supported by Fig. 9, where the MILP
instances that hit the time limit are predominantly those with large objective values.

Figure 8 compares predicted and true objectives for both artificial and real-world
data. As expected, the distribution of objective values is visibly different for the arti-
ficial validation set compared to the real-world validation set. Our data generation
method was intended to be as independent as possible from the historic data, and as a
result, the average scenario has optimal solution larger than any real-world data point.
The performance ofDθ2 is again clearly visible here, however, with f̂ (Pẑ1

π) and f (Pẑ1
π)

being near identical over the artificial data, keeping in mind that these data points were
never used in training. We see that this ability to generalise is relatively much worse
on real-world data, which we hypothesise is mainly due to the the lower values of
f (Pπ).
Figure 9 shows the comparison of f (Pẑ1

π) and f (Pπ). In a similar manner to Dθ2 ,
we see that Gθ1 struggles with instances where f (Pπ) is small. This is visible in

the bottom left, where we see f (Pẑ1
π) values much larger than f (Pπ) for identical

parameter values π . This comes as little surprise given the struggle of Dθ2 with small
f (Pπ) values. Drawing conclusions becomes more complicated for instances with
larger f (Pπ) values, because the majority hit the time limit. However, the value of our
primal heuristic is clearly visible from those instances where the heuristic retrieves a
better solution than the MILP solver does within an hour. Additionally, we see that no
unsolved instance above the line f (Pẑ1

π) = f (Pπ) is very far from the line, showing
that our primal heuristic produces a comparable, sometimes equivalent solution, in

123

522 L. Anderson et al.

Fig. 9 A comparison of f (P
ẑ1
π) and f (Pπ) for all real-world data instances

Table 2 Solution time statistics for different solving strategies

Mean Median STD Min Max

N{θ1,θ2} Inference Time (s) 0.009 0.008 0.001 0.008 0.017

Warm start Pπ Time (s) 100.830 9.380 421.084 0.130 3600.770

Pπ Time (s) 147.893 24.380 463.279 3.600 3601.280

P
ẑ1
π + Warm start Pπ Time (s) 103.329 12.130 424.543 0.190 3726.110

P
ẑ1
π Time (s) 2.499 1.380 12.714 0.060 889.380

a much shorter time than the MILP solver’s one hour. For a comparison of solution
times, see Table 2.

Figure 10 shows the performance of the predictions f̂ (Pẑ1
π) compared to f (Pẑ1

π).
Interestingly, Dθ2 generally predicts f̂ (Pẑ1

π) values slightly larger than f (Pẑ1
π). We

expect this for the smaller valued instances, as we know thatDθ2 struggles with f (Pẑ1
π)

instances near 0, but the trend is evident for larger valued instances too. We observe
that no data point is too far from the line f̂ (Pẑ1

π) = f (Pẑ1
π), and conclude, albeit with

some generalisation loss, thatDθ2 can adequately predict ẑ1 solutions fromGθ1 despite
the change in data sets.

We now compare the operation modes ẑ1 that are generated byGθ1 , and the z
∗
1 that

are produced by our MILP solver. To do so we use the following naming convention:
We name the three pairs of boundary nodes N (north), S (south), and W (west). Using
W_NS_C_2 as an example, we know that flow comes from W, and goes to N and S.
The C in the name stands for active compression, and the final index is to differentiate
between duplicate names. As seen in Fig. 11, which plots the frequency of specific z1

123

Generative deep learning for decision making in gas networks 523

Fig. 10 A comparison of f̂ (P
ẑ1
π) and f (P

ẑ1
π) for all real-world data instances

Fig. 11 Frequency of operation mode choice byGθ1 compared to MILP solver for all real-world instances.
(Left) Linear scale, and (Right) log scale

if they occurred more than 50 times, a single choice dominates z∗1. This is interesting,
because we expected there to be a lot of symmetry between z1, with the MILP solver
selecting symmetric solutions with equal probability. For instance, take operation
modesW_NS_C_1 andW_NS_C_2,which differ by their usage of one of two identical
compressor machines. N{θ1,θ2} only ever predicts W_NS_C_2; however, with half the
frequency the MILP solver selects each of them. We now suspect that these duplicate
choices do not exist in bypass modes, and the uniqueness of z1 determined by open
flow paths, results in different f (Pz1

π) values. We believe that the central importance
of NS_NSW_1 was not learnt by N{θ1,θ2} as over generalisation to a single choice
is strongly punished. For a comprehensive overview of the selection of operation
modes and the correlation between ẑ1 and z∗1, we refer interested readers to Table 4 in
Appendix 1.

123

524 L. Anderson et al.

Fig. 12 The combined running time of solving P
ẑ1
π , and solving a warm started Pπ , compared to solving

Pπ directly

As discussed above, N{θ1,θ2} cannot reliably produce z∗1. Nevertheless, it produces
near-optimal ẑ1 suggestions, which are still useful in a warm start context, see Algo-
rithm 5. The results of our warm start algorithm are displayed in Fig. 12. Our warm
start suggestion was successful 72% of the time, and the algorithm resulted in an
average speed up of 60.5%. We use the shifted geometric mean with a shift of 1(s)
for this measurement to avoid distortion by relative variations of the smaller valued
instances. Especially surprising is that some instances that were previously unsolvable
within the time limit were easily solvable given the warm start suggestion. As such,
we have created an effective primal heuristic that is both quick to run and beneficial
in achieving global optimality.

7 Conclusion

In this paper, we have presented a dual NN design for generating decisions in a MILP.
This design is trained without ever solving the MILP with unfixed decision variables.
The NN is both used as a primal heuristic and used to warm-start the MILP solver for
the original problem. We have shown the usefulness of our design on the transient gas
transport problem. While doing so we have created methods for generating synthetic
transient gas data for training purposes, reserving an unseen 9291 real-world instances
for validation purposes. Despite some generalisation loss, our trained NN results in a
primal heuristic that takes on average 2.5s to run, and results in a 60.5% decrease in
global optimal solution time when used as a warm-start solution.

123

Generative deep learning for decision making in gas networks 525

While our approach is an important step forward inNNdesign andML’s application
to gas transport, we believe that there exist three primary directions for future research.
The first is to convert our approach into more traditional reinforcement learning, and
then utilise policy gradient approaches, see (Thomas and Brunskill 2017). The major
hurdle to this approach is that much of the computation would be shifted online,
requiring many more calls to solve the induced MILPs. However, this could be offset
by using our technique to initialise the NN for such an approach, thereby avoiding
early stage training difficulties. The second is focused on the recent improvements in
Graph NNs, see (Gasse et al. 2019). Their ability to generalise to different input sizes
would permit the creation of a single NN over multiple gas network topologies. The
final direction is to improve data generation techniques for transient gas networks.
There exists a gap in the literature for improved methods that are scalable and result
in real-world like data.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix

Algorithm 7:Mix New Data

Input: N{θ1,θ2}, prelabelled_data (contains sampled: π , z1, and f (P
z1
π)), set of entry-exits Vb,

discrete time horizon T
Result: New data generated by Gθ1 for training Dθ2
new_data ← array of length num_data_new
for i ← 0; i < num_data_new; i ← i + 1 do

initial_state ← Uniformly select from prelabelled_data
flow_forecast, pressure_forecast ← Boundary Prognosis Generator(Vb, T)a

π ← (flow_forecast, pressure_forecast, initial_state)
ẑ1 ← Gθ1 (π)

f (P
ẑ1
π) ← solve Pẑ1π

new_data[i] ← Create new data point from (π , z1, f (P
ẑ1
π))

end
old_data ← Uniformly sample num_data_old points uniquely from prelabelled_data
return Random ordering of new_data ∪ old_data

——————————
a See Algorithm 1

123

http://creativecommons.org/licenses/by/4.0/

526 L. Anderson et al.

Algorithm 8: Discriminator Pretraining

Input: Untrained Dθ2 , pre_labelled_data (contains sampled: π , z1, and f (P
z1
π))

Result: An initially trained Dθ2
for i ← 0; i < num_epochs; i ← i + 1 do

Dθ2 ← Discriminator Training Loop(Dθ2 , prelabelled_data)
a learning_rate ← Update

learning_rate with patience and factorb

end
return Dθ2

——————————
a See Algorithm 9
b See https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

Algorithm 9: Discriminator Training Loop

Input: Dθ2 , prelabelled_data (contains: π , z1/ ẑ1, and f (P
z1
π)/ f (Pẑ1π))

Result: An updated Dθ2
batches ← Split prelabelled_data into num_batches many batches
for batch in batches do

f̂ (P
z1
π) ← Forward pass of Dθ2 over the batch

loss ← Loss between f̂ (P
z1
π) and true objectives from prelablled_dataa

Dθ2 ← Update Dθ2 with Adam descent methodb // Using weight_decay
end
return Dθ2

——————————
a See https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html
b See https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam

123

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam

Generative deep learning for decision making in gas networks 527

Fig. 13 Topology of Station D

Algorithm 10: Generator Training

Input: N{θ1,θ2}, prelabelled_data (contains sampled: π , z1, and f (P
z1
π)), set of entry-exits Vb,

discrete time horizon T
Result: Average loss in training
data ← array of length num_scenarios
for i ← 0; i < num_scenarios; i ← i + 1 do

initial_state ← Uniformly select from prelabelled_data
flow_forecast, pressure_forecast ← Boundary Prognosis Generator(Vb, T)a

π ← (flow_forecast, pressure_forecast, initial_state)
data[i] ← Create an unlabelled data point π

end
batches ← Create batches of size batch_size
losses ← array of length corresponding to length of batches
for i ← 0; i < num_batches; i ← i + 1 do

f̂ (P
ẑ1
π) ← Forward pass of N{θ1,θ2} over the batch

losses[i] ← Loss between f̂ (P
ẑ1
π) and 0b

N{θ1,θ2} ← Update N{θ1,θ2} with Adam descent methodc // θ2 is frozen

learning_rate ← Update using max_lr, base_lr, and step_size_upd

end
return mean value of losses

——————————
a See Algorithm 1
b See https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html
c See https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam
d Introduced in Smith (2017), see

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CyclicLR.html

123

https://pytorch.org/docs/stable/generated/torch.nn.L1Loss.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html#torch.optim.Adam
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.CyclicLR.html

528 L. Anderson et al.

Fig. 14 Neural network architecture

123

Generative deep learning for decision making in gas networks 529

Table 3 Parameters for training

Parameter Method Value

batch_size Algorithm 8 2048

num_epochs Algorithm 8 500

learning_rate Algorithm 8 / Adam 0.005

weight_decay Algorithm 9 / Adam 5e−06

batch_size Algorithm 10 2048

max_lr Algorithm 10 / CyclicLR 0.0005

base_lr Algorithm 10 / CyclicLR 5e−06

step_size_up Algorithm 10 / CyclicLR 10000

num_scenarios Algorithm 10 3200000

num_data_new Algorithm 7 2048

num_data_old Algorithm 7 8192

num_epochs Algorithm 6 10

num_generator_epochs Algorithm 6 25

num_discriminator_epochs Algorithm 6 25

stopping_loss_discriminator Algorithm 6 3 * 1022.51

stopping_loss_generator Algorithm 6 0.9 * 121848.27 2

ratio_test Algorithm 6 0.1

learning_rate Algorithm 6 / Adam 0.001

patience Algorithm 6 / ReduceLROnPlateau 2

factor Algorithm 6 / ReduceLROnPlateau 0.5

1 1022.5 was the test loss after initial discriminator training.
2 121848.27 represents the average f̂ (P

ẑ1
π) value over our artificial data

123

530 L. Anderson et al.

Ta
bl
e
4

O
pe
ra
tio

n
M
od
e
C
or
re
la
tio

n
M
at
ri
x
be
tw
ee
n
ẑ 1

an
d
z∗ 1

N
W
_N

S_
1

N
S_

SW
_2

N
_S

W
_C

_1
N
S_

N
SW

_1
W
_N

S_
C
_1

N
S_

SW
_1

N
W
_S

_2
N
S_

SW
_3

W
_N

S_
C
_2

N
W
_S

_1
O
th
er

N
W
_N

S_
1

88
4

22
0

95
29

31
37

24
36

4
24

39
7

82

N
S_

SW
_2

48
10

2
1

40
29

8
0

11
4

63
0

24
0

51
13

N
_S

W
_C

_1
0

27
65

11
00

8
0

4
0

2
0

0
55

N
S_

N
SW

_1
41

29
0

26
50

9
0

28
55

7
9

0
49

15

W
_N

S_
C
_1

0
0

0
0

0
0

0
0

0
0

0

N
S_

SW
_1

0
0

0
76

0
1

0
0

0
0

0

N
W
_S

_2
4

0
0

0
0

0
2

0
0

1
1

N
S_

SW
_3

6
7

0
52

20
0

7
10

8
1

0
4

5

W
_N

S_
C
_2

28
0

0
0

13
6

0
0

0
93

0
0

N
W
_S

_1
30

11
0

28
80

0
12

31
5

2
0

30
6

O
th
er

0
1

0
78

0
0

0
0

0
0

1

123

Generative deep learning for decision making in gas networks 531

Table 5 Parameters for MILP solving

Parameter Value Description

TimeLimit 3600 (s) The maximum time the instance is allowed to run

FeasibilityTol 1e−6 All constraints must be satisfied within this tolerance

MIPGap 1e−4 The relative gap tolerance for declaring optimality

MIPGapAbs 1e−2 The absolute gap tolerance for declaring optimality

NumericFocus 3 Employ more expensive numerically safer techniques

Table 6 Number of parameters in the neural network and submodules

Parameters Inception Blocks Small Inception Blocks

Neural Network 1,701,505 13 12

Generator 1,165,576 13 0

Discriminator 535,929 0 12

Inception Block 87,296 – –

Small Inception Block 27,936 – –

References

Achterberg T (2007) Constraint integer programming. Ph.D. thesis, Technische Universität Berlin
Baltean-LugojanR, Bonami P,Misener R, Tramontani A (2019) Scoring positive semidefinite cutting planes

for quadratic optimization via trained neural networks. Optimization-online preprint 2018/11/6943
Beliën J, Demeulemeester E, CardoenB (2009)Adecision support system for cyclicmaster surgery schedul-

ing with multiple objectives. J Sched 12(2):147
Bengio Y, Lodi A, Prouvost A (2018) Machine learning for combinatorial optimization: a methodological

tour d’horizon. arXiv preprint arXiv:1811.06128
Bertsimas D, Stellato B (2018) The voice of optimization. arXiv preprint arXiv:1812.09991
Bertsimas D, Stellato B (2019) Online mixed-integer optimization in milliseconds. arXiv preprint

arXiv:1907.02206
Burlacu R, Egger H, Groß M, Martin A, Pfetsch ME, Schewe L, Sirvent M, Skutella M (2019) Maximizing

the storage capacity of gas networks: a global minlp approach. Optim Eng 20(2):543–573
Chen Z, Zhong Y, Ge X, Ma Y (2020) An actor-critic-based uav-bss deployment method for dynamic

environments. arXiv preprint arXiv:2002.00831
Dempe S (2002) Foundations of bilevel programming. Springer, Berlin
Ding JY, Zhang C, Shen L, Li S, Wang B, Xu Y, Song L (2019) Optimal solution predictions for mixed

integer programs. arXiv preprint arXiv:1906.09575
EtheveM,AlèsZ,BissuelC, JuanO,Kedad-SidhoumS (2020)Reinforcement learning for variable selection

in a branch and bound algorithm. arXiv preprint arXiv:2005.10026
Ferber A, Wilder B, Dilina B, Tambe M (2019) Mipaal: mixed integer program as a layer. arXiv preprint

arXiv:1907.05912
Fischetti M, Lodi A (2003) Local branching. Math Program 98(1–3):23–47
Gasse M, Chételat D, Ferroni N, Charlin L, Lodi A (2019) Exact combinatorial optimization with graph

convolutional neural networks. In: Advances in neural information processing systems, pp 15554–
15566

Goodfellow I (2016) Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press, London
Gurobi Optimization L (2020) Gurobi optimizer reference manual. http://www.gurobi.com
Hanachi H, Mechefske C, Liu J, Banerjee A, Chen Y (2018) Performance-based gas turbine health moni-

toring, diagnostics, and prognostics: a survey. IEEE Trans Reliab 67(3):1340–1363

123

http://arxiv.org/abs/1811.06128
http://arxiv.org/abs/1812.09991
http://arxiv.org/abs/1907.02206
http://arxiv.org/abs/2002.00831
http://arxiv.org/abs/1906.09575
http://arxiv.org/abs/2005.10026
http://arxiv.org/abs/1907.05912
http://arxiv.org/abs/1701.00160
http://www.gurobi.com

532 L. Anderson et al.

HartWE,Watson JP,Woodruff DL (2011) Pyomo: modeling and solving mathematical programs in python.
Math Program Comput 3(3):219–260

Hart WE, Laird CD, Watson JP, Woodruff DL, Hackebeil GA, Nicholson BL, Siirola JD (2017) Pyomo-
optimization modeling in python, vol 67, 2nd edn. Springer, Berlin

Hennings F, Anderson L, Hoppmann-Baum K, Turner M, Koch T (2020) Controlling transient gas flow in
real-world pipeline intersection areas. Optim Eng 47:1–48

HoppmannK,Hennings F, Lenz R,GotzesU, HeineckeN, SpreckelsenK,Koch T (2019)Optimal operation
of transient gas transport networks. Technical report, Technical Report 19–23, ZIB, Takustr. 7, 14195
Berlin

Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
Kunz F,KendziorskiM, SchillWP,Weibezahn J, Zepter J, vonHirschhausenCR,Hauser P, ZechM,MöstD,

Heidari S et al (2017) Electricity, heat, and gas sector data for modeling the german system. Technical
report, DIW Data Documentation

Masti D, Bemporad A (2019) Learning binary warm starts for multiparametric mixed-integer quadratic
programming. In: 2019 18th European control conference (ECC), IEEE, pp 1494–1499

MohamadiBaghmolaei M, Mahmoudy M, Jafari D, MohamadiBaghmolaei R, Tabkhi F (2014) Assessing
and optimization of pipeline systemperformance using intelligent systems. JNatGas Sci Eng 18:64–76

Moritz S (2007) A mixed integer approach for the transient case of gas network optimization. Ph.D. thesis,
Technische Universität Darmstadt

NairV,BartunovS,GimenoF, vonGlehn I,LichockiP,Lobov I,O’DonoghueB,SonneratN,Tjandraatmadja
C, Wang P, Addanki R, Hapuarachchi T, Keck T, Keeling J, Kohli P, Ktena I, Li Y, Vinyals O, Zwols
Y (2020) Solving mixed integer programs using neural networks. arXiv:2012.13349

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L,
et al. (2019) Pytorch: An imperative style, high-performance deep learning library. In: Advances in
neural information processing systems, pp 8026–8037

Petkovic M, Chen Y, Gamrath I, Gotzes U, Hadjidimitriou NS, Zittel J, Koch T (2019) A hybrid approach
for high precision prediction of gas flows. Technical Report , pp. 19–26, ZIB, Takustr. 7, 14195 Berlin

Pfau D, Vinyals O (2016) Connecting generative adversarial networks and actor-critic methods. arXiv
preprint arXiv:1610.01945

Pourfard A, Moetamedzadeh H, Madoliat R, Khanmirza E (2019) Design of a neural network based pre-
dictive controller for natural gas pipelines in transient state. J Nat Gas Sci Eng 62:275–293

Ríos-Mercado RZ, Borraz-Sánchez C (2015) Optimization problems in natural gas transportation systems:
a state-of-the-art review. Appl Energy 147:536–555

Rubin DB (1981) The bayesian bootstrap. Ann Stat 5:130–134
Ruiz R, Maroto C, Alcaraz J (2004) A decision support system for a real vehicle routing problem. Eur J

Oper Res 153(3):593–606
Smith LN (2017) Cyclical learning rates for training neural networks. arXiv:1506.01186
Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of

residual connections on learning. In: Thirty-first AAAI conference on artificial intelligence
Tang Y, Agrawal S, Faenza Y (2019) Reinforcement learning for integer programming: Learning to cut.

arXiv preprint arXiv:1906.04859
Thomas PS, Brunskill E (2017) Policy gradient methods for reinforcement learning with function approxi-

mation and action-dependent baselines. arXiv preprint arXiv:1706.06643
Wong E, Kolter JZ (2017) Provable defenses against adversarial examples via the convex outer adversarial

polytope. arXiv preprint arXiv:1711.00851
Yueksel Erguen I, Zittel J, Wang Y, Hennings F, Koch T (2020) Lessons learned from gas network data

preprocessing. Tech. rep., Technical Report, pp 20–13, ZIB, Takustr. 7, 14195 Berlin
ZarpellonG, Jo J, LodiA,BengioY (2020) Parameterizing branch-and-bound search trees to learn branching

policies. arXiv preprint arXiv:2002.05120

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2012.13349
http://arxiv.org/abs/1610.01945
http://arxiv.org/abs/1506.01186
http://arxiv.org/abs/1906.04859
http://arxiv.org/abs/1706.06643
http://arxiv.org/abs/1711.00851
http://arxiv.org/abs/2002.05120

	Generative deep learning for decision making in gas networks
	Abstract
	1 Introduction
	2 Background and related work
	3 The solution framework
	3.1 Generator and discriminator design
	3.2 Interpretations
	3.3 Training method

	4 The gas transport model and data generation
	4.1 The gas transport model
	4.2 Data generation
	4.2.1 Boundary forecast generation
	4.2.2 Operation mode sequence generation
	4.2.3 Initial state generation

	5 Training scheme and warm start algorithm
	5.1 Primal heuristic and warm start
	5.2 Training scheme
	5.3 Real world data

	6 Computational results
	6.1 Data generation results
	6.2 Training results
	6.3 Real-world results

	7 Conclusion
	Appendix
	References

