Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/310020 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Journal of Global Optimization [ISSN:] 1573-2916 [Volume:] 86 [Issue:] 3 [Publisher:] Springer US [Place:] New York, NY [Year:] 2022 [Pages:] 573-588
Verlag: 
Springer US, New York, NY
Zusammenfassung: 
We introduce a generalization of separability for global optimization, presented in the context of a simple branch and bound method. Our results apply to continuously differentiable objective functions implemented as computer programs. A significant search space reduction can be expected to yield an acceleration of any global optimization method. We show how to utilize interval derivatives calculated by adjoint algorithmic differentiation to examine the monotonicity of the objective with respect to so called structural separators and how to verify the latter automatically.
Schlagwörter: 
Global optimization
Algorithmic differentiation
Branch and bound
Interval adjoints
Search space reduction
Separable functions
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.