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Abstract
We introduce a generalization of separability for global optimization, presented in the con-
text of a simple branch and bound method. Our results apply to continuously differentiable
objective functions implemented as computer programs. A significant search space reduction
can be expected to yield an acceleration of any global optimization method. We show how
to utilize interval derivatives calculated by adjoint algorithmic differentiation to examine the
monotonicity of the objective with respect to so called structural separators and how to verify
the latter automatically.

Keywords Global optimization · Algorithmic differentiation · Branch and bound · Interval
adjoints · Search space reduction · Separable functions

Mathematics Subject Classification 65G30 · 90C26

1 Introduction

In contrast to local optimization methods, deterministic global optimization methods, e.g.,
interval-based branch and bound (b&b) algorithms [1], guarantee to find the global solu-
tion for a predefined tolerance for optimality in finite time [2, 3]. These methods are more
expensive in terms of computational effort than their local counterparts.

An important property that should be exploited during optimization is the decomposition of
the index set of variables of an optimization problem.We consider continuously differentiable
objective functions f : S ⊂ R

n → R with an available evaluation formula f (x), where S ∈
I
n and I stands for the set of all closed real intervals.We follow [4] and denote a decomposition
of the index set of the variables I = {1, . . . , n} into p subsets as I [ j] ⊆ I with

⋃p
j=1 I

[ j] = I .

Each subset has n[ j] = ∣
∣I [ j]∣∣ elements and a corresponding part of the domain S[ j] ∈ I

n[ j]
.

In this paper, we assume disjoint subsets, i.e., I [ j] ∩ I [k] = ∅,∀k, j ∈ {1, . . . , p}, j 	= k,
such that there are no common variables.
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A function f is called partially separable (also: decomposable or block-separable) if it is
of the form

f (x) =
p∑

j=1

f [ j](x [ j]), x [ j] ∈ S[ j], (1)

with a given partitioning of the variable indices into p disjoint subsets and sub-functions
f [ j] : S[ j] ⊂ R

n[ j] → R. A function is called (fully) separable [5, 6] if it is of the form (1)
with n[ j] = 1, j ∈ {1, . . . , p}.

Separability can be exploited for box constrained global optimization problems

y∗ = min
x∈S f (x), (2)

with search space S ∈ I
n and partially separable objective function f as in (1). It is well

known [7] that the global minimum and the corresponding minimizer of (2) can be obtained
by decomposition into smaller optimization problems

y∗ =
p∑

j=1

min
x [ j]∈S[ j]

f [ j](x [ j]), (3)

that can be solved in parallel. In the context of b&b algorithms it is easier to solve (3) than
(2) due to the decomposition of the search space.

Separable functions have been extensively investigated in the context of optimization. In
[8] a quasi-Newton method is introduced that exploits the structure of partially separable
functions when computing secant updates for the Hessian matrix. A parallel b&b approach
was used in [9] to find optima of non-convex problems with partially separable functions
over a bounded polyhedral set. The automatic detection of partial separability as in (1) by
algorithmic differentiation (AD) was presented in [10].

Another class of problems related to the present work is introduced in the context of
incomplete global search in [11] and called as easy to optimize as decomposable functions.
A function f : S ⊂ R

n → R is in this class, if there exists functions g[i] : S[i] ⊂ R → R

and h[i] : S ⊂ R
n → R with

d f

dxi
(x) = g[i](xi ) · h[i](x). (4)

Minimizer candidates can be obtained from g[i](xi ) = 0 which ensures first-order optimality
condition

d f

dxi
(x) = 0,

is fulfilled. Minimizer that satisfy h[i](x) = 0 and minimizer at the boundary are not taken
into consideration. Thus, there is no guarantee to obtain the globalminimumby this approach.

In this paper, we aim to generalize the concept of separability in order to make previously
non-decomposable functions also benefit from decomposition of the index set of the variables
on subdomains that refer to the search space. Therefore, we introduce a special structure
called structural separability and formulate an additionalmonotonicity condition on so-called
structural separators in Sect. 2. Structural separability is less restrictive than (1), but has a
similar property as (4). The monotonicity condition is necessary to guarantee that all possible
optima are still considered after the decomposition, which is a crucial prerequisite for the
integration into deterministic global optimization algorithms. Examples for functions that are
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non-separable by (1) but fulfill the new definition such that their corresponding optimization
problem can still be decomposed are given.

Section 3 explains how to implement the presented work and how to integrate it into a
b&b algorithm for deterministic global optimization. Therefore, enclosures of the gradient
(also: interval gradient) of the objective function as a combination of reliable and inclusion
isotonic interval computations [12] and adjoint AD [13, 14] are used for the examination of
the monotonicity condition and for automatic detection of separators. Interval gradients have
already been used in deterministic global optimization for, among others, the verification of
optimality conditions [4, 15–17]. But they can also be used for significance based approximate
computing as presented in [18] and discussed in the context of neural networks in [19].

In Sect. 4, we show the results of a proof of concept implementation for the examples
from Sect. 2 followed by conclusion and outlook in Sect. 5.

2 Subdomain separability

We introduce subdomain separability and we show how to exploit this property in
deterministic global optimization.

Definition 1 (Structural separability) A function f : S ⊂ R
n → R is called structurally

separable if there exists a decomposition of the index set of the variables into p + 1 disjoint
subsets I [ j] such that

f (x) = h
(
f [1](x [1]), . . . , f [p](x [p]), x [p+1]) , x [ j] ∈ S[ j], ∀ j, (5)

with structural separators f [ j] : S[ j] ⊂ R
n[ j] → R, j ∈ {1, . . . , p} and h : Rp+n[p+1] → R.

Subsets I [ j], j ∈ {1, . . . , p} are assumed to be non-empty, but I [p+1] can be empty if p > 1.

Remark 1 In the directed acyclic graph (DAG) representation of the optimization problem as
described in [20], structural separators f [ j] are cut-vertices [21], i.e., each path connecting
vertices corresponding to variables x [ j] with the vertex corresponding to the objective value
f (x) passes through the cut-vertex corresponding to f [ j].

Remark 2 Conventionally separable functions as in (1) are covered by Definition 1 with

h
(
f [1](x [1]), . . . , f [p](x [p]),∅) = f [1](x [1]) + . . . + f [p](x [p]).

Remark 3 Application of the chain rule of differentiation to differentiable structurally
separable functions yields the gradient elements

d f

dx [ j] (x) = d f

d f [ j] (x) · d f
[ j]

dx [ j]
(
x [ j]), j ∈ {1, . . . , p}, (6)

with

d f

d f [ j] (x) = ∂h

∂ f [ j]
(
f [1](x [1]), . . . , f [p](x [p]), x [p+1]) .

Equation (6) is the same as (4) with g[ j](x [ j]) = d f [ j]
dx [ j] (x

[ j]), h[ j](x) = d f
d f [ j] (x) and n[ j] =

1,∀ j .

Theorem 1 (Subdomain separability) Consider the box constrained global optimization
problem as in (2) with structurally separable and differentiable objective function f as in (5)
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and structural separators f [ j], j ∈ {1, . . . , p}. If the objective function is monotonic w.r.t. a
structural separator f [k] on the search space S, that is,

d f

d f [k] (x) ≥ 0 ∀x ∈ S ∨ d f

d f [k] (x) ≤ 0 ∀x ∈ S, (7)

then the optimization problem in (2) can be decomposed into

min
x [ j]∈S[ j]∀ j∈{1,...,p+1}\k

h
(
f [1](x [1]), . . . , s[k],∗, . . . , f [p](x [p]), x [p+1]) , (8)

s.t. s[k],∗ =

⎧
⎪⎨

⎪⎩

min
x [k]∈S[k]

f [k](x [k]) if d f

d f [k] (x) ≥ 0 ∀x ∈ S,

max
x [k]∈S[k]

f [k](x [k]) if d f

d f [k] (x) ≤ 0 ∀x ∈ S.

(9)

Proof If the objective function f is monotonically increasing w.r.t. the structural separator
f [k], i.e., d f

d f [k] (x) ≥ 0 ∀x ∈ S, we have

h
(
f [1](x [1]), . . . , s[k],−, . . . , f [p](x [p]), x [p+1])

≤ h
(
f [1](x [1]), . . . , s[k],+, . . . , f [p](x [p]), x [p+1]) , ∀x [ j] ∈ S[ j], ∀ j, (10)

for s[k],− ≤ s[k],+ ∈ R. As to ∂h
∂x [k] ( f

[1](x [1]), . . . , f [p](x [p]), x [p+1]) = 0, and due to (10)

the global minimum of f requires the separator f [k] to be a minimum on the search space.
The monotonic decrease scenario is handled analogously. ��

Remark 4 The dimension of the inner optimization problem in (9) is n[k] while the dimension
of the outer optimization problem in (8) is n − n[k] + 1.

Remark 5 A degenerate solution is implied if d f
d f [k] (x) = 0, ∀x ∈ S and S contains more

than one element.

Remark 6 If there are multiple structural separators, e.g., f [ j] and f [k], j 	= k, fulfilling (7),
then the inner optimization problems in (9) can be solved in parallel.

Remark 7 If structural separator f [ j] is also structurally separable, then the decomposition
approach can be applied recursively and the original optimization problem decomposes into
even smaller disjoint optimization problems. In that case, we will introduce an additional
superscript to distinguish structural separators belonging to different recursion depths. The
j-th structural separator that belongs to recursion depth � is denoted by f [ j],�.

If there are structural separators f [ j],�+1 and f [k],� with I [ j],�+1 ⊂ I [k],�, then the opti-
mization problems for f [ j],�+1 should be solved before solving the optimization problems
for f [k],�.

Remark 8 If the monotonicity condition is violated, then the structural separability can still

be exploited similar to [11] by solving d f [k]
dx [k]

(
x [k]) = 0 for finding stationary points. As

already stated in Sect. 1, this approach does not necessarily compute all stationary points.

For the remainder of this paper,wewill consider that the evaluation formula of the objective
function y = f (x) is implemented as a differentiable program with independent variables
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x and dependent variable y. Following [13], we assume that at a particular argument x the
differentiable program of f can be expressed by a finite sequence of function evaluations as

vi = xi , i = 1, . . . , n,

v j = ϕ j (vi )i≺ j , j = n + 1, . . . , n + p + 1,

y = vn+p+1,

(11)

where v j for j = n+ 1, . . . , n+ p are referred to as intermediate variables. The precedence
relation i ≺ j indicates a direct dependency of v j on vi . Furthermore, the transitive closure
≺∗ of ≺ induces a partial ordering of all indices j = 1, . . . , n + p+ 1. Equation (11) is also
referred to as the single assignment code (SAC) of f . The SAC may not be unique due to
commutativity, associativity and distributivity. We assume a SAC to be given.

2.1 Examples

Five test problems are investigated in the light of subdomain separability. They illustrate
different aspects of the general approach. Besides the partially separable function in Exam-
ple 1, there is the exponential function which is solvable in parallel and globally monotonic
in Example 2, a recursive exponential function which is still globally monotonic but can-
not be solved in parallel in Example 3 and the Shubert function in Example 4 that is not
globally monotonic, but solvable in parallel. Example 5 can neither be solved in parallel nor
it is globally monotonic but it could still benefit from subdomain separability. The SACs
of the functions and their DAG representations are visualized to highlight that the vertices
corresponding to the structural separators are cut-vertices.

Example 1 (Styblinski-Tang function [22]) Partially separable functions as in (1) are
structurally separable and always fulfill the monotonicity condition in (7) with

d f

d f [ j] (x) = 1, ∀ j ∈ {1, . . . , p},

on any search space S which yields the well-known fact that the corresponding optimization
problem can be decomposed and solved in parallel.

For example, the Styblinski-Tang function

f (x) = 1

2

n∑

i=1

(
x4i − 16x2i + 5xi

)
,

has the form of (1) except for the factor in front of the sum. Due to the factor, this func-
tion is marked as non-separable in [5]. Still, the problem can be decomposed into f (x) =
1
2

∑n
i=1 f [i](x [i]) with structural separators f [i] : R → R, f [i](x [i]) = x4i −16x2i +5xi due

to d f
d f [i] (x) = 1

2 , ∀i ∈ {1, . . . , n}, ∀x ∈ R
n . The SAC of this function is given by

vi = x4i − 16x2i + 5xi , i = 1, . . . , n,

� =
n∑

i=1

vi ,

y = 1

2
�,

(12)

and the DAG representing (12) is shown in Fig. 1.
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Fig. 1 DAG representing the program structure from Example 1 and Example 2 for n = 4

Example 2 (Exponential function [23]) For the exponential function

f (x) = − exp

(

−1

2

n∑

i=1

x2i

)

,

with SAC

vi = x2i , i = 1, . . . , n,

� =
n∑

i=1

vi ,

y = − exp

(

−1

2
�

)

,

(13)

we have structural separators f [i] : R → R with f [i](x [i]) = x2i and derivative of the
objective w.r.t. these separators equal to

d f

d f [i] (x) = 1

2
exp

(

−1

2

n∑

i=1

x2i

)

.

The exponential function is globally monotonically increasing such that Theorem 1 becomes
applicable to all separators and the resulting subproblems can be solved in parallel.

The DAG of this function representing (13) is also given in Fig. 1 since it has the same
structure as the DAG of the function from Example 1.

Example 3 (Recursive exponential function) For a demonstration of the usefulness of struc-
tural separabilitywe consider the optimization problem in (2)with search space S = [−2, 3]n ,
objective function f : Rn → R,

f (x) = h
(
f [1],1(x [1],1), x [2],1) ,

f [1],� (x [1],�) = h
(
f [1],�+1(x [1],�+1), x [2],�+1

)
, ∀� ∈ {1, . . . , n − 2},

f [1],n−1 (v) = exp
(
v2

)
,

h (z, v) = exp
(
v2 + z − 1

)
,

with structural separable function h : R2 → R, structural separators f [1],� and corresponding
subsets of the index set I [1],� = {1, . . . , n − �}, I [2],� = {n − � + 1}, � ∈ {1, . . . , n − 1}.
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Fig. 2 DAG representing the program structure from Example 3 for n = 4

The differentiable program is given by the SAC

v1 = exp(x1),

vi = exp(x2i + vi−1 − 1), i = 2, . . . , n,

y = vn .

(14)

The program is non-decomposable in a conventional manner, but it fulfills Definition 1 for all
structural separators. From the DAG representation of this function given in Fig. 2 it becomes
clear that the separators are arranged in a row which requires a recursive decomposition of
the optimization problem.

To decompose the optimization problem it remains to be shown that the derivatives of the
objectivew.r.t. the separators d f

d f [1],� (x), � ∈ {1, . . . , n−1}, are non-negative (or non-positive)
on any subdomain. From

d f

d f [1],1 (x) = f (x),

and

d f [1],�

d f [1],�+1

(
x [1],�) = f [1],� (x [1],�) ,

it follows that

d f

d f [1],� (x) = d f

d f [1],1 (x) ·
�∏

j=1

d f [1], j

d f [1], j+1

(
x [1], j) = f (x) ·

�∏

j=1

f [1], j (x [1], j) .

By mathematical induction we show that f [1],�(x [1],�) ≥ 1 for � ∈ {1, . . . , n− 1}. The basis
f [1],n−1(x [1],n−1) = exp(x21 ) ≥ exp(0) = 1 obviously fulfills the statement. The assumption
f [1],�+1(x [1],�+1) ≥ 1 yields

f [1],� (x [1],�) = exp
(
x2n−�+1 + f [1],�+1

(
x [1],�+1

)
− 1

)

≥ exp
(
x2n−�+1 + 1 − 1

) ≥ exp(0) = 1,

due to monotonicity of the exponential function. The same is true for f (x). Thus,
f [1],�(x [1],�) ≥ 1 and d f

d f [1],� (x) ≥ 1 for � ∈ {1, . . . , n − 1}. Furthermore, we know that

the global minimizer x∗ is located at x∗
i = 0, i ∈ {1, . . . , n}, with a minimum of f (x∗) = 1.

As a consequence of Theorem 1 the optimization problem can be reformulated as

min
xn∈[−2,3]

h
(
s[1],1,∗, xn

)
,

s.t. s[1],�,∗ = min
xn−�+1∈[−2,3]

h
(
s[1],�+1,∗, xn−�+1

)
, ∀� ∈ {1, . . . , n − 2}

s[1],n−1,∗ = min
x1∈[−2,3]

exp
(
x21

)
,
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Fig. 3 DAG representing the program structure from Example 4 for n = 4

h (z, v) = exp
(
v2 + z − 1

)
.

Note, that this function is globally monotonic w.r.t. the separator which does not nec-
essarily hold in general. Since the separators are recursively dependent on each other,
the corresponding optimization problems need to be solved sequentially beginning with
s[1],n−1,∗.

Example 4 (Shubert function [24]) The Shubert function is given by f : Rn → R with

f (x) =
n∏

i=1

5∑

j=1

cos(( j + 1)xi + j),

and SAC

vi =
5∑

j=1

cos(( j + 1)xi + j), i = 1, . . . , n,

y =
n∏

i=1

vi ,

(15)

Its DAG representation is shown in Fig. 3. Each factor of the multiplication can be considered
as a structural separator with f [i](x [i]) = ∑5

j=1 cos(( j + 1)xi + j) and I [i] = {i} for
i ∈ {1, . . . , n}. Derivatives of the function value w.r.t. the separators are derived as

d f

d f [i] (x) =
n∏

k=1
k 	=i

f [k](x [k]).

If the monotonicity condition holds for any structural separator, then the corresponding
optimization problem can be decomposed by Theorem 1.

Example 5 (Salomon function [11]) We show that the Salomon function f : Rn → R is
separable only on selected subdomains. The differentiable program is given by

f (x) = 1 − cos

⎛

⎝2π

√
√
√
√

n∑

i=1

x2i

⎞

⎠ + 0.1

√
√
√
√

n∑

i=1

x2i ,
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Fig. 4 DAG representing the structure of the evaluation formula from Example 5 for n = 4

with SAC

vi = x2i , i = 1, . . . , n,

� =
n∑

i=1

vi ,

g = √
�,

y = 1 − cos (2πg) + 0.1g.

(16)

The DAG of (16) is visualized in Fig. 4. Introduction of an intermediate result g : Rn → R

with g(x) =
√∑n

i=1 x
2
i and structural separators f [i] : R → R with f [i](x [i]) = x2i ,

i ∈ {1, . . . , n}, yields the derivatives

d f

d f [i] (x) = d f

dg
(x) · dg

d f [i] (x),

d f

dg
(x) = 2π sin(2πg(x)) + 0.1,

dg

d f [i] (x) = 1

2g(x)
.

As dg
d f [i] (x) is always positive it remains to show that d f

dg (x) is either non-positive (or non-

negative) on any subdomain. The roots of d f
dg (x) are

g2z−1 = z + arcsin

(

−0.1

2π

)
1

2π
∧ g2z = z − 1

2
− arcsin

(

−0.1

2π

)
1

2π
, z ∈ N

+.

The function is monotonic between these roots. Thus, Theorem 1 can be applied to the

Salomon function on the search domain S =
[

gz√
n
,
gz+1√

n

]n
for all z ∈ N

+. If z is even, then
the minimum of the separator is required for a minimum of the objective function. Otherwise,
if z is odd, then the separator needs to be maximized to obtain a minimum of the objective
function.

123



582 Journal of Global Optimization (2023) 86:573–588

3 Implementation

In this section, we present how to compute interval gradients by adjoint AD, how they can
be used to apply Theorem 1 to a differentiable program implementing a function f and how
to verify structural separators.

3.1 Interval arithmetic

Interval arithmetic (IA) is a concept that enables the computation of bounds of a function
evaluation on a given interval. A closed interval [x] ∈ I of a variable x ∈ Rwith lower bound
x ∈ R and upper bound x ∈ R is denoted as

[x] = [
x, x

] = {
x ∈ R | x ≤ x ≤ x

}
.

If there is only a single element in [x], i.e, the endpoints are equal x = x , then the square
brackets [·] are dropped and x is called a degenerate interval. In that sense IA represents an
extension of the real/floating-point number system.

Interval vectors [x] ∈ I
n have endpoints for each component

[x] = [
x, x

] = {
x ∈ R

n | xi ≤ xi ≤ xi
}
.

When evaluating a function y = f (x) in IA on [x] we are interested in the information

[y] = f ∗([x]) = { f (x) | x ∈ [x]}.

The asterisk denotes the united extension which computes the true range of values on the
given domain. United extensions for all unary and binary elementary functions and arithmetic
operations are known and endpoint formulas can be looked up, e.g., in [12]. Unfortunately,
the derivation of endpoint formulas for the united extensions of composed functions might be
expensive or even impossible. Hence, we will compute corresponding estimates by natural
interval extensions. A natural interval extension can be obtained by replacing all elemental
functions ϕ j in (11) with their corresponding united extensions as

[vi ] = [xi ] , i = 1, . . . , n,
[
v j

] = ϕ∗
j ([vi ])i≺ j , j = n + 1, . . . , n + p + 1,

[y] = [
vn+p+1

]
.

(17)

The computation of the interval function value by the natural interval extension from (17)
results in

[y] = f ([x]) ⊇ f ∗([x]).

The superset relation states that the interval [y] can be an overestimation of all possible
values over the given domain, but it guarantees enclosure. Furthermore, the natural interval
extension of Lipschitz continuous functions converges linearly to the united extension with
decreasing domain size.

The reader is referred to [12, 25] for more information on the topic.
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3.2 Adjoint algorithmic differentiation

AD techniques [13, 14] use the chain rule to compute in addition to the function value of a
computer program implementing the evaluation formula f (x) of a function f : Rn → R, its
derivatives w.r.t. the independent variables x at a particular point x .

The adjoint or backward mode of AD propagates derivatives of the function w.r.t. inde-
pendent and intermediate variables in reverse relative to the order of their computation in
the SAC (11). The computationally intractable combinatorial optimization problem known
as DAG Reversal [26] is implied.

Following [14], first-order adjoints are marked with a subscript (1). They are defined as

x(1) = y(1) · d f
dx

(x),

with x(1) ∈ R
n and y(1) ∈ R. A single adjoint computation with seed y(1) = 1 results in the

gradient d f
dx (x) stored in x(1). The adjoint of (11) can be implemented by (11) itself followed

by

v(1),n+p+1 = y(1),

v(1),k =
∑

j :k≺ j

v(1), j · ∂ϕ j

∂vk
(vi )i≺ j , k = n + p + 1, . . . , n + 1,

x(1),i = v(1),i , i = n, . . . , 1.

(18)

The evaluation of (18) yields the adjoints of all intermediate variables v j in addition to those
of the independent variables

v(1), j = y(1) · d f

dv j
(x), j = n + p + 1, . . . , n + 1.

3.3 Interval adjoints

The natural interval extension of (11) and (18) computes the interval function value and its
interval derivatives w.r.t. all independent and intermediate variables as the result of a single
evaluation. It can be implemented as (17) followed by

[
v(1),n+p+1

] = [
y(1)

]
,

[
v(1),k

] =
∑

j :k≺ j

[
v(1), j

] · ∂ϕ∗
j

∂vk
([vi ])i≺ j , k = n + p + 1, . . . , n + 1,

[
x(1),i

] = [
v(1),i

]
, i = n, . . . , 1.

(19)

Compared to the traditional approach of AD in which the derivatives are only computed at
specified points, we now get enclosures of the derivatives that contain all possible values of
the derivative over the specified domain. The interval adjoints in (19) might be overestimated
compared to the united extension as it is already stated for the interval values in Sect. 3.1.
The natural interval extension of AD methods converges linearly for continuously differen-
tiable functions [27]. Higher-order converging enclosures, e.g., centered forms [12], slopes
or McCormick relaxations [28, 29] of AD methods can be derived [15, 27].
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3.3.1 Monotonicity test

A single evaluation of the interval adjoint for
[
y(1)

] = 1 suffices to verify monotonicity as
in (7) for all independent and intermediate variables. If the separation approach is embedded
into a b&b solver that involves verification of the first-order optimality condition by interval
adjoints, then the monotonicity test is for free, assuming that the separators are known a
priori.

3.3.2 Verification of separators

Interval adjoints can be used to verify if an intermediate variable v is a structural separator of
its program representing function f . W.l.o.g. we assume that the program is structurally sep-
arable with decomposition of the index set into two subsets I [1] and I [2], structural separator
v dependent on x [1] and that its computing formula v(x [1]) is implemented in the program.
Furthermore, we assume that the interval adjoints d f

dv ([x]) ∈ I as well as d f
dx [1] ([x]) ∈ I

n[1]

are already computed for the monotonicity test on [x] as described in Sect. 3.3.1. Evaluation
of (19) with the adjoint of the intermediate variable set to

[
v(1)

] = d f
dv ([x]) yields

[
x(1)

] = dv

dx

([
x [1]]) · d f

dv
([x]). (20)

The assumption that f is structurally separable and satisfies Definition 1 with separator v is
correct if

d f

dx [1] (x) = dv

dx [1]
(
x [1]) · d f

dv
(x), ∀x ∈ [x] ,

dv

dx [2]
(
x [1]) =0, ∀x ∈ [x] ,

holds, which can be verified by checking equality
[
x [1]
(1)

]
= d f

dx [1] ([x]), (21)
[
x [2]
(1)

]
= 0, (22)

obtained from (20). If either (21) or (22) is violated, then v is not a structural separator. Thus,
for the verification of each separator candidate one adjoint evaluation of (19) is required in
addition to the one for the monotonicity test.

An exhaustive search for separators should be avoided, due to the potentially high number
of intermediate variables and the associated number of separator candidates. Separators given
by expert users can be verified efficiently. Since structural separability as given inDefinition 1
is domain-independent and thus is a global property, it is sufficient to identify the separators
once before performing the global search.

4 Case study

The general idea of b&b algorithms [25] used for global optimization problems as given
in (2) is to remove all parts of the search space that cannot contain a global minimizer.
The implementation used for this case study is a variation of the one presented in [17]
implementing Theorem 1. The user needs to specify at least one separator. The algorithm
performs the following steps:
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Fig. 5 Isolines of theShubert function forn = 2 (left)with green lines around localminima and red lines around
local maxima. B&b nodes considered by the algorithm (right) with active nodes marked in green, white boxes
are discarded by the cut-off test and orange boxes if the first-order optimality condition is violated. Non-square
boxes result from the index set decomposition approach

– multi-section: half-splitting in every dimension resulting in 2n new b&b nodes;
– cut-off test: elimination of b&b node with search space [x] if f ([x]) > y∗ with upper

bound y∗ for the global minimum;
– first-order optimality test: If d f

dxi
([x]) ≥ 0 and xi is a bound of original search space S,

then recompute with xi = xi , else if
d f
dxi

([x]) ≤ 0 and xi is a bound of original search
space S, then recompute with xi = xi , otherwise eliminate b&b node with search space
[x];

– improvement of bound y∗: Evaluate the function at any point (e.g., midpoint) of the search
space to find a better bound y∗;

– separator test: Check monotonicity condition for a priori known separators and generate
a subproblem if Theorem 1 is applicable.

Obviously, the improvement of the upper bound of the global minimum can be enhanced by
local searches instead of evaluation of the objective function at the midpoint of the current
search space. Recursive separation is not supported by the current version of the solver. It is
the subject of ongoing development efforts.

The software implements the required interval adjoints by using the interval type from the
Boost library [30] as a base type of the first-order adjoint type provided by dco/c++1 [31].
Both template libraries make use of the concept of operator overloading as supported, e.g.,
by C++.

On the left side of Fig. 5 , isolines of the two-dimensional Shubert function over the
domain [0, 2π] are shown with green lines around (local) minima and red lines around local
maxima. The two global minima are marked by green crosses. The right side of Fig. 5 shows
the subdomains that are considered by the b&b algorithm. For visualization the branching
is set up to stop at an accuracy of 0.1. Non-square search spaces result from the separation
approach and only occur in regions that are proven to be monotonic by the interval adjoints.
Green boxes are active search spaces that could contain a global minimizer. White boxes are
discarded by the cut-off test. Orange boxes violate the first-order optimality condition.

1 https://www.nag.co.uk/content/adjoint-algorithmic-differentiation
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Table 1 Number of generated b&b nodes by the algorithm without and with separation

n Search space w/o sep. w/ sep.

Styblinski-Tang 4 [−5, 5]4 4609 285

8 [−5, 5]8 5018817 569

Exponential 4 [−1, 1]4 18 17

8 [−1, 1]8 258 33

Recursive exponential 4 [−2.1, 2.0]4 273 252

8 [−2.1, 2.0]8 4609 549

Shubert 4 [−10, 10]4 248618257 5272861

Salomon 4 [−100, 100]4 2322 2322

8 [−100, 100]8 655618 655618

Our solver is used to find the global minima of the examples from Sect. 2. The algorithm
is performed with and without separation. Structural separators are marked manually. The
results are summarized in Table 1. Most of the presented examples benefit from the domain-
dependent index set decomposition approach and have less b&b nodes generated by the
algorithm if separation is enabled. The benefit increases with growing dimensionality due
to the exponential complexity of the multi-section. The Salomon function does not benefit
from the domain-dependent index set decomposition since the relevant domains are already
discarded by the cut-off or first-order optimality tests.

We only measure runtimes for the Styblinski-Tang example with n = 8 with and without
exploiting subdomain separability. Since the derivative information is already available for
all separators after the first-order optimality test, the monotonicity test only iterates over the
separators defined by the user. The number of b&b nodes considered by the algorithmwithout
separation is 8820 times higher than with separation. The corresponding runtime without
separation is only 7673 times higher than with separation. This observation correlates with
the fact that the computations of b&b nodes that do not pass the cut-off test are terminated
immediately. The percentage of b&b nodes that are eliminated due to the cut-off test is 30.2%
for the case without separation and 2.8% with separation approach. The runtime estimates
are averaged over 100 calls of the solver for both cases.

Our in-house solver has been designed as a playground for novel algorithms. Neither is it
optimized for speed, nor does it feature state-of-the-art non-convexoptimizationmethodology
beyond the previously described b&b algorithm. Ultimately, we aim for integration of our
ideas into modern software solutions for deterministic global optimization, e.g., [32, 33].

5 Conclusion and outlook

Our notion of separability combined with tests for monotonicity allows us to decompose an
optimization problem into smaller optimization problems. It extends the verification of the
first-order optimality condition as presented in the context of incomplete global search in [11]
so that it can be used for deterministic global optimization, i.e., instead of just finding a few
candidates fulfilling first-order optimality our approach guarantees to consider all possible
optima.
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We explained how to utilize interval adjoints to verify monotonicity of the objective
function w.r.t. all structural separators at the cost of a single adjoint evaluation. As a first
result, we revisited examples from the literature that benefit from the domain-dependent
separability approach. Furthermore, we showed how to verify the separation property of a
variable in a given computer program at the cost of only two adjoint evaluations.

The verification of separators can be used as a starting point for research into heuristics
for automatically detecting separators in a computer program. Further work in progress
includes enabling recursive separation.Moreover, interval arithmetic can result in a significant
overestimation of the true value range, e.g., due to the wrapping effect or the dependency
problem. Adjoint versions of interval centered forms, slopes and the McCormick relaxations
should achieve better convergence.
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