Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/309792 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Journal of Business Economics [ISSN:] 1861-8928 [Volume:] 94 [Issue:] 1 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2023 [Pages:] 137-185
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
The most commonly used variant of conjoint analysis is choice-based conjoint (CBC). Here, hierarchical Bayesian (HB) multinomial logit (MNL) models are widely used for preference estimation at the individual respondent level. A new and very flexible approach to address multimodal and skewed preference heterogeneity in the context of CBC is the Dirichlet Process Mixture (DPM) MNL model. The number and masses of components do not have to be predisposed like in the latent class (LC) MNL model or in the mixture-of-normals (MoN) MNL model. The aim of this Monte Carlo study is to evaluate the performance of Bayesian choice models (basic MNL, HB-MNL, MoN-MNL, LC-MNL and DPM-MNL models) under varying data conditions (especially under multimodal heterogeneity structures) using statistical criteria for parameter recovery, goodness-of-fit and predictive accuracy. The core finding from this Monte Carlo study is that the standard HB-MNL model appears to be highly robust in multimodal preference settings .
Schlagwörter: 
Choice-based conjoint analysis
Hierarchical Bayesian estimation
Heterogeneity
Dirichlet Process Mixture
Monte Carlo study
JEL: 
M31
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.