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Abstract

The most commonly used variant of conjoint analysis is choice-based conjoint
(CBC). Here, hierarchical Bayesian (HB) multinomial logit (MNL) models are
widely used for preference estimation at the individual respondent level. A new and
very flexible approach to address multimodal and skewed preference heterogeneity
in the context of CBC is the Dirichlet Process Mixture (DPM) MNL model. The
number and masses of components do not have to be predisposed like in the latent
class (LC) MNL model or in the mixture-of-normals (MoN) MNL model. The aim
of this Monte Carlo study is to evaluate the performance of Bayesian choice models
(basic MNL, HB-MNL, MoN-MNL, LC-MNL and DPM-MNL models) under var-
ying data conditions (especially under multimodal heterogeneity structures) using
statistical criteria for parameter recovery, goodness-of-fit and predictive accuracy.
The core finding from this Monte Carlo study is that the standard HB-MNL model
appears to be highly robust in multimodal preference settings.
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1 Introduction

Addressing consumer heterogeneity in choice models is an issue in the market-
ing literature since the mid-1990s (e.g., Allenby and Ginter 1995; Allenby and
Rossi 1998; Rossi et al. 1996). Using appropriate statistical estimation techniques
makes it possible for researchers and practitioners to analyze and fully understand
markets with truly heterogeneous and/or segment-specific market structures.
To date, the most widely applied discrete choice model is the multinomial logit
(MNL) model (e.g., Horowitz and Nesheim 2021; Keane et al. 2021), which dates
back to McFadden (1973). Considering random taste variation in the MNL model
nowadays allows the researcher to derive implications at the individual respond-
ent level and also to avoid or relax the stuck-in-the-middle problem by using
individual-level estimates for decisions at the market level (e.g. if a firm plans
to launch one new product for an aggregate of consumers). Wedel et al. (1999)
distinguished between continuous and discrete representations of consumer het-
erogeneity. Although the “true” distribution of consumer heterogeneity is often
continuous, the concept of the existence of a discrete number of market segments
is often more attractive and easier to understand, especially from a managerial
point of view (e.g., Ebbes et al. 2015; Tuma and Decker 2013). Whereas dis-
crete approaches often over-simplify the concept of heterogeneity, continuous
approaches may not be flexible enough to reproduce consumer heterogeneity ade-
quately, especially if a unimodal heterogeneity distribution is assumed (Allenby
and Rossi 1998; Rossi et al. 2005).

Choice models accounting for discrete and continuous representations of hetero-
geneity became popular for analyzing stated preferences using choice-based conjoint
(CBC) data, too (Louviere and Woodworth 1983). On the one hand, the finite mix-
ture MNL approach, proposed by Kamakura and Russell (1989) for the analysis of
panel data, was applied to CBC data (DeSarbo et al. 1995; Kamakura et al. 1994;
Moore et al. 1998). This approach, also known as latent class (LC) MNL model,
divides the market into a manageable number of homogeneous segments with dif-
ferent preference and elasticity structures. On the other hand, Allenby et al. (1995),
Allenby and Ginter (1995) and Lenk et al. (1996) published milestone articles for
the application of models with continuous representations of heterogeneity to CBC
data using hierarchical Bayesian (HB) estimation techniques. Using a normal distri-
bution became the standard procedure to represent preference heterogeneity, referred
to as HB-MNL model in the following (e.g., Kim et al. 2007; Webb et al. 2021). A
number of researchers have tested and compared the capability and the statistical
performance of HB-MNL vs. LC-MNL models, providing ambiguous findings, see
e.g. Paetz and Steiner (2017) or Paetz et al. (2019) for detailed reviews. Andrews
et al. (2002a) reported that the HB-MNL model worked quite robust even in case
of multimodal preference structures. However, it is well known that the thin tails
of the normal distribution tend to shrink unit-level estimates toward the center of
the data (Rossi et al. 2005). This shrinkage, especially in multimodal data settings,
could mask important information (e.g., new or different market structures) (Rossi
et al. 2005).
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As a generalization of the finite mixture model, the mixture-of-normals (MoN)
approach avoids the drawbacks of both the LC-MNL (assumption of homogene-
ous market segments) and the HB-MNL model (assumption of a unimodal hetero-
geneity distribution), see Lenk and DeSarbo (2000). Here, a mixture of several
multivariate normal distributions representing consumer heterogeneity is applied
to a MNL model (Allenby et al. 1998). Using a sufficient number of components,
any desired heterogeneity distribution can be approximated using a MoN (e.g.,
heavy-tailed, multimodal and skewed distributions), see Rossi et al. (2005) or
Train (2009). Ebbes et al. (2015) and Chen et al. (2017) more recently reported a
better performance of MoN-MNL models in comparison to LC-MNL models in
data sets with a large within-segment consumer heterogeneity (Chen et al. 2017)
and in the presence of continuous heterogeneity structures (Ebbes et al. 2015).

An additional variant of a discrete choice model for capturing consumer het-
erogeneity is a hierarchical MNL model with a Dirichlet Process Prior (Voleti
et al. 2017). In this way, the researcher is able to model heterogeneity of an
unknown form, which allows to classify this approach (as well as the MoN) as
Bayesian semi-parametric method (Ansari and Mela 2003; Rossi 2014). One vari-
ant of a hierarchical MNL model with a Dirichlet Process Prior is the Dirichlet
Process Mixture (DPM) MNL model. Here, part-worth utilities are drawn from
continuous distributions (here multivariate normal distributions), where popula-
tion means and covariances follow a Dirichlet Process. In other words, the con-
tinuous distribution is centered around the discrete part-worth utilities of the
Dirichlet Process Prior (Voleti et al. 2017). The consideration of within-segment
heterogeneity is — as well as in the MoN-MNL - a strength of the DPM-MNL
model. Ferguson (1973) and Antoniak (1974) introduced the Dirichlet Process,
and although e.g. Escobar and West illustrated Bayesian density estimation based
on a Dirichlet Process already in 1995 (Escobar and West 1995), its application
in the context of CBC data has been proposed only recently. An advantage of the
DPM-MNL is that the number and composition of components are determined
as a result a posteriori. Post hoc procedures (e.g., Andrews and Currim 2003) to
find the optimal number of segments (components) — like in LC-MNL or MoN-
MNL models — are no longer required (Ebbes et al. 2015; Kim et al. 2004; Voleti
et al. 2017). Table 1 summarizes the strengths and weaknesses for each of the
four model types (LC-MNL, HB-MNL, MoN-MNL, DPM-MNL).

A number of Monte Carlo studies related to conjoint analysis and discrete choice
models have been conducted previously, focusing on

the comparison of different conjoint segmentation methods (Vriens et al. 1996),
the comparison of different variants of MNL models to capture preference het-
erogeneity (in particular comparing HB-MNL or MoN-MNL versus LC-MNL
models, see Andrews et al. (2002a, 2002b), Otter et al. (2004), Chen et al.
(2017), and Ebbes et al. (2015)),

e the comparison of HB-MNL models involving different levels of information
(Wirth 2010),

e the analysis of the statistical capabilities of the HB-MNL model for extreme set-
tings of CBC design parameters (Hein et al. 2020), or
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e the capability of DPM-MNL models to capture differently shaped heterogeneity
distributions (Burda et al. 2008; Li and Ansari 2014).

To the best of our knowledge, no Monte Carlo study has yet systematically
explored the comparative performance between LC-MNL, HB-MNL, MoN-MNL
and DPM-MNL models for CBC data, with all of these models embedded in the
same fully Bayesian estimation framework.

In a study by Voleti et al. (2017), the four models were empirically compared on
the basis of eleven CBC data sets. The data sets varied in the number of respond-
ents, the number of choice tasks per respondent, the number of alternatives per task,
the number of attributes as well as the number of part-worth utilities to be estimated
per respondent (which also depends on the number of attribute levels). The authors
focused on the predictive accuracy of the different approaches and found that the
DPM-MNL outperformed the competing models in terms of holdout sample hit
rates and holdout sample hit probabilities. Importantly, on average, the HB-MNL
model provided the second-best predictive performance. More, recently, Goeken
et al. (2021) also compared the HB-MNL, the MoN-MNL, and the DPM-MNL
models (but not the LC-MNL) in an empirical study, applying them to a real multi-
country CBC data set for tires. The authors reported a slightly higher cross-validated
hit rate for the DPM-MNL compared to both the MoN-MNL and the HB-MNL, thus
confirming the tendency of a better predictive performance of the DPM-MNL in
empirical settings. But again, the HB-MNL model was close to the DPM-MNL in
its predictive accuracy.

Voleti et al. (2017, p. 334) further stated that the “recovery of parameters is also a
relevant objective. However, the only way to address this issue is through computer
simulations. [...] We leave it to future research to address the issue of parameter
recovery under alternative assumptions regarding the true distribution of heteroge-
neity.” Since Goeken et al. (2021) as well focused on empirical data and did not
provide any findings for simulated data, we pick up the suggestion of Voleti et al.
(2017) in this paper, and study the statistical performance of choice models with
different representations of heterogeneity in a Monte Carlo study for CBC data. In
particular, we compare the LC-MNL, HB-MNL, MoN-MNL and DPM-MNL mod-
els under varying experimental conditions for parameter recovery, goodness-of-fit
and predictive accuracy. Like Andrews et al. (2002a), we further incorporate the
aggregate MNL model that completely ignores heterogeneity as a benchmark for all
heterogeneous models. As opposed to earlier simulation studies, we compare these
choice models in one Monte Carlo study and estimate all models within the same
Bayesian estimation framework.

Parameter recovery is an important criterion for product design decisions as
parameters (part-worth utilities in CBC studies) relate to values of product attribute
levels and managers are interested to find the best attribute levels for their products.
How well a method can recover hidden “true” utility structures can only be studied
with artificial data, but knowing which method under which condition is theoreti-
cally better in this aspect constitutes an important asset for managers. Independent
of whether companies tailor their products to individual customers or not, it is essen-
tial and also standard to measure parameter recovery at the individual respondent
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level (e.g., Andrews et al. 2002a, 2002b, 2008). In other words, although manag-
ers might not be interested in parameter values (preference structures) of specific
respondents, a better parameter recovery at the individual respondent level should
enable managers to come closer to the real expectations (true preferences) of cus-
tomers even if product line decisions are subsequently made on a more aggregate
level. Market simulations using choice simulators are typically conducted based on
individual parameters, even more so as it is well-known that parameter estimates
from aggregate models can be strongly biased (“stuck-in-the-middle”). Sometimes,
however, companies are also interested in knowing preference parameters of indi-
vidual respondents, like e.g. in the discrete choice experiments for app-based recom-
mender systems conducted by Danaf et al. (2019). There are also examples for com-
mercial applications where individual-level estimates were the focus, e.g. studies
about individual preferences for hair coloration or for preferred products in online
shopping trips. Not least, we generally expect personalization efforts of firms and
related CBC experiments to further increase in digital environments.

On the other hand, studying the predictive accuracy of the different models
under experimental conditions can either generalize the empirical findings of Voleti
et al. (2017) or reveal conditions where a different predictive performance can be
expected. Predictive accuracy is as well an important dimension for management
decisions, since managers are interested in predicting shares of choice (preference
shares) as accurate as possible. It has been shown, however, that a model with a
high predictive accuracy not necessarily must provide a high accuracy in recovering
true parameter values (and the reverse). While minimizing errors in shares-of-choice
forecasts represents a natural aggregate measure, it is further also common to assess
the predictive validity of a model based on individual-level measures like hit rates or
hit probabilities, as used in Voleti et al. (2017). If actual market share data are not
available to validate shares of choice predictions, model validation can also be based
on individual-level measures (like hit rates in holdout tasks) to find the best model
for market simulations. We use the latter approach to provide comparability to Voleti
et al. (2017).

To carve out differences in the statistical performance between the classes of
models with discrete versus continuous representations of heterogeneity, we specifi-
cally vary the levels of within-segment and between-segment heterogeneity. In par-
ticular, we want to investigate (1) which representation of heterogeneity is favorable
to analyze CBC data, (2) if there is a clear recommendation toward one model for
discovering multimodal heterogeneous preference structures and (3) whether (and if
how) related findings vary depending on specific levels of our experimental factors.
Furthermore, we are particularly interested in (4) how robust the HB-MNL model
performs especially in terms of parameter recovery and predictive accuracy com-
pared to the other heterogeneous models due to its underlying unimodal preference
distribution which seems least appropriate for segmented markets as considered
here. Finally, we want to prove (5) whether the empirical findings of Voleti et al.
(2017) with regard to the predictive performance of the models hold for simulated
data, too.

In the next section, we propose the design of our Monte Carlo study. In par-
ticular, we describe the different choice models, the estimation process, the
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performance measures used, and the data generation process including experi-
mental factors and factor levels. We subsequently present the results of the Monte
Carlo study, discuss implications and provide an outlook onto future research
perspectives. We used the R software (R Core Team 2020) for data generation,
choice design construction, model estimation and model evaluation. For model
estimation, we used the bayesm package (Rossi 2019) within the R software.

2 Design of the Monte Carlo study
2.1 Models

Since the 1990s, hierarchical Bayesian models have been used for part-worth util-
ity estimation in a CBC framework. The strength of these methods is the ability
to yield part-worth utilities at the individual respondent level even when little
individual respondent information is available. This is possible by using prior
distributions, which borrow information from the sample population (population
mean and population covariance). Using a multivariate normal distribution as a
first-stage prior has become the state—of—the—art to represent heterogeneity. How-
ever, the use of a single normal distribution can be considered as a very conserva-
tive approach. Unit-level estimates are shrank toward the population mean, which
may mask potential multimodalities in consumer preferences (Rossi et al. 2005).
Using a mixture of normal distributions as a first-stage prior can relax this weak-
ness. In particular, multimodal heterogeneity structures as well as thick tails and
skewed distributions can be modelled that way. Allenby et al. (1998) pointed out
that many distributions can be approximated by using the MoN approach.

Let us denote the utility respondent n (n = 1, ..., N) obtains from alternative j
G=1,...,J)in choice situation s (s = 1, ...,S) as

Unj‘v = ans + enjs’ (1)

where V ;o = B;xnjs and g, represent the deterministic utility and the stochastic util-

ity components, respectively. 3, denotes the vector of part-worth utilities of respond-
ent n, and X,;; is a binary coded vector indicating the attribute levels of alternative j
offered to respondent n in choice situation s. Assuming that the error term ¢, fol-
lows a Gumbel distribution we obtain the MNL model (Train 2009):

MNL e

njs = Zi eVnis : (2)

To be able to model multimodality with a mixture-of-normals approach con-
sisting of T components, we can specify the hierarchical model as follows (Rossi
et al. 2005; Rossi 2014):
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B, ~ ./\/'(b,n,W,n),

L, ~ MNz(p),
p ~ Dirichlet(a), (3)
b~ N(B.w™'W,).
W, ~ IW(k,2).
[, € {1,...,T} indicates the components from which respondent n can be drawn

and follows a multinomial distribution. p € R denotes the associated probabilities
of the multinomial distribution which follow a Dirichlet distribution. @ € R” can
be interpreted as a tightness parameter, which has an influence on the masses of
the components. Rossi (2014) for example shows that larger values of a are asso-
ciated with a higher prior probability for models with a large number of compo-
nents. The corresponding population means b, and the covariance matrices W, with
t € {1,...,T}are normal and inverse Wishart distributed, respectively. The dimen-
sions of b, and W, depend on the number of parameters to be estimated. With this
model framework, the MoN-MNL model and some nested model variants can be
estimated based on CBC data. For W, # 0 and T = 1 for example we obtain the HB-
MNL model. For diagonal elements of W, close to zero we can further approximate'
the LC-MNL (T # 1) and the aggregate MNL (T = 1) model (Allenby et al. 1998;
Lenk and DeSarbo 2000). A reasonable choice of prior settings therefore leads to an
approximated LC-MNL and MNL model with a discrete distribution of heterogene-
ity. By weighting the estimated part-worth utilities of a LC-MNL with the poste-
rior membership probabilities, we obtain part-worth utilities on an individual level
(Andrews et al. 2002a).

Using a Dirichlet Process allows for a countable infinite number of components
by supplementing the component parameters with additional priors. The DPM-MNL
model can therefore be seen as an extension of the MoN-MNL approach. Rossi
(2014) comments on a better approximation of multimodal distributions when using
Dirichlet Processes. One possible reason for this superiority is that the Dirichlet
Process offers the benefits of automatically inferring the number of mixture compo-
nents. Rossi (2014) stated that in practical applications no more than about 20 com-
ponents are used in a MoN approach. In some cases this a priori specified number of
components in a MoN approach is not near the limiting case (Rossi 2014). Another
possible reason for this superiority is that additional priors are placed on the param-
eters and hyper-parameters of the Dirichlet Process resulting in substantial perfor-
mance differences and more flexible prior assumptions. To obtain the DPM-MNL
model, we replace the Dirichlet prior by a Dirichlet Process:

ﬂn ~ N(b[”, W[”),

“
(b, »W, ) ~ DP(appp, Gy).

! Note that it is not possible to set W, = 0 (compare Sect. 2.2).
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appp € R is referred to as concentration parameter or Dirichlet Process tightness
parameter. Similar to the MoN-MNL, increasing a,pp puts a higher prior probability
on models with a large number of components (Rossi 2014). Rossi (2014) chooses
a flexible prior? for the concentration parameter based on Conley et al. (2008). The
advantage of this prior (as compared to e.g. gamma priors) is that the implications
for the distribution of the number of possible components are more intuitive to
assess (for more details see e.g. Rossi (2014)):

plappp) <1 - M) . ®)

Here, @ € R and o € R are chosen to reflect the range of the probable number
of components, and w is a power parameter. Conley et al. (2008) as well as other
authors (e.g., Voleti et al. 2017) describe the modus operandi of the Dirichlet Pro-
cess and especially of the concentration parameter aj,pp with the help of the stick-
breaking representation published by Sethuraman (1994). There, the draws from the
Dirichlet Process can be represented as an infinite mixture of discrete “atoms” with
specific probabilities. Following Conley et al. (2008) the baseline distribution G, is
parametrized as follows:

b~ N(0,a”'W),

W ~ IW(v, vul). ©

The priors on a, v and u are:
an~ U(al,a”),
U~ U(ul,u”),
v~d-—1+exp(2),
Zn~ U(vl, v”),

@)

where d is the dimension of the data (here the number of mean part-worth utilities)
and U is the uniform distribution. Appropriate prior settings as well as more infor-
mation on the estimation process are presented in the next section.

2.2 Estimation

In the following, MNL, LC-MNL, HB-MNL, MoN-MNL as well as DPM-MNL
models were estimated using Bayesian procedures to obtain part-worth utilities.
Markov chain Monte Carlo (MCMC) methods were applied to generate draws from
posterior distributions.

2 Other authors choose a gamma or a uniform prior distribution for the Dirichlet Process tightness
parameter. Voleti et al. (2017) stated that the choice of the functional form has only a marginal impact on
the number of estimated components.
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We used a Gibbs Sampler with a random walk Metropolis step for the MNL
coefficients f, for each respondent n as outlined in Sect. 5.5 of Rossi et al. (2005)
and Sect. 5.2 of Rossi (2014). In addition to the “default” prior settings suggested
by Rossi (2014),> we tested a variety of additional prior settings. We finally adapted
the prior settings (in particular the settings for the prior covariance matrix X) partly
from Sawtooth Software (Sawtooth Software 2016) as they provided the best results
in terms of part-worth recovery. Specifically, we chose the following prior configu-
ration to estimate MoN-MNL models (compare Eq. (3)):

k=d+5w=001,b=0,a=(,...,5", ®)

where d represents the dimension of the data (here the number of mean part-worth
utilities). The prior covariance matrix 2 was chosen according to Sawtooth Software
(2016) with a prior variance of 2. Since we can approximate the LC model by the
MoN model for diagonal elements of X being close to 0 (Allenby et al. 1998), we
modified the parameters of the inverse Wishart distribution to estimate the LC mod-
els as follows™:

k=100,Z =1x0.01, ®)

where I is the identity matrix. Note that the prior covariance matrix X of the inverse
Wishart distribution is a positive-definite matrix. Therefore, we approximate the
LC-MNL model by setting the diagonal elements of X close to zero. The estima-
tion of both the MoN-MNL and the LC-MNL model was carried out for a fixed
number of components 7 € {1,...,6}, which implicitly included the HB-MNL
(T=1, W,n # 0) and the simple MNL model (T =1, Wln =0).

To estimate the DPM-MNL model, we set the power parameter w to 0.8 (Conley
et al. 2008). Following Rossi (2014), we set the other prior parameters as follows:

a,=001,a" =2,u, =0.1,u" = 4,v, = 0.001,\* = 3. (10)

a and @ were chosen to provide a broad prior support for values from 1 to 50 com-
ponents. We also performed a sensitivity analysis regarding these prior settings and
found out that results only differed marginally for different choices of a and . This
is in line with the findings reported by Rossi (2014) and Voleti et al. (2017).

The MCMC sampler was run for 200,000 iterations with a burn-in period of
190, 000 iterations. We used only every 50th draw of the remaining 10,000 draws
after convergence to reduce autocorrelation among the draws. We evaluated the per-
formance of the various models based on individual draws after the burn-in phase.
More precisely, each measure of performance was at first computed on draw-level,
and subsequently averaged across the draws. This procedure enables to fully exploit
the posterior distribution and also prevents the label switching problem (Frithwirth-
Schnatter et al. 2004; Rodriguez and Walker 2014). We monitored the time-series

3 Rossi (2014) chooses the following prior settings in order to estimate a MoN-MNL model:
k=d+3,w=001,b=0,a=(,...,5 ,Z =k x L.

4 We tested even larger values for k. As a result, the resulting prior became too informative.
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plots of parameters and performance measures to ensure convergence of the MCMC
chains. We furthermore calculated Gelman and Rubin’s potential scale reduction
factor to formally prove convergence (Gelman and Rubin 1992). Each check demon-
strated that all MCMC chains appeared to reach stable states.

2.3 Experimental design

The choice of the experimental factors and factor levels leans on the Monte Carlo
designs used by Vriens et al. (1996), Andrews et al. (2002a), Andrews et al. (2002b)
and Andrews and Currim (2003). Overall, six factors were experimentally manipu-
lated in the current study: the model complexity (number of attributes and attribute
levels), the number of segments, the separation between segments (between-seg-
ment heterogeneity), the segment masses, the degree of within-segment heterogene-
ity, as well as the number of choice sets to be evaluated per respondent. All factors
and their corresponding factor levels used, together with some additional notes, are
shown in Table 2, and we will refer back to this table several times in the following.

The more attributes (and attribute levels) are relevant for preference formation,
the more parameters (part-worth utilities) a conjoint choice model has. Since attrib-
utes in conjoint studies are specified with a discrete number of levels each (includ-
ing the metric attributes), effects- or dummy-coding is used for parameter estimation
(see Sect. 2.1). We vary the number of attributes and levels by analyzing treatments
with 6 attributes with 3 levels each, 9 attributes with 4 levels each, or 12 attributes
with 5 levels each, leading to choice models with 12, 27, or 48 individual parameters
to be estimated for each respondent.’ A larger number of individual parameters leads
to a higher model complexity (factor 1) and given a certain number of choices per
respondent to a smaller number of degrees of freedom for model estimation. It can
therefore be assumed that a larger number of parameters at the individual respondent
level lead to less reliable parameter estimates in all models. Note that we assign no
specific meaning to the attributes and do not consider one attribute explicitly to rep-
resent the price attribute, since the interpretation of the attributes can be held arbi-
trary in our Monte Carlo study. Price is often (very) important in empirical studies as
well as generally relevant from an economic point of view in CBC studies if related
quantities like willingness-to-pay or expected revenue or profit calculations are addi-
tionally considered. On the other hand, there are many situations where price is not
relevant in choice experiments. Detergents for example have different fragrances and
clients are often only interested in preferences for fragrances in combination with
the brand (different fragrances do not affect the price of detergents). Smartphone
apps are usually not price relevant and can be added along the preferences of the
customers. However, apps are relevant for purchase decisions and clients are there-
fore interested in customers’ preferences for apps. Lastly, the development of new
cars traditionally goes through a three-stage preference elicitation process: conjoint
on design (design clinic), conjoint on features (concept clinic), conjoint on pricing

5 Note that for L attributes with M levels each, L times (M-1) part-worth utilities are estimated inde-
pendent whether a dummy- or effects-coding is used.
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(pricing clinic). In the first stage, price is never included since the “look” of the car
is the primary focus here. Price is mostly considered only in the last stage, but some
manufactures already additionally conduct a price-only conjoint study in the second
stage where preferences for additional features (e.g. color, interior design, entertain-
ment features) are collected.

Given a segmented market structure as assumed in our Monte Carlo study, we
expect a better performance of the LC-MNL, MoN-MNL and DPM-MNL models
compared to simple MNL and HB-MNL models, since the former models can han-
dle multiple segments (factor 2). The simple MNL is not able to detect any seg-
ment structures due to its assumption of parameter homogeneity. Similarly, from a
theoretical perspective, the assumption of a unimodal prior in the HB-MNL model
is per se not in line with the existence of segmented markets or should make it at
least much more difficult to identify existing multimodal preference structures. We
therefore expect a worse performance of the HB-MNL model for multimodal prefer-
ence structures in terms of parameter recovery and prediction accuracy, as well. If
segments are less clearly separated from each other (factor 3), i.e. the closer segment
centroids are to each other and hence the less between-segment heterogeneity exists,
the less distinct the disadvantage for the HB-MNL model is expected to be (e.g.,
Andrews et al. 2002a).

Including factor 4 allows us to consider more or less (within-segment) heteroge-
neity in the part-worth utility structures across respondents (Andrews et al. 2002a;
Hein et al. 2019; Vriens et al. 1996). Since HB models borrow information from all
individuals (respondents) for parameter estimation, the degree of heterogeneity in a
sample might affect the individual-level parameter estimates. Previous Monte Carlo
studies report different findings about whether models with continuous or discrete
representations of heterogeneity are better suited to capture existing preference het-
erogeneity. While Andrews et al. (2002a, 2002b) have shown that continuous and
discrete approaches worked similarly well concerning parameter recovery and pre-
dictive validity (Andrews et al. 2002a, 2002b), Otter et al. (2004) reported that the
discrete (continuous) approach performed superiorly if the underlying heterogeneity
distribution was strictly discrete (continuous). In addition, for sparse data at the indi-
vidual respondent level, Otter et al. (2004) found the discrete approach to provide a
superior parameter recovery and predictive performance.®

We expect that both a smaller within-segment and between-segment heterogene-
ity should positively affect the performance of simple MNL and LC-MNL models,
because both only use discrete support points. When the inner-segment heterogeneity
is large, we expect a better performance of HB-MNL, MoN-MNL and DPM-MNL
models. Furthermore, it can be assumed that it is more difficult to identify the “true”
segment structure (factor 2) for more heterogeneous samples, especially if the separa-
tion between segments is small (factor 3). The heterogeneity levels are chosen accord-
ing to Andrews et al. (2002a). Based on a variety of Monte Carlo studies in the context
of finite mixture models summarized in a meta-study of Tuma and Decker (2013), we

6 Note that the Monte Carlo studies of Andrews et al. (2002a), Andrews et al. (2002b) and Otter et al.
(2004) also considered both within-segment heterogeneity and between-segment heterogeneity as experi-
mental factors, but did not include the MoN-MNL and DPM-MNL models for comparison.
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generated preference structures for 2, 3 and 4 segments. We further expect problems
for the LC-MNL model in identifying small segments, i.e. when the masses of com-
ponents are rather small. In other words, we expect a better performance of LC-MNL
models in the symmetric case when the number of respondents is equal across seg-
ments compared to the asymmetric case when segment sizes are different from each
other (one large, one or several small segments, factor 5) (Andrews and Currim 2003;
Dias and Vermunt 2007).

Factor 6 addresses the implementation of CBC studies in market research prac-
tice and the related problem that clients want to incorporate more and more attributes
while keeping the choice task manageable for respondents (e.g., Hauser and Rao 2004;
Hein et al. 2020). In their meta-analyses of empirical CBC studies, both Hoogerbrugge
and van der Wagt (2006) and Kurz and Binner (2012) could show that using too many
choice tasks per respondent (more than about 15) did no longer increase or may even
decrease the predictive performance of HB models, since respondents tend to apply
simplification strategies or become disengaged in later choice tasks (also referred to
as “individual choice task threshold™). If a choice design comprises more choice tasks
than manageable for a single respondent, the researcher can split the design into sev-
eral versions. Of course, in a Monte Carlo study the number of choice tasks to be com-
pleted by a respondent is not relevant as artificial respondents do not become fatigue.
Still, by varying the length of the choice task we are able to analyze the statistical
effects of shorter-than-optimal designs (regarding the criterion of orthogonality on the
individual respondent level) on the model performance. We expect a worse perfor-
mance of models when splitting the choice task into several versions since then the
choice design does not allow an uncorrelated estimation of main effects (Street et al.
2005).

Note that we did not vary factor 6 for treatments with 12 individual param-
eters (factor 1, see Table 2) since here the resulting optimal number of 18 choice
sets per respondent is (nearly) compatible with the “individual choice tasks
threshold” of respondents (see next section for more details). Thus, we obtain
23 x 32 4+ 2% x 3 = 120 experimental data conditions (treatments) and with one rep-
lication (i.e., two runs) per treatment 240 data sets. In empirical applications, only
the number of parameters to be estimated at the individual respondent level (factor
1) and the number of choice sets respectively the number of versions (factor 6) are
observable prior to estimation. In contrast, the number of segments (factor 2), the
separation of segments (factor 3), the amount of heterogeneity across respondents
(factor 4), and the masses of segments (factor 5) are not known a priori to model
estimation. Table 2 provides an overview of all factors and their corresponding fac-
tor levels used in our Monte Carlo study together with additional notes.

Generally, we expect the MoN-MNL and especially the DPM-MNL models to
outperform the other models (with regard to both parameter recovery, model fit and
predictive validity) because they accommodate both within-segment and between-
segment heterogeneity. Voleti et al. (2017) only focused on predictive capabilities
and found out that the DPM-MNL model can improve the predictive validity. How-
ever, for their data sets, the MoN-MNL model was not able to improve the predictive
validity over HB-MNL models. On the other hand, data in CBC studies are generally
quite sparse on the individual respondent level, and it is therefore not clear whether
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the performance of the more complex MoN-MNL and DPM-MNL models necessar-
ily outperforms the more restrictive (single) multivariate HB-MNL model.” To the
best of our knowledge, no Monte Carlo study related to conjoint data has yet com-
pared the goodness of parameter recovery of MoN-MNL and DPM-MNL models. In
particular, we will analyze how well these two types of models are able to detect the
“true” part-worth utility structure compared to the other models in extreme scenar-
ios (e.g., 4 segments, small separation, large heterogeneity and asymmetric segment
masses). We further controlled for the “overlapping mixtures problem” by holding
the sample size constant (Kim et al. 2004), and used 600 respondents following the
study of Wirth (2010).

2.4 Data generation

The following section describes how the synthetic data sets were generated in our
Monte Carlo study. The data generation process can be divided into the construc-
tion of the choice task design, the generation of individual part-worth utilities, and
the generation of choice decisions based on the choice task design and individual
part-worth utilities. The data sets that support the findings of this study are available
from the corresponding author upon request.

2.4.1 Choice task design

Following Street et al. (2005) and Street and Burgess (2007), we constructed optimal
choice designs. Determinants for the design generation were the model complex-
ity (factor 1) as well as the number of choice task versions (factor 6). The number
of individual parameters, i.e. part-worth utilities to be estimated for each respond-
ent, results from the specification of the number of attributes and attribute levels, as
already outlined in the last subsection and summarized in Table 3 below. We used
symmetrical designs (i.e., the same number of attribute levels across attributes) to
control the number-of-levels effect (Verlegh et al. 2002).

Depending on the number of attributes and attribute levels, we chose an orthogo-
nal array from Kuhfeld (2019) as a starting orthogonal design to fix the first alterna-
tive in each choice set. Further alternatives were then added to the first options in
each choice set by generating systematic level changes via modulo arithmetic.

As a result, as many pairs of alternatives in a choice set had assigned different
levels for each attribute (Street et al. 2005). To ensure an equal distribution of attrib-
ute levels (per attribute) across the choice sets (level balance) as well as an equal
distribution of attribute levels across alternatives within each choice set (minimal
overlap) we constructed choice sets with 3, 4, or 5 alternatives for treatments with
3, 4 or 5 attribute levels (Table 3), respectively (Street and Burgess 2007). The
information matrices of our CBC designs were thus diagonal so that estimates of
main effects were uncorrelated. By comparing the determinants of the information
matrices with the determinants of the information matrices of an optimal design, we

7 We thank an anonymous reviewer for this note.
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Table 3, Model complexity Individual Attributes Levels Shortcut
determined by the number of i .
. R . parameters
attributes and attribute levels in
the CBC design 12 6 3 A6L3
27 9 4 A9L4
48 12 5 A12LS

obtained a D-efficiency of 100% for each of our generated choice designs.® Based
on the generated optimal choice tasks each synthetic respondent completed all cor-
responding choice sets on the one hand. This ensured that all main effects could be
estimated completely independently from each other on the individual respondent
level. On the other hand, the choice task length of these optimal designs may be far
too large for real respondents. We therefore split up the generated optimal choice
tasks into several versions (where necessary) in order to limit the number of choice
sets per respondent to a manageable number (factor 6). As a consequence, choice
designs were no longer optimal on an individual respondent level because desir-
able properties such as orthogonality or level balance could have been negatively
affected by the split. However, since the choice sets were randomly split into several
versions, they were at least near-optimal (Street and Burgess 2007). For the treat-
ments with 6 attributes with 3 levels each the starting orthogonal design comprised
18 alternatives, which can be just considered a manageable number. Therefore, a
split of the optimal design across respondents was not necessary here. In contrast,
treatments including 9 attributes with 4 levels each resulted in an optimal choice
design with 32 choice sets. Accordingly, the design was divided into two versions
with a length of 16 choice sets each. Similarly, the optimal design for treatments
involving 12 attributes with 5 levels each was divided into 5 versions with a length
of 20 choice sets each. This procedure ensured desirable properties for optimal or at
least near-optimal discrete choice experiments (Street and Burgess 2007). Table 4
summarizes how factor 6 was operationalized depending on the model complexity
(factor 1). To be able to assess the predictive validity of the competing models, three
additional holdout choice tasks were randomly generated for each respondent.

2.4.2 Part-worth utilities

For each of the 240 data sets (i.e., for each treatment and replication), individual
part-worth utilities were generated in such a way that they followed a mixture of
multivariate normal distributions. Leaning on Wirth (2010), elements of a vector
of initial “true” mean part-worth utilities (f,,,, € RY, where d is the total num-
ber of attribute levels) were drawn from a uniform distribution within the range
between—35 and+5. Such a range for mean betas is typical for empirical applica-

tions (cf. Wirth 2010). We can confirm this finding of Wirth based on an inspection

8 The previous Monte Carlo studies also used main-effect designs, i.e. no interactions between attributes
were considered for the construction of the choice task designs. However, we estimated all choice models
with full covariance matrices.
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Table 4 Number of choice

Model complexity Split of the choice Number of choice
tasks per respondent (factor 6) o o o o
; design into versions sets per individual
depending on the model
complexity A6L3 no (optimal) 18
A9L4 no (optimal) 32
yes (manageable) 16
A12L5 no (optimal) 100
yes (manageable) 20

of a random sample of 250 real-world HB-CBC studies conducted at one of the larg-
est market research institutes worldwide (with 6 to 12 attributes, 3 to 5 attribute lev-
els, and 11 to 15 choice tasks).’

The generation of mean part-worth utilities (centroids) for the segments (factor
2) closely follows the studies of Andrews et al. (2002a) and Andrews and Currim
(2003) and is based on the generation of a separation vector that controls the dis-
tance between the segment centroids. In particular, the separation between segments
was manipulated by generating a vector sep, € R? with z € {1,2,...,Z} as segment
index and sep, ~ N(1,0.1) for a small separation and N(2,0.2) for a large separa-
tion (factor 3), see Andrews and Currim (2003). These vectors were then added to
the initial vector of “true” mean part-worth utilities to generate the segment-specific
centroids (i.e., “true” segment mean part-worth utilities):

ﬂz = ﬁstarl+SIGNSzxsepz- (11)

SIGNS, € R denotes a diagonal matrix containing the values — 1 and + 1, each
of which were randomly drawn based on a Bernoulli distribution with parameter 0.5.
Finally, the generated segment mean part-worth utilities were rescaled to become
zero-based, i.e. so that each first level of an attribute constitutes the reference cat-
egory with a corresponding part-worth utility of zero. Note that multiplying seg-
ment-specific part-worth utilities by a constant factor like in Vriens et al. (1996) or
Andrews et al. (2002b) also scales the separation of segments. However, Andrews
et al. (2002a) demonstrated that such a procedure affects the scale factor of the MNL
model, which makes it difficult to assess parameter recovery (Andrews et al. 2002a).
Similarly, multiplying the separation vectors sep, by a constant other than—1 or+1
would confound the scale factor of the MNL and thus the sensitivity of respondents,
too (Andrews and Currim 2003).

Next, inner-segment heterogeneity (factor 4) was generated by adding quantities
to the mean segment part-worth utilities §,. These quantities were drawn from a mul-
tivariate normal distribution with mean vector 0 and covariance matrix Vﬁ. € Rxd,
the latter which was determined by:

Vy =vxl,. (12)

° Vriens et al. (1996) and Andrews et al. (2002b) used a smaller range of -1.7 to+ 1.7. However, when
estimating the DPM-MNL model it turned out that this range was far too small to identify any segments.
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I, € R% denotes the identity matrix, and the scalar v controls the degree of
inner-segment heterogeneity with either v = 0.05 (small heterogeneity) or v = 0.25
(large heterogeneity), see Andrews et al. (2002a).!° In addition, segment masses
(factor 5) were defined to be either equal or unequal. In the symmetric case, the
relative size of segment z is equal to 1/Z. In the asymmetric case, the relative
size of the largest segment was fixed to 1.5 X (1/Z), while the remaining respond-
ents were split equally across the other segments with relative segment sizes of
(1-15%x1/2)/(Z-1).

Table 5 shows the resulting segment masses for the symmetric versus asymmetric
case depending on the number of segments considered.

2.4.3 Generation of choices

Based on the generated choice task designs and the generated “true” individual part-
worth utilities, deterministic utilities V ;; = B;ans could be at first computed for
each respondent for each alternative in each choice set. Stochastic utilities were sub-
sequently computed by adding a Gumbel distributed error term with standard error
variance to the deterministic utilities. Simulated choices were obtained by assuming
that each respondent chooses the alternative with the highest stochastic utility from
a choice set. Based on the simulated choices part-worth utilities were re-estimated
by the different models.

2.5 Measures of performance

We estimated 13 different models for each data set: one aggregate MNL model (as
benchmark model), one HB-MNL model, one DPM-MNL model, as well as each five
LC-MNL and MoN-MNL models with two to six components. Model selection was
at first performed for the estimated LC-MNL and MoN-MNL models to determine
the appropriate number of segments, respectively. Though “true” preference structures
for a maximum of four segments were generated, we decided to estimate LC-MNL
and MoN-MNL models for five and six segments in addition to explore the capabili-
ties of the two types of models to find the “true” number of segments. Subsequent to
the model selection process where the best LC-MNL and MoN-MNL solutions were
retained, we assessed the statistical performance of the five different types of models.
This means that a total of 240 (data sets) x5 (models)= 1,200 observations were sub-
jected to analysis of variance (ANOVA), i.e. the type of model was included as addi-
tional factor in the ANOVAs. Following previous Monte Carlo studies (e.g., Andrews
et al. 2002a; Hein et al. 2019; Vriens et al. 1996), we evaluated the performance of
the competing models in terms of parameter recovery, goodness-of-fit and predictive
accuracy. We used three measures for parameter recovery, three measures for good-
ness-of-fit, and two measures for predictive accuracy. Each performance measure was

10 We checked for dominant attributes across experimental conditions after having generated the indi-
vidual part-worth utilities, since one or two attributes with relatively high importance would reduce the
potential effects between these conditions. No abnormalities were observed in this regard. We thank an
anonymous reviewer for this note.
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Table5 Segment masses for the

. . Number of Equal segment Unequal segment
symmetric versus asymmetric segments masses masses
case depending on factor 2
300 300 450 150
200 200 200 300 150 150

150 150 150 150 225 125 125 125

computed 200 times based on the 200 individual HB draws that were saved after the
burn-in phase (see Sect. 2.2 above) to fully exploit the information of the posterior dis-
tribution. Finally, the draw-based scores were averaged to compare the performance of
the models along the measures used.

2.5.1 Model selection

For model selection, we computed the marginal likelihood (ML) by means of the
Harmonic Mean estimator (Frithwirth-Schnatter 2004; Newton and Raftery 1994;
Rossi et al. 2005):

-1
I 1
L(y|model) = —z— , (13)

R = L<ﬁ’|model>

where r = 1, ..., R denotes the r-th draw of the Markov chain used for computing
the harmonic mean. The ML penalizes models for complexity, i.e. models with a
larger number of parameters get a higher penalty (Frithwirth-Schnatter 2006; Rossi
2014), and it is common practice to prefer more parsimonious models in the model
selection process. Following Wirth (2010) and Rossi (2014), we here used the log
marginal likelihood (LML) in order to minimize overflow problems. Similar to
Elshiewy et al. (2017), we plotted the LML values against the number of compo-
nents estimated by the LC-MNL or MoN-MNL models and used the “elbow”-crite-
rion for model selection. Furthermore, we examined the more informative sequence
plots of the log-likelihood values to identify possible outliers as suggested in Rossi
et al. (2005). Note that the approximation of the LML can be influenced by outli-
ers in the vector of log-likelihoods. Following Voleti et al. (2017) and Zhao et al.
(2015), we further applied the deviance information criterion (DIC, Spiegelhalter
et al. 2002, 2014) and the Watanabe-Akaike information criterion (WAIC, Watan-
abe 2010) as additional measures for model selection. The latter (WAIC) is closely
related to leave-one-out cross-validation, as discussed in Vehtari et al. (2017). Like
the LML, DIC and WAIC as well penalize models for complexity. Contrary to these
“explicit” model selection procedures (estimating models with a different number of
components and selecting the best one), Rossi (2014, p. 29) has suggested to start
with a sufficiently large number of components (we here set T = 6, see above) and
to allow the MCMC sampler to “shut down” a number of the components in the
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posterior (also see Goeken et al. 2021 for an application). We also tested this kind of
model selection in our Monte Carlo study.

2.5.2 Parameter recovery

Parameter recovery was measured by the Pearson correlation between the generated
(“true”) and the re-estimated individual part-worths on the individual draw-level.
Since Pearson correlations are not interval-scaled, they were rescaled using Fisher’s
z-transformation prior to computing the mean Pearson correlation across respondents,
and retransformed afterwards to their original scale (Hein et al. 2019, 2020).

As a measure of parameter recovery in absolute terms, the root mean square
error (RMSE) between “true” (B,,) and re-estimated part-worth utilities ﬁ;al was
calculated:

2
Zn_lza—lzl 1( nal nal) (14)

RMSE(f") = AL

where N, A and L refer to the number of respondents, the number of attributes and
the number attribute levels.

In addition to the Pearson correlation and the RMSE, we further determined the
proportion of “true” part-worth utilities covered by the 95% credible interval of the
draws of the posterior distribution, referred to as %TrueBetas (Hein et al. 2020).

2.5.3 Model fit

The percent certainty, the root likelihood, and the in-sample hit rate were used as
measures to compare the goodness-of-fit between models. The percent certainty
(PC), also referred to as pseudo R2, McFadden’s R?, or likelihood-ratio-index, com-
pares the likelihood of an estimated (final) model to the likelihood of the null model,
i.e. a model without any explanatory variables (Hauser 1978; Ogawa 1987):
LL;I.MI LL,.,

—LL ’

‘null

PC(f) = (15)

where LL; , and LL,,, denote the log-likelihood of the (final) estimated model
based on draw r and the null log-likelihood.
Log-likelihood values were calculated by

N
L =t (L(F) = X 3 Y ¥yin(P,): (16)

where S, denotes the number of choice sets offered to respondent n. Y, indicates

whether respondent n has chosen alternative j from choice set s, and P’ nis is the

choice probability of respondent n for choosing alternative j in ch01ce set s based on
draw r. LL,,;, represents the chance likelihood, that means ﬂ’ =(0,...,0)7vr.
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The root likelihood (RLH) is the geometric mean of hit probabilities (e.g., Jervis
et al. 2012)

! Y,
112, (17)

A RLH value equal to the reciprocal of the number of alternatives in a choice set
(here: 1/J) corresponds to completely uninformative utilities of all alternatives (i.e.,
each alternative has the same utility). In other words, the RLH of the null model
equals1/J.

The in-sample hit rate (IHR) represents the percentage of first choice hits in the
estimation sample (e.g., Andrews et al. 2002b; Voleti et al. 2017). The term first
choice hit means that the alternative chosen by a respondent from a choice set is
assigned the highest deterministic utility based on the re-estimated part-worth utili-
ties. Note that the first choice rule is invariant to the value of the scale parameter of
the Gumbel distribution.

N
rRLH(F) = 3| []

2.5.4 Predictive accuracy

The hit rate was further computed for holdout choice sets to assess the predictive accu-
racy, referred to as holdout sample hit rate (HHR). For this, three holdout choice tasks
were randomly generated for each respondent. Further, we computed the root mean
square error between the “true” and predicted deterministic utilities (RMSE(V)) for
each draw (e.g., Andrews et al. 2002b):

2

N J Sa (Y
DINEFD JTND I (Vrrljs ~ Y ) (18)
NJS

RMSE (V") =

n

Vs and V;js denote the “true” versus predicted deterministic utilities (the latter
based on draw-level) for respondent n, alternative j and choice set s, respectively. The

number of holdout choice tasks S, was held constant in all treatments (S, = 3).

3 Results and discussion

3.1 Effects on parameter recovery, fit and predictive accuracy

The impact of the six experimental factors and the type of model (aggregate MNL,
HB-MNL, LC-MNL, MoN-MNL and DPM-MNL) on each of the eight measures of

performance was examined by analysis of variance for main effects and first-order
interaction effects. The ANOVAs were based on a total of 1,200 observations (240
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data sets times 5 models) with 1,130 degrees of freedom for error. Prior to that, the
best LC-MNL and MoN-MNL solutions were selected in a first attempt by applying
the “elbow” criterion to the plots of the LML values versus the number of compo-
nents (2 to 6). Figure 1 displays examples for selecting the right number of com-
ponents via the “elbow” criterion. In the refinement subsection (Sect. 3.2), we will
discuss the results from applying the DIC, WAIC and the “shut down” procedure
suggested by Rossi (2014) for model selection.

Panels A-C show three different scenarios for treatments with 2, 3, or 4 “true”
segments where the LC-MNL model was estimated for 2 to 6 segments. In all three
scenarios, the “true” number of components was clearly identifiable by means of
the elbow criterion. Using the LC-MNL model, we were able to recover the “true”
number of segments by the elbow criterion uniquely in 82% of all data sets. Panels
D-F show another three plots for treatments with 2, 3, or 4 “true” segments, this
time relating to estimations based on the MoN-MNL model (again for 2 to 6 compo-
nents). The picture is completely different here since in neither case the “true” num-
ber of segments is identified. First, no clear elbow is visible each time, rather the
LML continues to improve for an increasing number of components. And second,
if one dared to recognize an elbow, it would suggest the wrong number of segments
in each of the three scenarios.!! We think plots like the ones in panels D-F are too
diffuse to justify a unique solution (i.e., a clear elbow), thus we chose the solution
with six components in such cases. In contrast to the LC-MNL model, we were able
to identify the “true” number of components via the elbow criterion in only 2% (!)
of all data sets when using the MoN approach (in 5 out of 240 data sets). Overall,
the model selection process for the MoN models resulted in 67 solutions with five
components (28%) and 136 solutions with six components (57%). In another 13% of
the cases, wrong solutions with two to four segments were suggested. Note that also
the DPM-MNL model returned the “true” number of components in only 14% of all
cases (34 out of 240 data sets). The capability of the DPM-MNL model to recover
the “true” number of segments was therefore rather disappointing, too.

We further conducted chi-squared tests to assess significant relationships between
the experimental factors and the number of re-estimated components (for LC-MNL
and MoN-MNL models based on the best solutions determined by model selection
by LML). In the cases where we obtained significant results we subsequently ana-
lyzed for each respective factor level how often the “true” number of segments could
be identified.

It turned out that the “true” number of segments was correctly recovered by the
LC-MNL model at all times for treatments with equal segment masses (symmetric
case). In contrast, the hit ratio was only 63% for treatments with unequal segment
masses (76 out of 120 cases). The number of components suggested by the DPM-
MNL depends on the model complexity, the degree of between-segment heterogene-
ity (separation), and the degree of inner-segment heterogeneity. Fewer components
were suggested for treatments with more parameters to be estimated. In particular,

" For example, one could think about an elbow for three segments in panel D, however the “true” num-
ber of segments was two.
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a maximum of two segments was found for the treatments with 12 attributes and
5 levels each (81% one-component solutions, 19% two-component solutions). Fur-
thermore, the DPM-MNL models yielded more components in treatments with
a small separation between the segments or with a small degree of inner-segment
heterogeneity. On the one hand, if the “true” components overlap because they are
less clearly separated from each other, the DPM-MNL models tend to a larger num-
ber of components. The reason for this result may be that the preference structure
of respondents appears more diffuse with less clearly separated segments so that
more components are needed to reproduce this diffuse preference pattern. On the
other hand, if the “true” components overlap due to a large degree of heterogeneity
within segments, the DPM-MNL models tend to a smaller number of components.
This may be because preference structures appear to be less multimodal when the
“true” segment structures become blurred by a large inner-segment heterogeneity.
No significant relationships were found for the MoN-MNL model since 85% of the
selected solutions were either 5-component or 6-component solutions. Overall, the
LC-MNL model seems to be the best approach by far to recover the “true” number
of segments, in particular for scenarios with equal segment masses.
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Taking into account only the best LC-MNL and MoN-MNL solutions per data
set, we used 1,200 observations (240 data sets times 5 types of models) for analy-
sis of variance.'” R-squares (adjusted R-squares) range between 0.533 (0.504) and
0.949 (0.946), whereas half of the R squares are larger than 0.9. Most of the main
effects (86%) are highly significant (p <0.001), indicating differences in the meas-
ures of performance between the corresponding factor levels.

First of all, we recognize that many measures of performance are not significantly
affected by the factor segment masses (p>0.05), and if they are (as for the Pear-
son correlation as well as for IHR and HHR) that F-values turn out rather small
compared to other factors. Very high F-values are observed for the type of model
which substantially affects all three types of performance measures (recovery, fit,
and prediction). In addition, the number of choice sets per respondent represent the
factor which most strongly impacts the predictive accuracy (with F-values of 786
and 203 for HHR and RMSE(V)). Higher F-values pointing to substantial differ-
ences between factor levels are further observed for the number of parameters in the
model (model complexity) and the separation between segments (between-segment
heterogeneity).

Furthermore, 62% of the first-order interaction effects are significant. We here,
however, consistently observe rather low F-values for nearly all interactions except
for some between the type of model and the factor separation (Pearson correlation
and the goodness-of-fit statistics). Note that 85% of the interaction effects between
the type of model and any of the other factors turn out significant. Here, similar to
the main effects, the factor segment masses seems to play a minor role again (as 5
out of 8 interactions between this factor and the type of model are not significant).
On the other hand, the separation between segments and the number of parameters
in the model (model complexity) are the two factors which most strongly interact
with the type of model, in particular w.r.t. goodness-of-fit. It is further noticeable
that only 53% of the remaining interaction effects (i.e., excluding interactions where
the type of model is involved) are significant. Consequently, the type of model plays
a very important role for the goodness of parameter recovery, fit and prediction.

Since even small differences between factor levels may turn out significant for
large sample sizes such as in this study (N=1200), we further report related effect
sizes measured by Eta square (%) in Table 6. Following the guidelines of Cohen
(1988), we interpret values of 7> below 0.06 as small effects, between 0.06 and 0.14
as medium-sized effects, and higher than 0.14 as large effects.

In the following, we concentrate on a more detailed interpretation of factors
which show at least medium effect sizes. We observe the largest effect sizes for the
type of model with very large effect sizes for all goodness-of-fit measures (> 0.72)
and the %TrueBetas measure of parameter recovery, large effect sizes for the Pear-
son correlation (0.29) and the HHR (0.29), and medium effect sizes for both RMSE
measures (0.10). In other words, the effect sizes of the type of model on all per-
formance measures are substantial and most of them are large or very large. We

12" A summary of F-Tests for main and interaction effects including p-values and R-squares for each per-
formance measure can be found in Table 9 in the Appendix.
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further observe medium effect sizes (a) for the number of parameters in the model
(model complexity) on parameter recovery (0.10 for both Pearson correlation and
RMSE) and the HHR (0.11), (b) for the separation between segments on the Pear-
son correlation (which measures parameter recovery in relative terms), and (c) for
the number of choice sets per respondent on both predictive accuracy statistics, the
HHR (0.11) and RMSE(V) (0.08). That also means that 75% of the effect sizes for
main effects can be classified as small, and more than half of them are below 0.01.
All interaction effects where the type of model is not involved show small if not (as
in the very most cases) negligible effect sizes near zero. Considering interactions
where the type of model is involved only few (8 out of 48, 17%) show medium-sized
effects, and these with only one exception relate to interactions of the type of model
with the separation between segments or the model complexity. In particular, we
observe medium-sized interactions between (a) the type of model and the separa-
tion between segments on the Pearson correlation, PC, RLH, and the HHR, between
(b) the type of model and the number of parameters in the model on the RMSE
(which measures parameter recovery in absolute terms) and both predictive valid-
ity measures (HHR, RMSE(V)), and between (c) the type of model and the degree
of inner-segment heterogeneity on RMSE(V). Altogether, the effect sizes provide
a rather clear picture: the type of model in particular, and further the number of
parameters in the model (model complexity), the separation between segments, as
well as the number of choice sets per respondent seem to be the primary drivers for
the model performance, while the number of segments, the inner-segment heteroge-
neity (except for the one interaction effect), and the segment masses do not show any
noticeable and in most cases even negligible effect sizes on the model performance.
Obviously, the model performance is not substantially affected by the number of
segments, although the aggregate MNL and the HB-MNL are not at all or only con-
ditionally able to recover segments. It was further not expected that the degree of
inner-segment heterogeneity plays such a weak role especially for the goodness of-
parameter recovery.

Table 7 provides the means of the eight performance measures for each individual
factor level and further reports significant differences between factor levels based on
post hoc tests. For the post hoc tests, we applied the Bonferroni correction to control
for the family-wise error rate. For interpreting factor level differences, we again focus
on factors which show at least a medium effect size. Rather surprisingly, the HB-MNL
model performs excellently in terms of parameter recovery. While, except for the
aggregate MNL model, Pearson correlations are comparable across models with high
values above 0.95, the HB-MNL model shows a much better performance with regard
to the RMSE measure. Especially the DPM-MNL model and the MoN-MNL model
perform considerably worse here, showing much larger absolute deviations between
the “true” and re-estimated part-worth utilities (DPM-MNL: 3.091; MoN-MNL:
2.608) than the LC-MNL (2.159), the aggregate MNL (2.466) and the HB-MNL
(1.650) models. Concerning the percentage of “true” part-worth utilities that lie in the

13 Andrews et al. (2002b) also observed negligible effects of the factors segment masses and inner-seg-
ment heterogeneity on the model performance. However, they did not consider MoN-MNL and DPM-
MNL models in their model comparisons.
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corresponding 95% credible intervals of the draws, we observe that models with a dis-
crete representation of heterogeneity perform inferior and provide inacceptable results
(LC-MNL: 0.014, aggregate MNL 0.021). But again, the HB-MNL model (0.746)
performs markedly better than DPM-MNL (0.623) and MoN-MNL (0.585) models.

We observe similar results when comparing the predictive accuracy between the
models. Except for the MNL model, the HHR between models differ only margin-
ally with values around 83%. The absolute deviations between “true” and re-estimated
total utilities of alternatives are much larger for the DPM-MNL (7.469), the MoN-
MNL (6.352) and the aggregate MNL model (6.275) than for the HB-MNL (4.199)
and the LC-MNL models (5.395). Again, the HB-MNL model here provides the low-
est errors. The better performance of the HB-MNL and LC-MNL models in predicting
total utilities of alternatives (RMSE(V)) corresponds with the better performance of
both models in terms of absolute errors with regard to parameter recovery (RMSE).

We further observe that DPM-MNL and MoN-MNL models provide the best
model fit with respect to all three fit statistics (PC, RLH, IHR), whereas the aggre-
gate MNL model performs by far worst. That the aggregate MNL model performs
so much worse here compared to the other four models seems to be the reason for
the very large effect sizes of the type of model on the three model fit measures (this
also applies to the %TrueBetas measure and in alleviated form to Pearson corre-
lations and holdout sample hit rates, where the aggregate MNL is inferior while
the other models perform comparable). On the other hand, including the aggregate
MNL model in the ANOVAs provided evidence that it performs not worse than the
MoN-MNL model or even significantly better than the DPM-MNL model regarding
absolute errors in both parameter recovery and prediction accuracy, respectively. We
later check if or how much the ANOVA results for the type of model change when
the aggregate MNL model is removed from the analyses (see refinements, Sect. 3.2).

Moreover, optimal choice designs on an individual respondent level enable sig-
nificantly better predictions compared to the case where respondents evaluate only
a smaller (manageable) number of choice sets. We further observe slightly higher
Pearson correlations for a smaller separation between segments. In addition, we rec-
ognize the best parameter recovery both in relative (Pearson correlation) and abso-
lute (RMSE) terms (and also for the %TrueBetas measure) for the most complex
treatment with 12 attributes with 5 levels each (A12L5). Similarly, we also observe
a very high HHR (0.83) for the most complex treatment (A12L5), which is markedly
higher than for the less complex treatment with 9 attributes with 4 levels (A9L4).
We will discuss this in more detail next.

We did not expect these results but rather that a higher number of parameters in
the model should lead to a worse parameter recovery and a worse prediction accuracy.
However, remember that in our design setup a larger number of attribute levels (3,
4, or 5) not only increased the model complexity but also involved larger choice sets
containing more alternatives (e.g., 5 alternatives in treatments with 5 attribute levels,
while only 3 alternatives in treatments with 3 attribute levels) as well as a much higher
optimal number of choice sets to be evaluated by a respondent (compare Table 4). On
the one hand, a higher number of alternatives per choice set makes it more difficult
to predict respondents’ “true” choices correctly, which should decrease the HHR. On
the other hand, more choice sets for each respondent lead to more information on an
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individual level, which in turn should improve parameter recovery and prediction
accuracy. Obviously, the much larger optimal number of choice sets (100 per respond-
ent) for the most complex treatment (A12L5) compared to the two other treatments
(A6L3: 18 choice sets per respondent; A9L4: 32 choice sets per respondent) favors the
good performance with regard to parameter recovery and prediction accuracy.

To fully understand the effects of (a) the number of parameters in the model, (b)
the level of inner-segment heterogeneity and (c) the separation between segments on
the performance measures, it is helpful to examine their interaction effects with the
type of model. As before, we only focus on interaction effects which showed an at
least medium effect size (see Figs. 2 and 3).

Considering the interaction effects between model complexity and type of model
(Fig. 2, panels A-C), we observe that the aggregate MNL model has by far the lowest
HHR (panel A). This in particular applies to the most complex treatment (A12L5)
where the HHR is about 10% lower than for all competing models (panel A). The
corresponding interaction effects on absolute prediction errors (RMSE(V)) and abso-
lute parameter recovery errors (RMSE) show similar patterns (panels B and C). For
the treatments with 6 attributes with 3 levels (A6L3) and 9 attributes with 4 levels
(A9L4) the aggregate MNL, the LC-MNL and the HB-MNL models perform almost
equally well (with slight advantages for the HB-MNL model). For the most com-
plex treatment with 12 attributes with 5 levels (A12L5) the HB-MNL clearly outper-
forms all other models, whereas the aggregate MNL and the LC-MNL models per-
form worst here. In addition, we observe that for the less complex treatments (A6L3,
A9LA4) both absolute error measures turn out very large for the MoN-MNL and DPM-
MNL models. The number of re-estimated components (for the MoN-MNL and the
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Fig.2 Panels A-C: Interaction effects between model complexity and type of model on parameter recov-
ery (RMSE) and prediction accuracy (holdout sample hit rate, RMSE(V)). Panel D: Interaction effect
between inner-segment heterogeneity and type of model on prediction accuracy (RMSE(V))
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Fig.3 Interaction effects between separation of segments and type of model on parameter recovery
(Pearson correlation), model fit (PC, RLH), and prediction accuracy (holdout sample hit rate)

DPM-MNL models) seems to play a negligible role for the most complex treatment
(A12L5). For the DPM-MNL model a maximum of two segments was found for the
treatments with 12 attributes and 5 levels each. The MoN model overestimates the
number of “true” segments in most cases (see above). However, both models show
similar absolute errors for the most complex treatment (lower than the absolute errors
for the less complex treatments but higher compared to the HB-MNL model).

A very similar pattern is found for the interaction effect between inner-segment
heterogeneity and type of model on absolute prediction errors (RMSE(V)), see panel
D in Fig. 2. Here, for treatments with a low inner-segment heterogeneity, the aggre-
gate MNL, the LC-MNL and the HB-MNL models perform again almost equally
well (once more with slight advantages in favor of the HB-MNL model), while the
MoN-MNL and DPM-MNL models provide inacceptable large prediction errors. As
discussed above, this result may be associated with the finding that DPM-MNL (and
also MoN-MNL) models tend to more components for treatments with a smaller
inner-segment heterogeneity. For treatments with a high inner-segment heterogene-
ity, the HB-MNL once more clearly outperforms all other models.

When examining the interactions between the separation of segments and the type
of model (Fig. 3) on Pearson correlations (parameter recovery), PC, RLH (model fit)
and HHR, the most noticeable point is that the aggregate MNL model doesn’t work
competitively, in particular not if segments are clearly separated from each other.
For the treatments with a large separation, all models with continuous representa-
tions of heterogeneity (HB-MNL, MoN-MNL, DPM-MNL) perform nearly equally
well. The LC-MNL model performs slightly worse in terms of goodness-of-fit (PC,
RLH) but is competitive in terms of Pearson correlations and HHRs. Rather similar
results can be observed for treatments with a small separation between segments
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with the exception that the aggregate MNL doesn’t perform such bad here or even
comparable to the other models in terms of Pearson correlations and HHRs. For the
same two performance measures, the LC-MNL model shows even a slightly better
performance than the models with continuous representations of heterogeneity.

We summarize the main results about effect sizes and the impacts of factor levels
on the model performance in Table 8.

3.2 Refinements

We performed sensitivity analyses to check if our ANOVA results stayed robust for
two differing scenarios.'* First, we excluded the aggregate MNL model as bench-
mark model from all ANOVAs. We did this check due to the huge effect sizes
(>0.7) we observed for effects of the type of model on all goodness-of-fit statistics
(PC, RLH, THR) and the %TrueBetas measure of parameter recovery (cf. Table 6).
The ANOVA results changed only little, providing strong evidence that our find-
ings for the different models are highly robust. The huge effects sizes for the type of
model on all goodness-of-fit measures are lower than those reported in Table 6 but
still large (>0.44). The effect sizes for the type of model on the Pearson correlation
and HHR turn out only small after removing the MNL model from the ANOVAs.
Further, we now observe medium effect sizes for the model complexity on RLH and
on THR, medium effect sizes of the degree of within-segment heterogeneity on all
goodness-of-fit measures, and medium to large effect sizes for the number of choice
sets per respondent on the RMSE (0.06) and on the Pearson correlation (0.185). For
the latter factor, corresponding correlations are still high (optimal number of choice
sets: 0.975; manageable number of choice sets: 0.957). As expected (cf. Figure 3)
the interaction effects between the type of model and the separation between seg-
ments on the Pearson correlation, PC, RLH, and HHR become negligible. As men-
tioned above, it was not expected that the degree of inner-segment heterogeneity
plays such a weak role, especially for the goodness of-fit measures. After dropping
the MNL model, we now observe medium effect sizes of the factor heterogeneity on
goodness of-fit measures (but only on goodness-of-fit measures). A small heteroge-
neity enables a significantly better fit compared to a large heterogeneity.

Second, we re-estimated all LC-MNL and MoN-MNL models for the given “true”
number of segments instead of determining the best solutions by model selection (e.g.,
see Vriens et al. 1996). As a result, the MoN-MNL model now comes up with much
lower absolute errors of parameter recovery (RMSE: 1.826) and prediction accuracy
(RMSE(V): 4.518) as well as with a strongly improved %TrueBetas measure of param-
eter recovery. All other results regarding effect sizes of the experimental factors and
the means of performance measures by experimental condition remained extremely
robust. Under this approach, the HB-MNL model and the MoN-MNL model work
similarly effective in terms of parameter recovery, goodness-of-fit and predictive accu-
racy. In particular, the MoN-MNL model reveals slight advantages over the HB-MNL

14 The complete results of the sensitivity analyses are available on request from the authors.
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model with respect to Pearson correlations (HB-MNL: 0.968, MoN-MNL.: 0.978) and
the HHR (HB-MNL: 0.832, MoN-MNL: 0.851), whereas the HB-MNL model per-
forms better w.r.t. the %TrueBetas measure of parameter recovery (HB-MNL: 0.746,
MoN-MNL: 0.689). At this point, it is important to note that the “true” number of seg-
ments or components is not known in empirical studies.

As noted in Sect. 2.5, we also applied the DIC, WAIC and the “shut down” pro-
cedure suggested by Rossi (2014) as alternatives for model selection in addition to
the LML criterion. For the LC-MNL model, the true number of segments could be
identified as well in the majority of cases when using the DIC (87%) or the WAIC
(78%), compared to 82% before via the LML. For the MoN-MNL model, the recov-
ery rate could be improved by using the DIC (9%) or the WAIC (26%), compared
to only 2% before (LML). Still, the ability of the MoN-MNL model to identify true
segment structures remains quite modest. A somewhat different picture results from
using the “shut down” procedure of Rossi (2014) for model selection. For the LC-
MNL model, the “true” number of segments could be recovered for only 15% of the
simulated data sets, while at least in 38% of all cases by the MoN-MNL model. One
possible reason for the rather poor performance of the “shut down” variant obtained
for the LC-MNL model could be that the prior configurations used in this paper are
a bit more informative than those suggested by Rossi (2014), still they are uninform-
ative. Interestingly, the eight performance measures are hardly affected by the choice
of the model selection procedure and remained highly stable for the different model
types, as displayed in Table 10 in the Appendix.'

Allenby and Rossi (1998) have already noted that the posterior means of individ-
ual-level parameters do not have to follow a normal distribution even if the hetero-
geneity model is represented by the single normal distribution, as in the HB-MNL
model. The rationale behind this is that the single normal distribution is only part of
the prior, and the posterior is affected by the individual respondent data (cf. Allenby
and Rossi 1998, p. 71). Thus, the distribution of the individual-level parameters
could be multimodal even if the heterogeneity model is wrong, which would explain
— at least to some degree — the very good performance of the HB-MNL model in our
study.'® The following density plots displayed in Fig. 4 should bring more light into
this issue, showing for selected treatments how multimodal the simulated prefer-
ence distributions were and how well individual-level parameters were recovered. In
addition, Fig. 4 provides examples for treatments when MoN-MNL and DPM-MNL
models overestimated the “true” number of components.

Shown are selected individual-level preference distributions for true versus re-
estimated part-worth utilities for different numbers of segments and different com-
binations of factor levels regarding the factors separation of segments (between-seg-
ment heterogeneity) and within-segment heterogeneity. The solid black lines refer to

!5 Note that the eight performance measures are highly robust against the type of model selection with
regard to all other experimental factors, too. The corresponding results are available on request from the
authors. Also note that different from Voleti et al. (2017) we used the DIC instead of the DIC3 criterion
since we have no missing data.

16 We thank an anonymous reviewer for this note.
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Fig.4 Selected density plots for “true” distributions of part-worth utilities (black lines) versus re-esti-
mated distributions of part-worth utilities by model type (HB-MNL: blue lines; MoN-MNL: green lines;
DPM-MNL: red lines). Upper left panel: 3 “true” segments, large separation, small heterogeneity. Upper
right panel: 2 segments, small separation, large heterogeneity. Lower left panel: 2 segments, large separa-
tion, large heterogeneity. Lower right panel: 2 segments, small separation, small heterogeneity (note that
the two true segments are not visible in the lower right panel due to their small separation and the coarse
scaling required to represent the estimated components from the DPM-MNL model; for a finer resolu-
tion, see the bottom part of Fig. 5 in the Appendix where the DPM-MNL has been excluded)

the generated “true” preference distributions, while the dashed and/or dotted lines
refer to the re-estimated part-worth distributions obtained from the HB-MNL (blue),
MoN-MNL (green), and DPM-MNL (red) models.

The upper left panel shows a treatment with three “true” segments, a large separation
between segments, and a small individual heterogeneity within these segments. Here,
we observed that the MoN-MNL worked well in capturing the three segment structure
(one of the few examples where the MoN-MNL performed fine), but that especially
the HB-MNL did as well a very good job. Obviously, the posterior means are not con-
strained to follow the upper level single normal distribution in the HB-MNL model, and
can reproduce the true 3-segment structure by adapting to the individual multimodal
preference data under this factor level condition. A similar result was found for the
treatment with two “true” segments, a small separation between segments, and large
within-segment heterogeneity, see the upper right panel. Under this condition, the good
performance of the HB-MNL model seems more plausible, since the two segments
strongly overlap due to the small separation and the large within-segment heterogeneity.

The lower left panel shows a treatment with again two “true” segments, but both a
large separation between segments and large within-segment heterogeneity. In this sit-
uation, the MoN-MNL suggests a 4-segment solution and therefore overestimates the
true number of segments by two components (based on the LML criterion used for
model selection here). In contrast, both the HB-MNL and DPM-MNL models very
closely recovered the two segments. Finally, the density plots in the lower right panel
refer to a treatment with two “true” segments, and both a small separation between
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segments and small within-segment heterogeneity. Here, the DPM-MNL yielded a
solution with six components (only four are clearly visible), indicating a clear overfit-
ting. Note that the DPM-MNL models tended to more components in treatments with
a small separation between segments or a small extent of inner-segment heterogene-
ity, compare Sect. 3.1. For a detailed consideration of interaction effects between the
factors separation of segments and within-segment heterogeneity, see Figs. 2 and 3.!”

4 Conclusions, managerial implications, and outlook

In this paper, we conducted an extensive Monte Carlo study including some sensitivity
analyses to compare the performance of different Bayesian choice models represent-
ing between-segment and/or within-segment consumer heterogeneity. Summing up, the
core finding from our simulation study is that the HB-MNL appears to be highly robust
against violations in its assumption of a single normal distribution of consumer prefer-
ences. The MoN-MNL and the DPM-MNL model on the other hand overestimate the
“true” number of components in many cases, which led to a kind of overfitting and
as a result of that to large absolute errors regarding parameter recovery and prediction
accuracy (independent of which model selection procedure was applied to find the best
MoN-MNL models). The latter was particularly distinctive for less complex treatments
and for data sets with a low inner-segment heterogeneity. The LC-MNL model proved
to be the definitely best approach to recover the “true” number of segments (78%), espe-
cially for symmetric treatments concerning segment sizes. The MoN-MNL and DPM-
MNL models clearly failed with regard to this criterion, even if the “shut down” proce-
dure suggested by Rossi (2014) provided a much better recovery rate (38%) compared
to other model selection procedures. This is especially noteworthy since beyond param-
eter recovery and prediction accuracy the identification of “true” segment structures is
of particular importance for managers who usually do not know the “true” number of
segments. Surprisingly, the HB-MNL model performed significantly better or at least
as good as all other models as far as parameter recovery (the identification of “true”
utility structures) and prediction accuracy is concerned. Regarding model fit, which we
consider as not such important for practical applications, only DPM-MNL and MoN-
MNL models performed slightly better due to their higher flexibility. Note that some of
these findings are also in line with the empirical results reported in Voleti et al. (2017),
who especially emphasized the good performance of the HB-MNL model for predic-
tive purposes. Even so, the authors found out that the DPM-MNL model outperformed

17 The upper part of Fig. 5 in the Appendix additionally displays the fitted population-level distributions
obtained for the MoN-MNL and HB-MNL models and demonstrates that the MON-MNL models strug-
gle to recover the true segment structures adequately even for the treatments with a large separation of
segments (left upper and lower panels). In contrast, the HB-MNL models fail to re-estimate existing seg-
ment structures at the upper level by definition due to its assumption of a single normal distribution. For
the sake of completeness and as contrast, the corresponding posterior means distributions again show up
in the lower part of Fig. 5. Therefore, in the light of this finding, it may be risky to rely on the fitted pop-
ulation distributions for related marketing decisions, in particular as true segment structures are unknown
in empirical applications. See Sect. 4 for a further discussion on this issue.
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all other models in their empirical study. Regarding the choice of the model, the HB-
MNL model comes off as the clear winner of our Monte Carlo study.

From our perspective, the findings of our Monte Carlo study provide the follow-
ing managerial implications: (1) Parameter recovery and predictive accuracy are very
important criteria (as opposed to model fit) for managerial decision-making, as outlined
in the introduction. Since the HB-MNL model either outperformed all other models
or at least performed on eye-level with them with regard to all performance measures
used, it apparently represents a highly robust choice model under diverse conditions
including multimodal preference structures. It did also not fail under very specific
conditions we investigated using interaction analyses, but on the contrary performed
particularly well in the case of a high number of attributes and attribute levels (i.e. a
large number of parameters) with respect to absolute recovery and prediction errors.
In addition, DPM-MNL and MoN-MNL models provided huge prediction errors for
deterministic utilities in treatments with a large inner-segment heterogeneity, a factor
which is not observable in empirical data prior to model estimation. Since MoN-MNL
and DPM-MNL models are much more complex (including the need to specify a much
larger number of prior settings) and standard software is not available to date, we can
recommend practitioners to continue using the well-established HB-MNL model for
market (preference) simulations. Note that we ran 200,000 burn-in iterations for each
model to ensure convergence of the markov chains, which is of course essential in
practical applications, too. (2) If managers work on a segment perspective to design
products and related marketing activities, the LC-MNL model can definitely be recom-
mended to identify true segment structures as far as such exist. In contrast, the ability
of both DPM-MNL and MoN-MNL models to recover the “true” number of segments
was considerably worse and rather disappointing in our study. One possibility for man-
agers to nevertheless address inner-segment heterogeneity would be to estimate a LC-
MNL model at first and subsequently a HB-MNL model for (some of) the identified
segments. Alternatively, the segment-specific part-worths obtained from the LC-MNL
model could be weighted by a respondent’s posterior segment membership probabili-
ties to arrive at individual part-worth utility estimates for each individual (e.g., Ver-
munt and Magidson 2007). (3) Of course, findings on predictive validity from artificial
data sets need not coincide with those from empirical settings with real data. Synthetic
data may contain inadvertent biases from not considering real-world phenomena like
simplification strategies of respondents or respondent fatigue in later choice tasks (e.g.,
Selka et al. 2014). Note that we considered the latter issue with an experimental fac-
tor that limited the number of choice tasks to a manageable number following related
meta studies. In a recent empirical study for eleven CBC data sets, Voleti et al. (2017)
reported higher hit rates and higher hit probabilties for the DPM-MNL model compared
to the HB-MNL, MoN-MNL, and LC-MNL models. The DPM-MNL model improved
hit rates / hit probabilities on average by 5% / 3% over the HB-MNL, however the HB-
MNL outperformed the MoN-MNL by 2% / 8% and LC-MNL models by 3% / 9%, on
average. In our study, holdout sample hit rates were comparable across the four mod-
els, whereas the HB-MNL (DPM-MNL) performed clearly best (worst) in predicting
deterministic utilities. More research is needed here to explore the differences in predic-
tive accuracy between the DPM-MNL and the HB-MNL in empirical versus artificial
settings. Nevertheless, the HB-MNL also predicted surprisingly well in the empirical
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study of Voleti et al. (2017). We elaborate on this issue still in more detail below in our
outlook on future research opportunities.

Future work should further verify if our findings hold for different distributions
of heterogeneity than assumed in the present study. For example, if the distribution
of inner-segment heterogeneity is rather skewed, one might expect a superior perfor-
mance of the MoN-MNL or the DPM-MNL models compared to the HB-MNL, LC-
MNL and aggregate MNL models. In a Monte Carlo study, Ebbes et al. (2015) for
example additionally estimated so-called DPP models. In DPP models, the distribution
of part-worth utilities is drawn from a Dirichlet Process, with the resulting part-worth
utilities representing a mixture of discrete vectors. Performance measures for the DPP
models did not differ significantly from the measures obtained for the MoN models
in the study of Ebbes et al. (2015).!8 However, the authors conjectured that the DPPs
will outperform MoN models if the distribution of inner-segment heterogeneity differs
from a normal distribution. It should be noted that Andrews et al. (2002a) found no
differences in measures of performances between different choice models when com-
paring normally distributed preferences to gamma distributed preferences. However,
they only compared a LC-MNL model, a HB-MNL model and an aggregate model
and did not consider the MoN-MNL and the DPM-MNL models. Kim et al. (2004)
concluded that the recovery performance of models with a Dirichlet Process prior was
getting worse for data sets with a mixture of skewed distributions compared to data
sets with a mixture of normal distributions. However, they did not compare the recov-
ery performance to a HB-MNL model with an unimodal distribution of heterogeneity
or to LC-MNL models.

Future research could also investigate how well the different models predict truly out-
of-sample, i.e. not just for new observations of the respondents in holdout choice sets
but for entirely new respondents (e.g., Pachali et al. 2020). In this case, possible con-
cerns that a model is trained not only to fit the data well, but also may favor “overfit-
ting” holdout choices could be eliminated. Basically, there are several ways to predict
the choice behavior out-of-sample. One option would be using the posterior means of
the respondents’ part-worths from the estimation sample and just integrating over this
distribution of posterior means for predictions. Alternatively, one might simulate draws
from the density of the respondents’ posterior means instead of using the posterior
means resulting directly from the Markov chain after convergence. In both cases, pre-
dictions for the new sample would be based on the posterior means of the respondents
of the estimation sample. However, Pachali et al. (2020) showed for the normal distri-
bution that the heterogeneity of respondents would be underestimated from the poste-
rior means of individual part-worths, a finding that we could confirm not only for the
HB-MNL model with its single normal distribution but also for the MoN-MNL model
with its mixture-of-normals, please directly compare the posterior mean distributions
versus the fitted population distributions displayed for selected treatments in Fig. 5 in the
Appendix. In order to adequately “exploit” the heterogeneity of respondents, it therefore

13 Since groups of respondents share identical part-worth utilities, the DPP-MNL model is closely
related to the LC-MNL model. As the DPP-MNL model performed very worse and often not better than
a chance model concerning hit probabilities in the empirical CBC study of Voleti et al. (2017) we did not
include it in our study.
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seems more reasonable at first glance to use the fitted population distributions for out-
of-sample predictions. In order to get an impression how results could change out-of-
sample, we compared the HB-MNL model with the MoN-MNL model for a randomly
selected treatment with a large separation and small within-segment heterogeneity (i.e. a
clearly multimodal preference structure). For this, we estimated the two models for 400
respondents (estimation sample), threw away the posterior mean estimates of the estima-
tion sample and instead simulated 400 random draws from the fitted population-level
distributions,' and finally predicted the choices for each of the 200 new respondents
(validation sample) based on these 400 simulated draws. Out-of sample hit rates of the
two models were highly comparable (HB-MNL.: 82.5%; MoN-MNL: 82.3%), indicating
that the HB-MNL performs competitive out-of-sample, too. Of course, this represents
just one instance and much more research is necessary to generalize this finding. On
the other hand, this result is not even surprising with regard to the plots shown in Fig. 5
which already suggested that the MoN-MNL model was not working as expected on the
upper level in recovering the existing segment structures. Hence, the Mon-MNL model
could not play its theoretical advantage against the HB-MNL model which is expected
to predict worse for a new sample of respondents by definition if population-level prefer-
ences are (clearly) multimodal. Given that (1) the HB-MNL model has been proven to
recover multimodal distributions of individual-level parameters in the estimation sample
despite its very wrong assumption of a single normal population distribution, and (2)
the MoN-MNL model might be not able to recover a multimodal population distribu-
tion satisfactory even if a clear separation of true segments exists (like in our study), for
both models the bias from an underestimation of the degree of heterogeneity when using
the distribution of posterior means of the estimation sample might be eventually smaller
than the bias from using a wrong population distribution.

Finally, future research could analyze the performance of the competing models
when taking into account simplification strategies of respondents, which are known
to occur in empirical studies. Simplification strategies can, for example, be the result
of (a) straightlining behavior of respondents who pay attention to only one or two key
attributes when choosing brands, (b) some kind of cheating behavior of professional
respondents as can be more and more observed in online panels, or (c) simply boring-
ness of respondents (Hein et al. 2020). Simplification strategies reduce the quality of
the data compared to artificial studies and thus may affect the relative performance of
the different models studied in this paper. To the best of our knowledge, no simulation
study has yet compared the performance of the aggregate MNL, LC-MNL, HB-MNL,
MoN-MNL and DPM-MNL models in the presence of simplification strategies of at
least parts of respondents. Moreover, including the sample size as an additional experi-
mental factor might provide further insights about the overlapping mixtures problem
(Kim et al. 2004), which affects the performance of DPM and MoN models.

Appendix

See Tables 9, 10 and Fig. 5

19 For the MoN-MNL model, the number of draws for each mixture component was determined by the
estimated membership probabilities.
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True distributions versus fitted population-level distributions
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Fig.5 Selected density plots for “true” distributions of part-worth utilities (black lines) versus re-esti-
mated distributions of part-worth utilities by model type (HB-MNL: blue lines; MoN-MNL.: green lines).
Upper left panel: 3 “true” segments, large separation, small heterogeneity. Upper right panel: 2 segments,
small separation, large heterogeneity. Lower left panel: 2 segments, large separation, large heterogene-
ity. Lower right panel: 2 segments, small separation, small heterogeneity. The upper panel displays fitted
population-level distributions, the lower panel displays the distributions of posterior means of part-worth
utilities
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