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Abstract
The most commonly used variant of conjoint analysis is choice-based conjoint 
(CBC). Here, hierarchical Bayesian (HB) multinomial logit (MNL) models are 
widely used for preference estimation at the individual respondent level. A new and 
very flexible approach to address multimodal and skewed preference heterogeneity 
in the context of CBC is the Dirichlet Process Mixture (DPM) MNL model. The 
number and masses of components do not have to be predisposed like in the latent 
class (LC) MNL model or in the mixture-of-normals (MoN) MNL model. The aim 
of this Monte Carlo study is to evaluate the performance of Bayesian choice models 
(basic MNL, HB-MNL, MoN-MNL, LC-MNL and DPM-MNL models) under var-
ying data conditions (especially under multimodal heterogeneity structures) using 
statistical criteria for parameter recovery, goodness-of-fit and predictive accuracy. 
The core finding from this Monte Carlo study is that the standard HB-MNL model 
appears to be highly robust in multimodal preference settings.
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1  Introduction

Addressing consumer heterogeneity in choice models is an issue in the market-
ing literature since the mid-1990s (e.g., Allenby and Ginter 1995; Allenby and 
Rossi 1998; Rossi et al. 1996). Using appropriate statistical estimation techniques 
makes it possible for researchers and practitioners to analyze and fully understand 
markets with truly heterogeneous and/or segment-specific market structures. 
To date, the most widely applied discrete choice model is the multinomial logit 
(MNL) model (e.g., Horowitz and Nesheim 2021; Keane et al. 2021), which dates 
back to McFadden (1973). Considering random taste variation in the MNL model 
nowadays allows the researcher to derive implications at the individual respond-
ent level and also to avoid or relax the stuck-in-the-middle problem by using 
individual-level estimates for decisions at the market level (e.g. if a firm plans 
to launch one new product for an aggregate of consumers). Wedel et  al. (1999) 
distinguished between continuous and discrete representations of consumer het-
erogeneity. Although the “true” distribution of consumer heterogeneity is often 
continuous, the concept of the existence of a discrete number of market segments 
is often more attractive and easier to understand, especially from a managerial 
point of view (e.g., Ebbes et  al. 2015; Tuma and Decker 2013). Whereas dis-
crete approaches often over-simplify the concept of heterogeneity, continuous 
approaches may not be flexible enough to reproduce consumer heterogeneity ade-
quately, especially if a unimodal heterogeneity distribution is assumed (Allenby 
and Rossi 1998; Rossi et al. 2005).

Choice models accounting for discrete and continuous representations of hetero-
geneity became popular for analyzing stated preferences using choice-based conjoint 
(CBC) data, too (Louviere and Woodworth 1983). On the one hand, the finite mix-
ture MNL approach, proposed by Kamakura and Russell (1989) for the analysis of 
panel data, was applied to CBC data (DeSarbo et al. 1995; Kamakura et al. 1994; 
Moore et  al. 1998). This approach, also known as latent class (LC) MNL model, 
divides the market into a manageable number of homogeneous segments with dif-
ferent preference and elasticity structures. On the other hand, Allenby et al. (1995), 
Allenby and Ginter (1995) and Lenk et al. (1996) published milestone articles for 
the application of models with continuous representations of heterogeneity to CBC 
data using hierarchical Bayesian (HB) estimation techniques. Using a normal distri-
bution became the standard procedure to represent preference heterogeneity, referred 
to as HB-MNL model in the following (e.g., Kim et al. 2007; Webb et al. 2021). A 
number of researchers have tested and compared the capability and the statistical 
performance of HB-MNL vs. LC-MNL models, providing ambiguous findings, see 
e.g. Paetz and Steiner (2017) or Paetz et  al. (2019) for detailed reviews. Andrews 
et al. (2002a) reported that the HB-MNL model worked quite robust even in case 
of multimodal preference structures. However, it is well known that the thin tails 
of the normal distribution tend to shrink unit-level estimates toward the center of 
the data (Rossi et al. 2005). This shrinkage, especially in multimodal data settings, 
could mask important information (e.g., new or different market structures) (Rossi 
et al. 2005).



139

1 3

Multimodal preference heterogeneity in choice-based conjoint…

As a generalization of the finite mixture model, the mixture-of-normals (MoN) 
approach avoids the drawbacks of both the LC-MNL (assumption of homogene-
ous market segments) and the HB-MNL model (assumption of a unimodal hetero-
geneity distribution), see Lenk and DeSarbo (2000). Here, a mixture of several 
multivariate normal distributions representing consumer heterogeneity is applied 
to a MNL model (Allenby et al. 1998). Using a sufficient number of components, 
any desired heterogeneity distribution can be approximated using a MoN (e.g., 
heavy-tailed, multimodal and skewed distributions), see Rossi et  al. (2005) or 
Train (2009). Ebbes et al. (2015) and Chen et al. (2017) more recently reported a 
better performance of MoN-MNL models in comparison to LC-MNL models in 
data sets with a large within-segment consumer heterogeneity (Chen et al. 2017) 
and in the presence of continuous heterogeneity structures (Ebbes et al. 2015).

An additional variant of a discrete choice model for capturing consumer het-
erogeneity is a hierarchical MNL model with a Dirichlet Process Prior (Voleti 
et  al. 2017). In this way, the researcher is able to model heterogeneity of an 
unknown form, which allows to classify this approach (as well as the MoN) as 
Bayesian semi-parametric method (Ansari and Mela 2003; Rossi 2014). One vari-
ant of a hierarchical MNL model with a Dirichlet Process Prior is the Dirichlet 
Process Mixture (DPM) MNL model. Here, part-worth utilities are drawn from 
continuous distributions (here multivariate normal distributions), where popula-
tion means and covariances follow a Dirichlet Process. In other words, the con-
tinuous distribution is centered around the discrete part-worth utilities of the 
Dirichlet Process Prior (Voleti et al. 2017). The consideration of within-segment 
heterogeneity is –  as well as in the MoN-MNL − a strength of the DPM-MNL 
model. Ferguson (1973) and Antoniak (1974) introduced the Dirichlet Process, 
and although e.g. Escobar and West illustrated Bayesian density estimation based 
on a Dirichlet Process already in 1995 (Escobar and West 1995), its application 
in the context of CBC data has been proposed only recently. An advantage of the 
DPM-MNL is that the number and composition of components are determined 
as a result a posteriori. Post hoc procedures (e.g., Andrews and Currim 2003) to 
find the optimal number of segments (components) − like in LC-MNL or MoN-
MNL models − are no longer required (Ebbes et al. 2015; Kim et al. 2004; Voleti 
et  al. 2017). Table  1 summarizes the strengths and weaknesses for each of the 
four model types (LC-MNL, HB-MNL, MoN-MNL, DPM-MNL).

A number of Monte Carlo studies related to conjoint analysis and discrete choice 
models have been conducted previously, focusing on

•	 the comparison of different conjoint segmentation methods (Vriens et al. 1996),
•	 the comparison of different variants of MNL models to capture preference het-

erogeneity (in particular comparing HB-MNL or MoN-MNL versus LC-MNL 
models, see Andrews et  al. (2002a, 2002b), Otter et  al. (2004), Chen et  al. 
(2017), and Ebbes et al. (2015)),

•	 the comparison of HB-MNL models involving different levels of information 
(Wirth 2010),

•	 the analysis of the statistical capabilities of the HB-MNL model for extreme set-
tings of CBC design parameters (Hein et al. 2020), or
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•	 the capability of DPM-MNL models to capture differently shaped heterogeneity 
distributions (Burda et al. 2008; Li and Ansari 2014).

To the best of our knowledge, no Monte Carlo study has yet systematically 
explored the comparative performance between LC-MNL, HB-MNL, MoN-MNL 
and DPM-MNL models for CBC data, with all of these models embedded in the 
same fully Bayesian estimation framework.

In a study by Voleti et al. (2017), the four models were empirically compared on 
the basis of eleven CBC data sets. The data sets varied in the number of respond-
ents, the number of choice tasks per respondent, the number of alternatives per task, 
the number of attributes as well as the number of part-worth utilities to be estimated 
per respondent (which also depends on the number of attribute levels). The authors 
focused on the predictive accuracy of the different approaches and found that the 
DPM-MNL outperformed the competing models in terms of holdout sample hit 
rates and holdout sample hit probabilities. Importantly, on average, the HB-MNL 
model provided the second-best predictive performance. More, recently, Goeken 
et  al. (2021) also compared the HB-MNL, the MoN-MNL, and the DPM-MNL 
models (but not the LC-MNL) in an empirical study, applying them to a real multi-
country CBC data set for tires. The authors reported a slightly higher cross-validated 
hit rate for the DPM-MNL compared to both the MoN-MNL and the HB-MNL, thus 
confirming the tendency of a better predictive performance of the DPM-MNL in 
empirical settings. But again, the HB-MNL model was close to the DPM-MNL in 
its predictive accuracy.

Voleti et al. (2017, p. 334) further stated that the “recovery of parameters is also a 
relevant objective. However, the only way to address this issue is through computer 
simulations. […] We leave it to future research to address the issue of parameter 
recovery under alternative assumptions regarding the true distribution of heteroge-
neity.” Since Goeken et  al. (2021) as well focused on empirical data and did not 
provide any findings for simulated data, we pick up the suggestion of Voleti et al. 
(2017) in this paper, and study the statistical performance of choice models with 
different representations of heterogeneity in a Monte Carlo study for CBC data. In 
particular, we compare the LC-MNL, HB-MNL, MoN-MNL and DPM-MNL mod-
els under varying experimental conditions for parameter recovery, goodness-of-fit 
and predictive accuracy. Like Andrews et  al. (2002a), we further incorporate the 
aggregate MNL model that completely ignores heterogeneity as a benchmark for all 
heterogeneous models. As opposed to earlier simulation studies, we compare these 
choice models in one Monte Carlo study and estimate all models within the same 
Bayesian estimation framework.

Parameter recovery is an important criterion for product design decisions as 
parameters (part-worth utilities in CBC studies) relate to values of product attribute 
levels and managers are interested to find the best attribute levels for their products. 
How well a method can recover hidden “true” utility structures can only be studied 
with artificial data, but knowing which method under which condition is theoreti-
cally better in this aspect constitutes an important asset for managers. Independent 
of whether companies tailor their products to individual customers or not, it is essen-
tial and also standard to measure parameter recovery at the individual respondent 
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level (e.g., Andrews et  al. 2002a, 2002b, 2008). In other words, although manag-
ers might not be interested in parameter values (preference structures) of specific 
respondents, a better parameter recovery at the individual respondent level should 
enable managers to come closer to the real expectations (true preferences) of cus-
tomers even if product line decisions are subsequently made on a more aggregate 
level. Market simulations using choice simulators are typically conducted based on 
individual parameters, even more so as it is well-known that parameter estimates 
from aggregate models can be strongly biased (“stuck-in-the-middle”). Sometimes, 
however, companies are also interested in knowing preference parameters of indi-
vidual respondents, like e.g. in the discrete choice experiments for app-based recom-
mender systems conducted by Danaf et al. (2019). There are also examples for com-
mercial applications where individual-level estimates were the focus, e.g. studies 
about individual preferences for hair coloration or for preferred products in online 
shopping trips. Not least, we generally expect personalization efforts of firms and 
related CBC experiments to further increase in digital environments.

On the other hand, studying the predictive accuracy of the different models 
under experimental conditions can either generalize the empirical findings of Voleti 
et  al. (2017) or reveal conditions where a different predictive performance can be 
expected. Predictive accuracy is as well an important dimension for management 
decisions, since managers are interested in predicting shares of choice (preference 
shares) as accurate as possible. It has been shown, however, that a model with a 
high predictive accuracy not necessarily must provide a high accuracy in recovering 
true parameter values (and the reverse). While minimizing errors in shares-of-choice 
forecasts represents a natural aggregate measure, it is further also common to assess 
the predictive validity of a model based on individual-level measures like hit rates or 
hit probabilities, as used in Voleti et al. (2017). If actual market share data are not 
available to validate shares of choice predictions, model validation can also be based 
on individual-level measures (like hit rates in holdout tasks) to find the best model 
for market simulations. We use the latter approach to provide comparability to Voleti 
et al. (2017).

To carve out differences in the statistical performance between the classes of 
models with discrete versus continuous representations of heterogeneity, we specifi-
cally vary the levels of within-segment and between-segment heterogeneity. In par-
ticular, we want to investigate (1) which representation of heterogeneity is favorable 
to analyze CBC data, (2) if there is a clear recommendation toward one model for 
discovering multimodal heterogeneous preference structures and (3) whether (and if 
how) related findings vary depending on specific levels of our experimental factors. 
Furthermore, we are particularly interested in (4) how robust the HB-MNL model 
performs especially in terms of parameter recovery and predictive accuracy com-
pared to the other heterogeneous models due to its underlying unimodal preference 
distribution which seems least appropriate for segmented markets as considered 
here. Finally, we want to prove (5) whether the empirical findings of Voleti et  al. 
(2017) with regard to the predictive performance of the models hold for simulated 
data, too.

In the next section, we propose the design of our Monte Carlo study. In par-
ticular, we describe the different choice models, the estimation process, the 
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performance measures used, and the data generation process including experi-
mental factors and factor levels. We subsequently present the results of the Monte 
Carlo study, discuss implications and provide an outlook onto future research 
perspectives. We used the R software (R Core Team 2020) for data generation, 
choice design construction, model estimation and model evaluation. For model 
estimation, we used the bayesm package (Rossi 2019) within the R software.

2 � Design of the Monte Carlo study

2.1 � Models

Since the 1990s, hierarchical Bayesian models have been used for part-worth util-
ity estimation in a CBC framework. The strength of these methods is the ability 
to yield part-worth utilities at the individual respondent level even when little 
individual respondent information is available. This is possible by using prior 
distributions, which borrow information from the sample population (population 
mean and population covariance). Using a multivariate normal distribution as a 
first-stage prior has become the state–of–the–art to represent heterogeneity. How-
ever, the use of a single normal distribution can be considered as a very conserva-
tive approach. Unit-level estimates are shrank toward the population mean, which 
may mask potential multimodalities in consumer preferences (Rossi et al. 2005). 
Using a mixture of normal distributions as a first-stage prior can relax this weak-
ness. In particular, multimodal heterogeneity structures as well as thick tails and 
skewed distributions can be modelled that way. Allenby et al. (1998) pointed out 
that many distributions can be approximated by using the MoN approach.

Let us denote the utility respondent n (n = 1,… ,N) obtains from alternative j 
(j = 1,… , J) in choice situation s (s = 1,… , S) as

where Vnjs = β
�

n
xnjs and εnjs represent the deterministic utility and the stochastic util-

ity components, respectively. βn denotes the vector of part-worth utilities of respond-
ent n , and xnjs is a binary coded vector indicating the attribute levels of alternative j 
offered to respondent n in choice situation s . Assuming that the error term �njs fol-
lows a Gumbel distribution we obtain the MNL model (Train 2009):

To be able to model multimodality with a mixture-of-normals approach con-
sisting of T  components, we can specify the hierarchical model as follows (Rossi 
et al. 2005; Rossi 2014):

(1)Unjs = Vnjs + �njs,

(2)PMNL
njs

=
eVnjs∑
i e

Vnis

.
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ln ∈ {1,… , T} indicates the components from which respondent n can be drawn 
and follows a multinomial distribution. p ∈ ℝ

T denotes the associated probabilities 
of the multinomial distribution which follow a Dirichlet distribution. � ∈ ℝ

T can 
be interpreted as a tightness parameter, which has an influence on the masses of 
the components. Rossi (2014) for example shows that larger values of � are asso-
ciated with a higher prior probability for models with a large number of compo-
nents. The corresponding population means bt and the covariance matrices Wt with 
t ∈ {1,… , T} are normal and inverse Wishart distributed, respectively. The dimen-
sions of bt and Wt depend on the number of parameters to be estimated. With this 
model framework, the MoN-MNL model and some nested model variants can be 
estimated based on CBC data. For Wln

≠ 0 and T = 1 for example we obtain the HB-
MNL model. For diagonal elements of Wln

 close to zero we can further approximate1 
the LC-MNL ( T ≠ 1 ) and the aggregate MNL ( T = 1 ) model (Allenby et al. 1998; 
Lenk and DeSarbo 2000). A reasonable choice of prior settings therefore leads to an 
approximated LC-MNL and MNL model with a discrete distribution of heterogene-
ity. By weighting the estimated part-worth utilities of a LC-MNL with the poste-
rior membership probabilities, we obtain part-worth utilities on an individual level 
(Andrews et al. 2002a).

Using a Dirichlet Process allows for a countable infinite number of components 
by supplementing the component parameters with additional priors. The DPM-MNL 
model can therefore be seen as an extension of the MoN-MNL approach. Rossi 
(2014) comments on a better approximation of multimodal distributions when using 
Dirichlet Processes. One possible reason for this superiority is that the Dirichlet 
Process offers the benefits of automatically inferring the number of mixture compo-
nents. Rossi (2014) stated that in practical applications no more than about 20 com-
ponents are used in a MoN approach. In some cases this a priori specified number of 
components in a MoN approach is not near the limiting case (Rossi 2014). Another 
possible reason for this superiority is that additional priors are placed on the param-
eters and hyper-parameters of the Dirichlet Process resulting in substantial perfor-
mance differences and more flexible prior assumptions. To obtain the DPM-MNL 
model, we replace the Dirichlet prior by a Dirichlet Process:

(3)

�
n
∼ N

(
bln ,Wln

)
,

ln ∼ MNT (p),

p ∼ Dirichlet(�),

bt ∼ N

(
b,w−1Wt

)
,

Wt ∼ IW(k,Σ).

(4)
�n ∼ N

(
bln ,Wln

)
,(

bln ,Wln

)
∼ DP

(
�DPP,G0

)
.

1  Note that it is not possible to set W
l
n
= 0 (compare Sect. 2.2).
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�DPP ∈ ℝ is referred to as concentration parameter or Dirichlet Process tightness 
parameter. Similar to the MoN-MNL, increasing �DPP puts a higher prior probability 
on models with a large number of components (Rossi 2014). Rossi (2014) chooses 
a flexible prior2 for the concentration parameter based on Conley et al. (2008). The 
advantage of this prior (as compared to e.g. gamma priors) is that the implications 
for the distribution of the number of possible components are more intuitive to 
assess (for more details see e.g. Rossi (2014)):

Here, � ∈ ℝ and � ∈ ℝ are chosen to reflect the range of the probable number 
of components, and � is a power parameter. Conley et al. (2008) as well as other 
authors (e.g., Voleti et al. 2017) describe the modus operandi of the Dirichlet Pro-
cess and especially of the concentration parameter �DPP with the help of the stick-
breaking representation published by Sethuraman (1994). There, the draws from the 
Dirichlet Process can be represented as an infinite mixture of discrete “atoms” with 
specific probabilities. Following Conley et al. (2008) the baseline distribution G0 is 
parametrized as follows:

The priors on a, � and u are:

where d is the dimension of the data (here the number of mean part-worth utilities) 
and U is the uniform distribution. Appropriate prior settings as well as more infor-
mation on the estimation process are presented in the next section.

2.2 � Estimation

In the following, MNL, LC-MNL, HB-MNL, MoN-MNL as well as DPM-MNL 
models were estimated using Bayesian procedures to obtain part-worth utilities. 
Markov chain Monte Carlo (MCMC) methods were applied to generate draws from 
posterior distributions.

(5)p
(
�DPP

)
∝

(
1 −

�DPP − �

� − �

)�

.

(6)
b ∼ N

(
0, a−1W

)
,

W ∼ IW(�, �uI).

(7)

a ∼ U
(
al, a

u
)
,

u ∼ U
(
ul, u

u
)
,

� ∼ d − 1 + exp (z),

z ∼ U
(
�l, �

u
)
,

2  Other authors choose a gamma or a uniform prior distribution for the Dirichlet Process tightness 
parameter. Voleti et al. (2017) stated that the choice of the functional form has only a marginal impact on 
the number of estimated components.
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We used a Gibbs Sampler with a random walk Metropolis step for the MNL 
coefficients �n for each respondent n as outlined in Sect. 5.5 of Rossi et al. (2005) 
and Sect. 5.2 of Rossi (2014). In addition to the “default” prior settings suggested 
by Rossi (2014),3 we tested a variety of additional prior settings. We finally adapted 
the prior settings (in particular the settings for the prior covariance matrix Σ ) partly 
from Sawtooth Software (Sawtooth Software 2016) as they provided the best results 
in terms of part-worth recovery. Specifically, we chose the following prior configu-
ration to estimate MoN-MNL models (compare Eq. (3)):

where d represents the dimension of the data (here the number of mean part-worth 
utilities). The prior covariance matrix Σ was chosen according to Sawtooth Software 
(2016) with a prior variance of 2 . Since we can approximate the LC model by the 
MoN model for diagonal elements of Σ being close to 0 (Allenby et al. 1998), we 
modified the parameters of the inverse Wishart distribution to estimate the LC mod-
els as follows4:

where I is the identity matrix. Note that the prior covariance matrix Σ of the inverse 
Wishart distribution is a positive-definite matrix. Therefore, we approximate the 
LC-MNL model by setting the diagonal elements of Σ close to zero. The estima-
tion of both the MoN-MNL and the LC-MNL model was carried out for a fixed 
number of components T ∈ {1,… , 6} , which implicitly included the HB-MNL 
( T = 1,Wln

≠ 0 ) and the simple MNL model ( T = 1,Wln
= 0).

To estimate the DPM-MNL model, we set the power parameter � to 0.8 (Conley 
et al. 2008). Following Rossi (2014), we set the other prior parameters as follows:

� and � were chosen to provide a broad prior support for values from 1 to 50 com-
ponents. We also performed a sensitivity analysis regarding these prior settings and 
found out that results only differed marginally for different choices of � and � . This 
is in line with the findings reported by Rossi (2014) and Voleti et al. (2017).

The MCMC sampler was run for 200, 000 iterations with a burn-in period of 
190, 000 iterations. We used only every 50 th draw of the remaining 10,000 draws 
after convergence to reduce autocorrelation among the draws. We evaluated the per-
formance of the various models based on individual draws after the burn-in phase. 
More precisely, each measure of performance was at first computed on draw-level, 
and subsequently averaged across the draws. This procedure enables to fully exploit 
the posterior distribution and also prevents the label switching problem (Frühwirth-
Schnatter et al. 2004; Rodríguez and Walker 2014). We monitored the time-series 

(8)k = d + 5,w = 0.01, b = 0, � = (5,… , 5)T ,

(9)k = 100,Σ = I × 0.01,

(10)al = 0.01, au = 2, ul = 0.1, uu = 4, �l = 0.001, �u = 3.

3  Rossi (2014) chooses the following prior settings in order to estimate a MoN-MNL model: 
k = d + 3,w = 0.01, b = 0, � = (5,… , 5)T ,Σ = k × I.
4  We tested even larger values for k . As a result, the resulting prior became too informative.
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plots of parameters and performance measures to ensure convergence of the MCMC 
chains. We furthermore calculated Gelman and Rubin’s potential scale reduction 
factor to formally prove convergence (Gelman and Rubin 1992). Each check demon-
strated that all MCMC chains appeared to reach stable states.

2.3 � Experimental design

The choice of the experimental factors and factor levels leans on the Monte Carlo 
designs used by Vriens et al. (1996), Andrews et al. (2002a), Andrews et al. (2002b) 
and Andrews and Currim (2003). Overall, six factors were experimentally manipu-
lated in the current study: the model complexity (number of attributes and attribute 
levels), the number of segments, the separation between segments (between-seg-
ment heterogeneity), the segment masses, the degree of within-segment heterogene-
ity, as well as the number of choice sets to be evaluated per respondent. All factors 
and their corresponding factor levels used, together with some additional notes, are 
shown in Table 2, and we will refer back to this table several times in the following.

The more attributes (and attribute levels) are relevant for preference formation, 
the more parameters (part-worth utilities) a conjoint choice model has. Since attrib-
utes in conjoint studies are specified with a discrete number of levels each (includ-
ing the metric attributes), effects- or dummy-coding is used for parameter estimation 
(see Sect. 2.1). We vary the number of attributes and levels by analyzing treatments 
with 6 attributes with 3 levels each, 9 attributes with 4 levels each, or 12 attributes 
with 5 levels each, leading to choice models with 12, 27, or 48 individual parameters 
to be estimated for each respondent.5 A larger number of individual parameters leads 
to a higher model complexity (factor 1) and given a certain number of choices per 
respondent to a smaller number of degrees of freedom for model estimation. It can 
therefore be assumed that a larger number of parameters at the individual respondent 
level lead to less reliable parameter estimates in all models. Note that we assign no 
specific meaning to the attributes and do not consider one attribute explicitly to rep-
resent the price attribute, since the interpretation of the attributes can be held arbi-
trary in our Monte Carlo study. Price is often (very) important in empirical studies as 
well as generally relevant from an economic point of view in CBC studies if related 
quantities like willingness-to-pay or expected revenue or profit calculations are addi-
tionally considered. On the other hand, there are many situations where price is not 
relevant in choice experiments. Detergents for example have different fragrances and 
clients are often only interested in preferences for fragrances in combination with 
the brand (different fragrances do not affect the price of detergents). Smartphone 
apps are usually not price relevant and can be added along the preferences of the 
customers. However, apps are relevant for purchase decisions and clients are there-
fore interested in customers’ preferences for apps. Lastly, the development of new 
cars traditionally goes through a three-stage preference elicitation process: conjoint 
on design (design clinic), conjoint on features (concept clinic), conjoint on pricing 

5  Note that for L attributes with M levels each, L times (M-1) part-worth utilities are estimated inde-
pendent whether a dummy- or effects-coding is used.
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(pricing clinic). In the first stage, price is never included since the “look” of the car 
is the primary focus here. Price is mostly considered only in the last stage, but some 
manufactures already additionally conduct a price-only conjoint study in the second 
stage where preferences for additional features (e.g. color, interior design, entertain-
ment features) are collected.

Given a segmented market structure as assumed in our Monte Carlo study, we 
expect a better performance of the LC-MNL, MoN-MNL and DPM-MNL models 
compared to simple MNL and HB-MNL models, since the former models can han-
dle multiple segments (factor 2). The simple MNL is not able to detect any seg-
ment structures due to its assumption of parameter homogeneity. Similarly, from a 
theoretical perspective, the assumption of a unimodal prior in the HB-MNL model 
is per se not in line with the existence of segmented markets or should make it at 
least much more difficult to identify existing multimodal preference structures. We 
therefore expect a worse performance of the HB-MNL model for multimodal prefer-
ence structures in terms of parameter recovery and prediction accuracy, as well. If 
segments are less clearly separated from each other (factor 3), i.e. the closer segment 
centroids are to each other and hence the less between-segment heterogeneity exists, 
the less distinct the disadvantage for the HB-MNL model is expected to be (e.g., 
Andrews et al. 2002a).

Including factor 4 allows us to consider more or less (within-segment) heteroge-
neity in the part-worth utility structures across respondents (Andrews et al. 2002a; 
Hein et al. 2019; Vriens et al. 1996). Since HB models borrow information from all 
individuals (respondents) for parameter estimation, the degree of heterogeneity in a 
sample might affect the individual-level parameter estimates. Previous Monte Carlo 
studies report different findings about whether models with continuous or discrete 
representations of heterogeneity are better suited to capture existing preference het-
erogeneity. While Andrews et  al. (2002a, 2002b) have shown that continuous and 
discrete approaches worked similarly well concerning parameter recovery and pre-
dictive validity (Andrews et al. 2002a, 2002b), Otter et al. (2004) reported that the 
discrete (continuous) approach performed superiorly if the underlying heterogeneity 
distribution was strictly discrete (continuous). In addition, for sparse data at the indi-
vidual respondent level, Otter et al. (2004) found the discrete approach to provide a 
superior parameter recovery and predictive performance.6

We expect that both a smaller within-segment and between-segment heterogene-
ity should positively affect the performance of simple MNL and LC-MNL models, 
because both only use discrete support points. When the inner-segment heterogeneity 
is large, we expect a better performance of HB-MNL, MoN-MNL and DPM-MNL 
models. Furthermore, it can be assumed that it is more difficult to identify the “true” 
segment structure (factor 2) for more heterogeneous samples, especially if the separa-
tion between segments is small (factor 3). The heterogeneity levels are chosen accord-
ing to Andrews et al. (2002a). Based on a variety of Monte Carlo studies in the context 
of finite mixture models summarized in a meta-study of Tuma and Decker (2013), we 

6  Note that the Monte Carlo studies of Andrews et al. (2002a), Andrews et al. (2002b) and Otter et al. 
(2004) also considered both within-segment heterogeneity and between-segment heterogeneity as experi-
mental factors, but did not include the MoN-MNL and DPM-MNL models for comparison.
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generated preference structures for 2, 3 and 4 segments. We further expect problems 
for the LC-MNL model in identifying small segments, i.e. when the masses of com-
ponents are rather small. In other words, we expect a better performance of LC-MNL 
models in the symmetric case when the number of respondents is equal across seg-
ments compared to the asymmetric case when segment sizes are different from each 
other (one large, one or several small segments, factor 5) (Andrews and Currim 2003; 
Dias and Vermunt 2007).

Factor 6 addresses the implementation of CBC studies in market research prac-
tice and the related problem that clients want to incorporate more and more attributes 
while keeping the choice task manageable for respondents (e.g., Hauser and Rao 2004; 
Hein et al. 2020). In their meta-analyses of empirical CBC studies, both Hoogerbrugge 
and van der Wagt (2006) and Kurz and Binner (2012) could show that using too many 
choice tasks per respondent (more than about 15) did no longer increase or may even 
decrease the predictive performance of HB models, since respondents tend to apply 
simplification strategies or become disengaged in later choice tasks (also referred to 
as “individual choice task threshold”). If a choice design comprises more choice tasks 
than manageable for a single respondent, the researcher can split the design into sev-
eral versions. Of course, in a Monte Carlo study the number of choice tasks to be com-
pleted by a respondent is not relevant as artificial respondents do not become fatigue. 
Still, by varying the length of the choice task we are able to analyze the statistical 
effects of shorter-than-optimal designs (regarding the criterion of orthogonality on the 
individual respondent level) on the model performance. We expect a worse perfor-
mance of models when splitting the choice task into several versions since then the 
choice design does not allow an uncorrelated estimation of main effects (Street et al. 
2005).

Note that we did not vary factor 6 for treatments with 12 individual param-
eters (factor 1, see Table 2) since here the resulting optimal number of 18 choice 
sets per respondent is (nearly) compatible with the “individual choice tasks 
threshold” of respondents (see next section for more details). Thus, we obtain 
23 × 32 + 24 × 3 = 120 experimental data conditions (treatments) and with one rep-
lication (i.e., two runs) per treatment 240 data sets. In empirical applications, only 
the number of parameters to be estimated at the individual respondent level (factor 
1) and the number of choice sets respectively the number of versions (factor 6) are 
observable prior to estimation. In contrast, the number of segments (factor 2), the 
separation of segments (factor 3), the amount of heterogeneity across respondents 
(factor 4), and the masses of segments (factor 5) are not known a priori to model 
estimation. Table 2 provides an overview of all factors and their corresponding fac-
tor levels used in our Monte Carlo study together with additional notes.

Generally, we expect the MoN-MNL and especially the DPM-MNL models to 
outperform the other models (with regard to both parameter recovery, model fit and 
predictive validity) because they accommodate both within-segment and between-
segment heterogeneity. Voleti et  al. (2017) only focused on predictive capabilities 
and found out that the DPM-MNL model can improve the predictive validity. How-
ever, for their data sets, the MoN-MNL model was not able to improve the predictive 
validity over HB-MNL models. On the other hand, data in CBC studies are generally 
quite sparse on the individual respondent level, and it is therefore not clear whether 
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the performance of the more complex MoN-MNL and DPM-MNL models necessar-
ily outperforms the more restrictive (single) multivariate HB-MNL model.7 To the 
best of our knowledge, no Monte Carlo study related to conjoint data has yet com-
pared the goodness of parameter recovery of MoN-MNL and DPM-MNL models. In 
particular, we will analyze how well these two types of models are able to detect the 
“true” part-worth utility structure compared to the other models in extreme scenar-
ios (e.g., 4 segments, small separation, large heterogeneity and asymmetric segment 
masses). We further controlled for the “overlapping mixtures problem” by holding 
the sample size constant (Kim et al. 2004), and used 600 respondents following the 
study of Wirth (2010).

2.4 � Data generation

The following section describes how the synthetic data sets were generated in our 
Monte Carlo study. The data generation process can be divided into the construc-
tion of the choice task design, the generation of individual part-worth utilities, and 
the generation of choice decisions based on the choice task design and individual 
part-worth utilities. The data sets that support the findings of this study are available 
from the corresponding author upon request.

2.4.1 � Choice task design

Following Street et al. (2005) and Street and Burgess (2007), we constructed optimal 
choice designs. Determinants for the design generation were the model complex-
ity (factor 1) as well as the number of choice task versions (factor 6). The number 
of individual parameters, i.e. part-worth utilities to be estimated for each respond-
ent, results from the specification of the number of attributes and attribute levels, as 
already outlined in the last subsection and summarized in Table 3 below. We used 
symmetrical designs (i.e., the same number of attribute levels across attributes) to 
control the number-of-levels effect (Verlegh et al. 2002).

Depending on the number of attributes and attribute levels, we chose an orthogo-
nal array from Kuhfeld (2019) as a starting orthogonal design to fix the first alterna-
tive in each choice set. Further alternatives were then added to the first options in 
each choice set by generating systematic level changes via modulo arithmetic.

As a result, as many pairs of alternatives in a choice set had assigned different 
levels for each attribute (Street et al. 2005). To ensure an equal distribution of attrib-
ute levels (per attribute) across the choice sets (level balance) as well as an equal 
distribution of attribute levels across alternatives within each choice set (minimal 
overlap) we constructed choice sets with 3, 4, or 5 alternatives for treatments with 
3, 4 or 5 attribute levels (Table  3), respectively (Street and Burgess 2007). The 
information matrices of our CBC designs were thus diagonal so that estimates of 
main effects were uncorrelated. By comparing the determinants of the information 
matrices with the determinants of the information matrices of an optimal design, we 

7  We thank an anonymous reviewer for this note.
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obtained a D-efficiency of 100% for each of our generated choice designs.8 Based 
on the generated optimal choice tasks each synthetic respondent completed all cor-
responding choice sets on the one hand. This ensured that all main effects could be 
estimated completely independently from each other on the individual respondent 
level. On the other hand, the choice task length of these optimal designs may be far 
too large for real respondents. We therefore split up the generated optimal choice 
tasks into several versions (where necessary) in order to limit the number of choice 
sets per respondent to a manageable number (factor 6). As a consequence, choice 
designs were no longer optimal on an individual respondent level because desir-
able properties such as orthogonality or level balance could have been negatively 
affected by the split. However, since the choice sets were randomly split into several 
versions, they were at least near-optimal (Street and Burgess 2007). For the treat-
ments with 6 attributes with 3 levels each the starting orthogonal design comprised 
18 alternatives, which can be just considered a manageable number. Therefore, a 
split of the optimal design across respondents was not necessary here. In contrast, 
treatments including 9 attributes with 4 levels each resulted in an optimal choice 
design with 32 choice sets. Accordingly, the design was divided into two versions 
with a length of 16 choice sets each. Similarly, the optimal design for treatments 
involving 12 attributes with 5 levels each was divided into 5 versions with a length 
of 20 choice sets each. This procedure ensured desirable properties for optimal or at 
least near-optimal discrete choice experiments (Street and Burgess 2007). Table 4 
summarizes how factor 6 was operationalized depending on the model complexity 
(factor 1). To be able to assess the predictive validity of the competing models, three 
additional holdout choice tasks were randomly generated for each respondent.

2.4.2 � Part‑worth utilities

For each of the 240 data sets (i.e., for each treatment and replication), individual 
part-worth utilities were generated in such a way that they followed a mixture of 
multivariate normal distributions. Leaning on Wirth (2010), elements of a vector 
of initial “true” mean part-worth utilities ( �start ∈ ℝ

d , where d is the total num-
ber of attribute levels) were drawn from a uniform distribution within the range 
between − 5 and + 5. Such a range for mean betas is typical for empirical applica-
tions (cf. Wirth 2010). We can confirm this finding of Wirth based on an inspection 

Table 3   Model complexity 
determined by the number of 
attributes and attribute levels in 
the CBC design

Individual 
parameters

Attributes Levels Shortcut

12 6 3 A6L3
27 9 4 A9L4
48 12 5 A12L5

8  The previous Monte Carlo studies also used main-effect designs, i.e. no interactions between attributes 
were considered for the construction of the choice task designs. However, we estimated all choice models 
with full covariance matrices.
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of a random sample of 250 real-world HB-CBC studies conducted at one of the larg-
est market research institutes worldwide (with 6 to 12 attributes, 3 to 5 attribute lev-
els, and 11 to 15 choice tasks).9

The generation of mean part-worth utilities (centroids) for the segments (factor 
2) closely follows the studies of Andrews et al. (2002a) and Andrews and Currim 
(2003) and is based on the generation of a separation vector that controls the dis-
tance between the segment centroids. In particular, the separation between segments 
was manipulated by generating a vector sepz ∈ ℝ

d with z ∈ {1, 2,… , Z} as segment 
index and sepz ∼ N(1, 0.1) for a small separation and N(2, 0.2) for a large separa-
tion (factor 3), see Andrews and Currim (2003). These vectors were then added to 
the initial vector of “true” mean part-worth utilities to generate the segment-specific 
centroids (i.e., “true” segment mean part-worth utilities):

SIGNSz ∈ ℝ
d×d denotes a diagonal matrix containing the values − 1 and + 1, each 

of which were randomly drawn based on a Bernoulli distribution with parameter 0.5. 
Finally, the generated segment mean part-worth utilities were rescaled to become 
zero-based, i.e. so that each first level of an attribute constitutes the reference cat-
egory with a corresponding part-worth utility of zero. Note that multiplying seg-
ment-specific part-worth utilities by a constant factor like in Vriens et al. (1996) or 
Andrews et al. (2002b) also scales the separation of segments. However, Andrews 
et al. (2002a) demonstrated that such a procedure affects the scale factor of the MNL 
model, which makes it difficult to assess parameter recovery (Andrews et al. 2002a). 
Similarly, multiplying the separation vectors sepz by a constant other than − 1 or + 1 
would confound the scale factor of the MNL and thus the sensitivity of respondents, 
too (Andrews and Currim 2003).

Next, inner-segment heterogeneity (factor 4) was generated by adding quantities 
to the mean segment part-worth utilities �z . These quantities were drawn from a mul-
tivariate normal distribution with mean vector 0 and covariance matrix V�z

∈ ℝ
d×d , 

the latter which was determined by:

(11)�z = �start + SIGNSz × sepz.

(12)V�z
= v × I�z

.

Table 4   Number of choice 
tasks per respondent (factor 6) 
depending on the model 
complexity

Model complexity Split of the choice 
design into versions

Number of choice 
sets per individual

A6L3 no (optimal) 18
A9L4 no (optimal) 32

yes (manageable) 16
A12L5 no (optimal) 100

yes (manageable) 20

9  Vriens et al. (1996) and Andrews et al. (2002b) used a smaller range of -1.7 to + 1.7. However, when 
estimating the DPM-MNL model it turned out that this range was far too small to identify any segments.
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I�z ∈ ℝ
d×d denotes the identity matrix, and the scalar v controls the degree of 

inner-segment heterogeneity with either v = 0.05 (small heterogeneity) or v = 0.25 
(large heterogeneity), see Andrews et  al. (2002a).10 In addition, segment masses 
(factor 5) were defined to be either equal or unequal. In the symmetric case, the 
relative size of segment z is equal to 1∕Z . In the asymmetric case, the relative 
size of the largest segment was fixed to 1.5 × (1∕Z), while the remaining respond-
ents were split equally across the other segments with relative segment sizes of 
(1 − 1.5 × (1∕Z))∕(Z − 1).

Table 5 shows the resulting segment masses for the symmetric versus asymmetric 
case depending on the number of segments considered.

2.4.3 � Generation of choices

Based on the generated choice task designs and the generated “true” individual part-
worth utilities, deterministic utilities Vnjs = β

�

n
xnjs could be at first computed for 

each respondent for each alternative in each choice set. Stochastic utilities were sub-
sequently computed by adding a Gumbel distributed error term with standard error 
variance to the deterministic utilities. Simulated choices were obtained by assuming 
that each respondent chooses the alternative with the highest stochastic utility from 
a choice set. Based on the simulated choices part-worth utilities were re-estimated 
by the different models.

2.5 � Measures of performance

We estimated 13 different models for each data set: one aggregate MNL model (as 
benchmark model), one HB-MNL model, one DPM-MNL model, as well as each five 
LC-MNL and MoN-MNL models with two to six components. Model selection was 
at first performed for the estimated LC-MNL and MoN-MNL models to determine 
the appropriate number of segments, respectively. Though “true” preference structures 
for a maximum of four segments were generated, we decided to estimate LC-MNL 
and MoN-MNL models for five and six segments in addition to explore the capabili-
ties of the two types of models to find the “true” number of segments. Subsequent to 
the model selection process where the best LC-MNL and MoN-MNL solutions were 
retained, we assessed the statistical performance of the five different types of models. 
This means that a total of 240 (data sets) × 5 (models) = 1,200 observations were sub-
jected to analysis of variance (ANOVA), i.e. the type of model was included as addi-
tional factor in the ANOVAs. Following previous Monte Carlo studies (e.g., Andrews 
et al. 2002a; Hein et al. 2019; Vriens et al. 1996), we evaluated the performance of 
the competing models in terms of parameter recovery, goodness-of-fit and predictive 
accuracy. We used three measures for parameter recovery, three measures for good-
ness-of-fit, and two measures for predictive accuracy. Each performance measure was 

10  We checked for dominant attributes across experimental conditions after having generated the indi-
vidual part-worth utilities, since one or two attributes with relatively high importance would reduce the 
potential effects between these conditions. No abnormalities were observed in this regard. We thank an 
anonymous reviewer for this note.



155

1 3

Multimodal preference heterogeneity in choice-based conjoint…

computed 200 times based on the 200 individual HB draws that were saved after the 
burn-in phase (see Sect. 2.2 above) to fully exploit the information of the posterior dis-
tribution. Finally, the draw-based scores were averaged to compare the performance of 
the models along the measures used.

2.5.1 � Model selection

For model selection, we computed the marginal likelihood (ML) by means of the 
Harmonic Mean estimator (Frühwirth-Schnatter 2004; Newton and Raftery 1994; 
Rossi et al. 2005):

where r = 1,… ,R denotes the r-th draw of the Markov chain used for computing 
the harmonic mean. The ML penalizes models for complexity, i.e. models with a 
larger number of parameters get a higher penalty (Frühwirth-Schnatter 2006; Rossi 
2014), and it is common practice to prefer more parsimonious models in the model 
selection process. Following Wirth (2010) and Rossi (2014), we here used the log 
marginal likelihood (LML) in order to minimize overflow problems. Similar to 
Elshiewy et al. (2017), we plotted the LML values against the number of compo-
nents estimated by the LC-MNL or MoN-MNL models and used the “elbow”-crite-
rion for model selection. Furthermore, we examined the more informative sequence 
plots of the log-likelihood values to identify possible outliers as suggested in Rossi 
et al. (2005). Note that the approximation of the LML can be influenced by outli-
ers in the vector of log-likelihoods. Following Voleti et al. (2017) and Zhao et al. 
(2015), we further applied the deviance information criterion (DIC, Spiegelhalter 
et al. 2002, 2014) and the Watanabe-Akaike information criterion (WAIC, Watan-
abe 2010) as additional measures for model selection. The latter (WAIC) is closely 
related to leave-one-out cross-validation, as discussed in Vehtari et al. (2017). Like 
the LML, DIC and WAIC as well penalize models for complexity. Contrary to these 
“explicit” model selection procedures (estimating models with a different number of 
components and selecting the best one), Rossi (2014, p. 29) has suggested to start 
with a sufficiently large number of components (we here set T = 6 , see above) and 
to allow the MCMC sampler to “shut down” a number of the components in the 

(13)L̂(y�model) =

⎛⎜⎜⎜⎝

1

R

R�
r=1

1

L
�
�̂r�model

�
⎞⎟⎟⎟⎠

−1

,

Table 5   Segment masses for the 
symmetric versus asymmetric 
case depending on factor 2

Number of 
segments

Equal segment
masses

Unequal segment 
masses

2 300 300 450 150
3 200 200 200 300 150 150
4 150 150 150 150 225 125 125 125
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posterior (also see Goeken et al. 2021 for an application). We also tested this kind of 
model selection in our Monte Carlo study.

2.5.2 � Parameter recovery

Parameter recovery was measured by the Pearson correlation between the generated 
(“true”) and the re-estimated individual part-worths on the individual draw-level. 
Since Pearson correlations are not interval-scaled, they were rescaled using Fisher’s 
z-transformation prior to computing the mean Pearson correlation across respondents, 
and retransformed afterwards to their original scale (Hein et al. 2019, 2020).

As a measure of parameter recovery in absolute terms, the root mean square 
error (RMSE) between “true” (βnal) and re-estimated part-worth utilities 𝛽r

nal
 was 

calculated:

where N, A and L refer to the number of respondents, the number of attributes and 
the number attribute levels.

In addition to the Pearson correlation and the RMSE, we further determined the 
proportion of “true” part-worth utilities covered by the 95% credible interval of the 
draws of the posterior distribution, referred to as %TrueBetas (Hein et al. 2020).

2.5.3 � Model fit

The percent certainty, the root likelihood, and the in-sample hit rate were used as 
measures to compare the goodness-of-fit between models. The percent certainty 
(PC), also referred to as pseudo R2, McFadden’s R2, or likelihood-ratio-index, com-
pares the likelihood of an estimated (final) model to the likelihood of the null model, 
i.e. a model without any explanatory variables (Hauser 1978; Ogawa 1987):

where LLr
final

 and LLnull denote the log-likelihood of the (final) estimated model 
based on draw r and the null log-likelihood.

Log-likelihood values were calculated by

where Sn denotes the number of choice sets offered to respondent n . Ynjs indicates 
whether respondent n has chosen alternative j from choice set s , and P̂r

njs
 is the 

choice probability of respondent n for choosing alternative j in choice set s based on 
draw r . LLnull represents the chance likelihood, that means �̂r = (0,… , 0)T∀r.

(14)RMSE
�
𝛽r
�
=

�∑N

n = 1

∑A

a = 1

∑L

l=1

�
𝛽r
nal

− 𝛽nal
�2

NAL
,

(15)PC(𝛽
r
) =

LLr
final

− LLnull

−LLnull
,

(16)LLr = ln
(
L
(
𝛽r
))

=

N∑
n=1

J∑
j=1

Sn∑
s=1

Ynjsln
(
P̂r
njs

)
,
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The root likelihood (RLH) is the geometric mean of hit probabilities (e.g., Jervis 
et al. 2012)

A RLH value equal to the reciprocal of the number of alternatives in a choice set 
(here: 1∕J ) corresponds to completely uninformative utilities of all alternatives (i.e., 
each alternative has the same utility). In other words, the RLH of the null model 
equals 1∕J.

The in-sample hit rate (IHR) represents the percentage of first choice hits in the 
estimation sample (e.g., Andrews et  al. 2002b; Voleti et  al. 2017). The term first 
choice hit means that the alternative chosen by a respondent from a choice set is 
assigned the highest deterministic utility based on the re-estimated part-worth utili-
ties. Note that the first choice rule is invariant to the value of the scale parameter of 
the Gumbel distribution.

2.5.4 � Predictive accuracy

The hit rate was further computed for holdout choice sets to assess the predictive accu-
racy, referred to as holdout sample hit rate (HHR). For this, three holdout choice tasks 
were randomly generated for each respondent. Further, we computed the root mean 
square error between the “true” and predicted deterministic utilities (RMSE(V)) for 
each draw (e.g., Andrews et al. 2002b):

Vnjs and V̂r
njs

 denote the “true” versus predicted deterministic utilities (the latter 
based on draw-level) for respondent n , alternative j and choice set s , respectively. The 
number of holdout choice tasks Sn was held constant in all treatments (Sn = 3).

3 � Results and discussion

3.1 � Effects on parameter recovery, fit and predictive accuracy

The impact of the six experimental factors and the type of model (aggregate MNL, 
HB-MNL, LC-MNL, MoN-MNL and DPM-MNL) on each of the eight measures of 
performance was examined by analysis of variance for main effects and first-order 
interaction effects. The ANOVAs were based on a total of 1,200 observations (240 

(17)RLH(𝛽r) =
NSn

√√√√ N∏
n=1

Sn∏
s=1

J∏
j=1

P̂r
njs

Ynjs
.

(18)
RMSE (V̂ r) =

�����
∑N

n = 1

∑J

j = 1

∑Sn
S=1

�
V̂
r
njs

− Vnjs

�2

NJS
n
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data sets times 5 models) with 1,130 degrees of freedom for error. Prior to that, the 
best LC-MNL and MoN-MNL solutions were selected in a first attempt by applying 
the “elbow” criterion to the plots of the LML values versus the number of compo-
nents (2 to 6). Figure 1 displays examples for selecting the right number of com-
ponents via the “elbow” criterion. In the refinement subsection (Sect. 3.2), we will 
discuss the results from applying the DIC, WAIC and the “shut down” procedure 
suggested by Rossi (2014) for model selection.

Panels A-C show three different scenarios for treatments with 2, 3, or 4 “true” 
segments where the LC-MNL model was estimated for 2 to 6 segments. In all three 
scenarios, the “true” number of components was clearly identifiable by means of 
the elbow criterion. Using the LC-MNL model, we were able to recover the “true” 
number of segments by the elbow criterion uniquely in 82% of all data sets. Panels 
D-F show another three plots for treatments with 2, 3, or 4 “true” segments, this 
time relating to estimations based on the MoN-MNL model (again for 2 to 6 compo-
nents). The picture is completely different here since in neither case the “true” num-
ber of segments is identified. First, no clear elbow is visible each time, rather the 
LML continues to improve for an increasing number of components. And second, 
if one dared to recognize an elbow, it would suggest the wrong number of segments 
in each of the three scenarios.11 We think plots like the ones in panels D-F are too 
diffuse to justify a unique solution (i.e., a clear elbow), thus we chose the solution 
with six components in such cases. In contrast to the LC-MNL model, we were able 
to identify the “true” number of components via the elbow criterion in only 2% (!) 
of all data sets when using the MoN approach (in 5 out of 240 data sets). Overall, 
the model selection process for the MoN models resulted in 67 solutions with five 
components (28%) and 136 solutions with six components (57%). In another 13% of 
the cases, wrong solutions with two to four segments were suggested. Note that also 
the DPM-MNL model returned the “true” number of components in only 14% of all 
cases (34 out of 240 data sets). The capability of the DPM-MNL model to recover 
the “true” number of segments was therefore rather disappointing, too.

We further conducted chi-squared tests to assess significant relationships between 
the experimental factors and the number of re-estimated components (for LC-MNL 
and MoN-MNL models based on the best solutions determined by model selection 
by LML). In the cases where we obtained significant results we subsequently ana-
lyzed for each respective factor level how often the “true” number of segments could 
be identified.

It turned out that the “true” number of segments was correctly recovered by the 
LC-MNL model at all times for treatments with equal segment masses (symmetric 
case). In contrast, the hit ratio was only 63% for treatments with unequal segment 
masses (76 out of 120 cases). The number of components suggested by the DPM-
MNL depends on the model complexity, the degree of between-segment heterogene-
ity (separation), and the degree of inner-segment heterogeneity. Fewer components 
were suggested for treatments with more parameters to be estimated. In particular, 

11  For example, one could think about an elbow for three segments in panel D, however the “true” num-
ber of segments was two.
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a maximum of two segments was found for the treatments with 12 attributes and 
5 levels each (81% one-component solutions, 19% two-component solutions). Fur-
thermore, the DPM-MNL models yielded more components in treatments with 
a small separation between the segments or with a small degree of inner-segment 
heterogeneity. On the one hand, if the “true” components overlap because they are 
less clearly separated from each other, the DPM-MNL models tend to a larger num-
ber of components. The reason for this result may be that the preference structure 
of respondents appears more diffuse with less clearly separated segments so that 
more components are needed to reproduce this diffuse preference pattern. On the 
other hand, if the “true” components overlap due to a large degree of heterogeneity 
within segments, the DPM-MNL models tend to a smaller number of components. 
This may be because preference structures appear to be less multimodal when the 
“true” segment structures become blurred by a large inner-segment heterogeneity. 
No significant relationships were found for the MoN-MNL model since 85% of the 
selected solutions were either 5-component or 6-component solutions. Overall, the 
LC-MNL model seems to be the best approach by far to recover the “true” number 
of segments, in particular for scenarios with equal segment masses.

Fig. 1   Selecting the right number of segments via the elbow criterion based on the log marginal likeli-
hood (LML). Panels A–C show estimation results for the LC-MNL model, while panels D–F refer to 
estimation results from the MoN-MNL model
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Taking into account only the best LC-MNL and MoN-MNL solutions per data 
set, we used 1,200 observations (240 data sets times 5 types of models) for analy-
sis of variance.12 R-squares (adjusted R-squares) range between 0.533 (0.504) and 
0.949 (0.946), whereas half of the R squares are larger than 0.9. Most of the main 
effects (86%) are highly significant (p < 0.001), indicating differences in the meas-
ures of performance between the corresponding factor levels.

First of all, we recognize that many measures of performance are not significantly 
affected by the factor segment masses (p > 0.05), and if they are (as for the Pear-
son correlation as well as for IHR and HHR) that F-values turn out rather small 
compared to other factors. Very high F-values are observed for the type of model 
which substantially affects all three types of performance measures (recovery, fit, 
and prediction). In addition, the number of choice sets per respondent represent the 
factor which most strongly impacts the predictive accuracy (with F-values of 786 
and 203 for HHR and RMSE(V)). Higher F-values pointing to substantial differ-
ences between factor levels are further observed for the number of parameters in the 
model (model complexity) and the separation between segments (between-segment 
heterogeneity).

Furthermore, 62% of the first-order interaction effects are significant. We here, 
however, consistently observe rather low F-values for nearly all interactions except 
for some between the type of model and the factor separation (Pearson correlation 
and the goodness-of-fit statistics). Note that 85% of the interaction effects between 
the type of model and any of the other factors turn out significant. Here, similar to 
the main effects, the factor segment masses seems to play a minor role again (as 5 
out of 8 interactions between this factor and the type of model are not significant). 
On the other hand, the separation between segments and the number of parameters 
in the model (model complexity) are the two factors which most strongly interact 
with the type of model, in particular w.r.t. goodness-of-fit. It is further noticeable 
that only 53% of the remaining interaction effects (i.e., excluding interactions where 
the type of model is involved) are significant. Consequently, the type of model plays 
a very important role for the goodness of parameter recovery, fit and prediction.

Since even small differences between factor levels may turn out significant for 
large sample sizes such as in this study (N = 1200), we further report related effect 
sizes measured by Eta square (η2) in Table  6. Following the guidelines of Cohen 
(1988), we interpret values of η2 below 0.06 as small effects, between 0.06 and 0.14 
as medium-sized effects, and higher than 0.14 as large effects.

In the following, we concentrate on a more detailed interpretation of factors 
which show at least medium effect sizes. We observe the largest effect sizes for the 
type of model with very large effect sizes for all goodness-of-fit measures (> 0.72) 
and the %TrueBetas measure of parameter recovery, large effect sizes for the Pear-
son correlation (0.29) and the HHR (0.29), and medium effect sizes for both RMSE 
measures (0.10). In other words, the effect sizes of the type of model on all per-
formance measures are substantial and most of them are large or very large. We 

12  A summary of F-Tests for main and interaction effects including p-values and R-squares for each per-
formance measure can be found in Table 9 in the Appendix.
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further observe medium effect sizes (a) for the number of parameters in the model 
(model complexity) on parameter recovery (0.10 for both Pearson correlation and 
RMSE) and the HHR (0.11), (b) for the separation between segments on the Pear-
son correlation (which measures parameter recovery in relative terms), and (c) for 
the number of choice sets per respondent on both predictive accuracy statistics, the 
HHR (0.11) and RMSE(V) (0.08). That also means that 75% of the effect sizes for 
main effects can be classified as small, and more than half of them are below 0.01. 
All interaction effects where the type of model is not involved show small if not (as 
in the very most cases) negligible effect sizes near zero. Considering interactions 
where the type of model is involved only few (8 out of 48, 17%) show medium-sized 
effects, and these with only one exception relate to interactions of the type of model 
with the separation between segments or the model complexity. In particular, we 
observe medium-sized interactions between (a) the type of model and the separa-
tion between segments on the Pearson correlation, PC, RLH, and the HHR, between 
(b) the type of model and the number of parameters in the model on the RMSE 
(which measures parameter recovery in absolute terms) and both predictive valid-
ity measures (HHR, RMSE(V)), and between (c) the type of model and the degree 
of inner-segment heterogeneity on RMSE(V). Altogether, the effect sizes provide 
a rather clear picture: the type of model in particular, and further the number of 
parameters in the model (model complexity), the separation between segments, as 
well as the number of choice sets per respondent seem to be the primary drivers for 
the model performance, while the number of segments, the inner-segment heteroge-
neity (except for the one interaction effect), and the segment masses do not show any 
noticeable and in most cases even negligible effect sizes on the model performance. 
Obviously, the model performance is not substantially affected by the number of 
segments, although the aggregate MNL and the HB-MNL are not at all or only con-
ditionally able to recover segments. It was further not expected that the degree of 
inner-segment heterogeneity plays such a weak role especially for the goodness of-
parameter recovery.13

Table 7 provides the means of the eight performance measures for each individual 
factor level and further reports significant differences between factor levels based on 
post hoc tests. For the post hoc tests, we applied the Bonferroni correction to control 
for the family-wise error rate. For interpreting factor level differences, we again focus 
on factors which show at least a medium effect size. Rather surprisingly, the HB-MNL 
model performs excellently in terms of parameter recovery. While, except for the 
aggregate MNL model, Pearson correlations are comparable across models with high 
values above 0.95, the HB-MNL model shows a much better performance with regard 
to the RMSE measure. Especially the DPM-MNL model and the MoN-MNL model 
perform considerably worse here, showing much larger absolute deviations between 
the “true” and re-estimated part-worth utilities (DPM-MNL: 3.091; MoN-MNL: 
2.608) than the LC-MNL (2.159), the aggregate MNL (2.466) and the HB-MNL 
(1.650) models. Concerning the percentage of “true” part-worth utilities that lie in the 

13  Andrews et al. (2002b) also observed negligible effects of the factors segment masses and inner-seg-
ment heterogeneity on the model performance. However, they did not consider MoN-MNL and DPM-
MNL models in their model comparisons.
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corresponding 95% credible intervals of the draws, we observe that models with a dis-
crete representation of heterogeneity perform inferior and provide inacceptable results 
(LC-MNL: 0.014, aggregate MNL 0.021). But again, the HB-MNL model (0.746) 
performs markedly better than DPM-MNL (0.623) and MoN-MNL (0.585) models.

We observe similar results when comparing the predictive accuracy between the 
models. Except for the MNL model, the HHR between models differ only margin-
ally with values around 83%. The absolute deviations between “true” and re-estimated 
total utilities of alternatives are much larger for the DPM-MNL (7.469), the MoN-
MNL (6.352) and the aggregate MNL model (6.275) than for the HB-MNL (4.199) 
and the LC-MNL models (5.395). Again, the HB-MNL model here provides the low-
est errors. The better performance of the HB-MNL and LC-MNL models in predicting 
total utilities of alternatives (RMSE(V)) corresponds with the better performance of 
both models in terms of absolute errors with regard to parameter recovery (RMSE).

We further observe that DPM-MNL and MoN-MNL models provide the best 
model fit with respect to all three fit statistics (PC, RLH, IHR), whereas the aggre-
gate MNL model performs by far worst. That the aggregate MNL model performs 
so much worse here compared to the other four models seems to be the reason for 
the very large effect sizes of the type of model on the three model fit measures (this 
also applies to the %TrueBetas measure and in alleviated form to Pearson corre-
lations and holdout sample hit rates, where the aggregate MNL is inferior while 
the other models perform comparable). On the other hand, including the aggregate 
MNL model in the ANOVAs provided evidence that it performs not worse than the 
MoN-MNL model or even significantly better than the DPM-MNL model regarding 
absolute errors in both parameter recovery and prediction accuracy, respectively. We 
later check if or how much the ANOVA results for the type of model change when 
the aggregate MNL model is removed from the analyses (see refinements, Sect. 3.2).

Moreover, optimal choice designs on an individual respondent level enable sig-
nificantly better predictions compared to the case where respondents evaluate only 
a smaller (manageable) number of choice sets. We further observe slightly higher 
Pearson correlations for a smaller separation between segments. In addition, we rec-
ognize the best parameter recovery both in relative (Pearson correlation) and abso-
lute (RMSE) terms (and also for the %TrueBetas measure) for the most complex 
treatment with 12 attributes with 5 levels each (A12L5). Similarly, we also observe 
a very high HHR (0.83) for the most complex treatment (A12L5), which is markedly 
higher than for the less complex treatment with 9 attributes with 4 levels (A9L4). 
We will discuss this in more detail next.

We did not expect these results but rather that a higher number of parameters in 
the model should lead to a worse parameter recovery and a worse prediction accuracy. 
However, remember that in our design setup a larger number of attribute levels (3, 
4, or 5) not only increased the model complexity but also involved larger choice sets 
containing more alternatives (e.g., 5 alternatives in treatments with 5 attribute levels, 
while only 3 alternatives in treatments with 3 attribute levels) as well as a much higher 
optimal number of choice sets to be evaluated by a respondent (compare Table 4). On 
the one hand, a higher number of alternatives per choice set makes it more difficult 
to predict respondents’ “true” choices correctly, which should decrease the HHR. On 
the other hand, more choice sets for each respondent lead to more information on an 
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individual level, which in turn should improve parameter recovery and prediction 
accuracy. Obviously, the much larger optimal number of choice sets (100 per respond-
ent) for the most complex treatment (A12L5) compared to the two other treatments 
(A6L3: 18 choice sets per respondent; A9L4: 32 choice sets per respondent) favors the 
good performance with regard to parameter recovery and prediction accuracy.

To fully understand the effects of (a) the number of parameters in the model, (b) 
the level of inner-segment heterogeneity and (c) the separation between segments on 
the performance measures, it is helpful to examine their interaction effects with the 
type of model. As before, we only focus on interaction effects which showed an at 
least medium effect size (see Figs. 2 and 3).

Considering the interaction effects between model complexity and type of model 
(Fig. 2, panels A-C), we observe that the aggregate MNL model has by far the lowest 
HHR (panel A). This in particular applies to the most complex treatment (A12L5) 
where the HHR is about 10% lower than for all competing models (panel A). The 
corresponding interaction effects on absolute prediction errors (RMSE(V)) and abso-
lute parameter recovery errors (RMSE) show similar patterns (panels B and C). For 
the treatments with 6 attributes with 3 levels (A6L3) and 9 attributes with 4 levels 
(A9L4) the aggregate MNL, the LC-MNL and the HB-MNL models perform almost 
equally well (with slight advantages for the HB-MNL model). For the most com-
plex treatment with 12 attributes with 5 levels (A12L5) the HB-MNL clearly outper-
forms all other models, whereas the aggregate MNL and the LC-MNL models per-
form worst here. In addition, we observe that for the less complex treatments (A6L3, 
A9L4) both absolute error measures turn out very large for the MoN-MNL and DPM-
MNL models. The number of re-estimated components (for the MoN-MNL and the 
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Fig. 2   Panels A–C: Interaction effects between model complexity and type of model on parameter recov-
ery (RMSE) and prediction accuracy (holdout sample hit rate, RMSE(V)). Panel D: Interaction effect 
between inner-segment heterogeneity and type of model on prediction accuracy (RMSE(V))
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DPM-MNL models) seems to play a negligible role for the most complex treatment 
(A12L5). For the DPM-MNL model a maximum of two segments was found for the 
treatments with 12 attributes and 5 levels each. The MoN model overestimates the 
number of “true” segments in most cases (see above). However, both models show 
similar absolute errors for the most complex treatment (lower than the absolute errors 
for the less complex treatments but higher compared to the HB-MNL model).

A very similar pattern is found for the interaction effect between inner-segment 
heterogeneity and type of model on absolute prediction errors (RMSE(V)), see panel 
D in Fig. 2. Here, for treatments with a low inner-segment heterogeneity, the aggre-
gate MNL, the LC-MNL and the HB-MNL models perform again almost equally 
well (once more with slight advantages in favor of the HB-MNL model), while the 
MoN-MNL and DPM-MNL models provide inacceptable large prediction errors. As 
discussed above, this result may be associated with the finding that DPM-MNL (and 
also MoN-MNL) models tend to more components for treatments with a smaller 
inner-segment heterogeneity. For treatments with a high inner-segment heterogene-
ity, the HB-MNL once more clearly outperforms all other models.

When examining the interactions between the separation of segments and the type 
of model (Fig. 3) on Pearson correlations (parameter recovery), PC, RLH (model fit) 
and HHR, the most noticeable point is that the aggregate MNL model doesn’t work 
competitively, in particular not if segments are clearly separated from each other. 
For the treatments with a large separation, all models with continuous representa-
tions of heterogeneity (HB-MNL, MoN-MNL, DPM-MNL) perform nearly equally 
well. The LC-MNL model performs slightly worse in terms of goodness-of-fit (PC, 
RLH) but is competitive in terms of Pearson correlations and HHRs. Rather similar 
results can be observed for treatments with a small separation between segments 
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with the exception that the aggregate MNL doesn’t perform such bad here or even 
comparable to the other models in terms of Pearson correlations and HHRs. For the 
same two performance measures, the LC-MNL model shows even a slightly better 
performance than the models with continuous representations of heterogeneity.

We summarize the main results about effect sizes and the impacts of factor levels 
on the model performance in Table 8.

3.2 � Refinements

We performed sensitivity analyses to check if our ANOVA results stayed robust for 
two differing scenarios.14 First, we excluded the aggregate MNL model as bench-
mark model from all ANOVAs. We did this check due to the huge effect sizes 
(> 0.7) we observed for effects of the type of model on all goodness-of-fit statistics 
(PC, RLH, IHR) and the %TrueBetas measure of parameter recovery (cf. Table 6). 
The ANOVA results changed only little, providing strong evidence that our find-
ings for the different models are highly robust. The huge effects sizes for the type of 
model on all goodness-of-fit measures are lower than those reported in Table 6 but 
still large (> 0.44). The effect sizes for the type of model on the Pearson correlation 
and HHR turn out only small after removing the MNL model from the ANOVAs. 
Further, we now observe medium effect sizes for the model complexity on RLH and 
on IHR, medium effect sizes of the degree of within-segment heterogeneity on all 
goodness-of-fit measures, and medium to large effect sizes for the number of choice 
sets per respondent on the RMSE (0.06) and on the Pearson correlation (0.185). For 
the latter factor, corresponding correlations are still high (optimal number of choice 
sets: 0.975; manageable number of choice sets: 0.957). As expected (cf. Figure 3) 
the interaction effects between the type of model and the separation between seg-
ments on the Pearson correlation, PC, RLH, and HHR become negligible. As men-
tioned above, it was not expected that the degree of inner-segment heterogeneity 
plays such a weak role, especially for the goodness of-fit measures. After dropping 
the MNL model, we now observe medium effect sizes of the factor heterogeneity on 
goodness of-fit measures (but only on goodness-of-fit measures). A small heteroge-
neity enables a significantly better fit compared to a large heterogeneity.

Second, we re-estimated all LC-MNL and MoN-MNL models for the given “true” 
number of segments instead of determining the best solutions by model selection (e.g., 
see Vriens et al. 1996). As a result, the MoN-MNL model now comes up with much 
lower absolute errors of parameter recovery (RMSE: 1.826) and prediction accuracy 
(RMSE(V): 4.518) as well as with a strongly improved %TrueBetas measure of param-
eter recovery. All other results regarding effect sizes of the experimental factors and 
the means of performance measures by experimental condition remained extremely 
robust. Under this approach, the HB-MNL model and the MoN-MNL model work 
similarly effective in terms of parameter recovery, goodness-of-fit and predictive accu-
racy. In particular, the MoN-MNL model reveals slight advantages over the HB-MNL 

14  The complete results of the sensitivity analyses are available on request from the authors.
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model with respect to Pearson correlations (HB-MNL: 0.968, MoN-MNL: 0.978) and 
the HHR (HB-MNL: 0.832, MoN-MNL: 0.851), whereas the HB-MNL model per-
forms better w.r.t. the %TrueBetas measure of parameter recovery (HB-MNL: 0.746, 
MoN-MNL: 0.689). At this point, it is important to note that the “true” number of seg-
ments or components is not known in empirical studies.

As noted in Sect. 2.5, we also applied the DIC, WAIC and the “shut down” pro-
cedure suggested by Rossi (2014) as alternatives for model selection in addition to 
the LML criterion. For the LC-MNL model, the true number of segments could be 
identified as well in the majority of cases when using the DIC (87%) or the WAIC 
(78%), compared to 82% before via the LML. For the MoN-MNL model, the recov-
ery rate could be improved by using the DIC (9%) or the WAIC (26%), compared 
to only 2% before (LML). Still, the ability of the MoN-MNL model to identify true 
segment structures remains quite modest. A somewhat different picture results from 
using the “shut down” procedure of Rossi (2014) for model selection. For the LC-
MNL model, the “true” number of segments could be recovered for only 15% of the 
simulated data sets, while at least in 38% of all cases by the MoN-MNL model. One 
possible reason for the rather poor performance of the “shut down” variant obtained 
for the LC-MNL model could be that the prior configurations used in this paper are 
a bit more informative than those suggested by Rossi (2014), still they are uninform-
ative. Interestingly, the eight performance measures are hardly affected by the choice 
of the model selection procedure and remained highly stable for the different model 
types, as displayed in Table 10 in the Appendix.15

Allenby and Rossi (1998) have already noted that the posterior means of individ-
ual-level parameters do not have to follow a normal distribution even if the hetero-
geneity model is represented by the single normal distribution, as in the HB-MNL 
model. The rationale behind this is that the single normal distribution is only part of 
the prior, and the posterior is affected by the individual respondent data (cf. Allenby 
and Rossi 1998, p. 71). Thus, the distribution of the individual-level parameters 
could be multimodal even if the heterogeneity model is wrong, which would explain 
– at least to some degree – the very good performance of the HB-MNL model in our 
study.16 The following density plots displayed in Fig. 4 should bring more light into 
this issue, showing for selected treatments how multimodal the simulated prefer-
ence distributions were and how well individual-level parameters were recovered. In 
addition, Fig. 4 provides examples for treatments when MoN-MNL and DPM-MNL 
models overestimated the “true” number of components.

Shown are selected individual-level preference distributions for true versus re-
estimated part-worth utilities for different numbers of segments and different com-
binations of factor levels regarding the factors separation of segments (between-seg-
ment heterogeneity) and within-segment heterogeneity. The solid black lines refer to 

15  Note that the eight performance measures are highly robust against the type of model selection with 
regard to all other experimental factors, too. The corresponding results are available on request from the 
authors. Also note that different from Voleti et al. (2017) we used the DIC instead of the DIC3 criterion 
since we have no missing data.
16  We thank an anonymous reviewer for this note.
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the generated “true” preference distributions, while the dashed and/or dotted lines 
refer to the re-estimated part-worth distributions obtained from the HB-MNL (blue), 
MoN-MNL (green), and DPM-MNL (red) models.

The upper left panel shows a treatment with three “true” segments, a large separation 
between segments, and a small individual heterogeneity within these segments. Here, 
we observed that the MoN-MNL worked well in capturing the three segment structure 
(one of the few examples where the MoN-MNL performed fine), but that especially 
the HB-MNL did as well a very good job. Obviously, the posterior means are not con-
strained to follow the upper level single normal distribution in the HB-MNL model, and 
can reproduce the true 3-segment structure by adapting to the individual multimodal 
preference data under this factor level condition. A similar result was found for the 
treatment with two “true” segments, a small separation between segments, and large 
within-segment heterogeneity, see the upper right panel. Under this condition, the good 
performance of the HB-MNL model seems more plausible, since the two segments 
strongly overlap due to the small separation and the large within-segment heterogeneity.

The lower left panel shows a treatment with again two “true” segments, but both a 
large separation between segments and large within-segment heterogeneity. In this sit-
uation, the MoN-MNL suggests a 4-segment solution and therefore overestimates the 
true number of segments by two components (based on the LML criterion used for 
model selection here). In contrast, both the HB-MNL and DPM-MNL models very 
closely recovered the two segments. Finally, the density plots in the lower right panel 
refer to a treatment with two “true” segments, and both a small separation between 
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Fig. 4   Selected density plots for “true” distributions of part-worth utilities (black lines) versus re-esti-
mated distributions of part-worth utilities by model type (HB-MNL: blue lines; MoN-MNL: green lines; 
DPM-MNL: red lines). Upper left panel: 3 “true” segments, large separation, small heterogeneity. Upper 
right panel: 2 segments, small separation, large heterogeneity. Lower left panel: 2 segments, large separa-
tion, large heterogeneity. Lower right panel: 2 segments, small separation, small heterogeneity (note that 
the two true segments are not visible in the lower right panel due to their small separation and the coarse 
scaling required to represent the estimated components from the DPM-MNL model; for a finer resolu-
tion, see the bottom part of Fig. 5 in the Appendix where the DPM-MNL has been excluded)
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segments and small within-segment heterogeneity. Here, the DPM-MNL yielded a 
solution with six components (only four are clearly visible), indicating a clear overfit-
ting. Note that the DPM-MNL models tended to more components in treatments with 
a small separation between segments or a small extent of inner-segment heterogene-
ity, compare Sect. 3.1. For a detailed consideration of interaction effects between the 
factors separation of segments and within-segment heterogeneity, see Figs. 2 and 3.17

4 � Conclusions, managerial implications, and outlook

In this paper, we conducted an extensive Monte Carlo study including some sensitivity 
analyses to compare the performance of different Bayesian choice models represent-
ing between-segment and/or within-segment consumer heterogeneity. Summing up, the 
core finding from our simulation study is that the HB-MNL appears to be highly robust 
against violations in its assumption of a single normal distribution of consumer prefer-
ences. The MoN-MNL and the DPM-MNL model on the other hand overestimate the 
“true” number of components in many cases, which led to a kind of overfitting and 
as a result of that to large absolute errors regarding parameter recovery and prediction 
accuracy (independent of which model selection procedure was applied to find the best 
MoN-MNL models). The latter was particularly distinctive for less complex treatments 
and for data sets with a low inner-segment heterogeneity. The LC-MNL model proved 
to be the definitely best approach to recover the “true” number of segments (78%), espe-
cially for symmetric treatments concerning segment sizes. The MoN-MNL and DPM-
MNL models clearly failed with regard to this criterion, even if the “shut down” proce-
dure suggested by Rossi (2014) provided a much better recovery rate (38%) compared 
to other model selection procedures. This is especially noteworthy since beyond param-
eter recovery and prediction accuracy the identification of “true” segment structures is 
of particular importance for managers who usually do not know the “true” number of 
segments. Surprisingly, the HB-MNL model performed significantly better or at least 
as good as all other models as far as parameter recovery (the identification of “true” 
utility structures) and prediction accuracy is concerned. Regarding model fit, which we 
consider as not such important for practical applications, only DPM-MNL and MoN-
MNL models performed slightly better due to their higher flexibility. Note that some of 
these findings are also in line with the empirical results reported in Voleti et al. (2017), 
who especially emphasized the good performance of the HB-MNL model for predic-
tive purposes. Even so, the authors found out that the DPM-MNL model outperformed 

17  The upper part of Fig. 5 in the Appendix additionally displays the fitted population-level distributions 
obtained for the MoN-MNL and HB-MNL models and demonstrates that the MON-MNL models strug-
gle to recover the true segment structures adequately even for the treatments with a large separation of 
segments (left upper and lower panels). In contrast, the HB-MNL models fail to re-estimate existing seg-
ment structures at the upper level by definition due to its assumption of a single normal distribution. For 
the sake of completeness and as contrast, the corresponding posterior means distributions again show up 
in the lower part of Fig. 5. Therefore, in the light of this finding, it may be risky to rely on the fitted pop-
ulation distributions for related marketing decisions, in particular as true segment structures are unknown 
in empirical applications. See Sect. 4 for a further discussion on this issue.
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all other models in their empirical study. Regarding the choice of the model, the HB-
MNL model comes off as the clear winner of our Monte Carlo study.

From our perspective, the findings of our Monte Carlo study provide the follow-
ing managerial implications: (1) Parameter recovery and predictive accuracy are very 
important criteria (as opposed to model fit) for managerial decision-making, as outlined 
in the introduction. Since the HB-MNL model either outperformed all other models 
or at least performed on eye-level with them with regard to all performance measures 
used, it apparently represents a highly robust choice model under diverse conditions 
including multimodal preference structures. It did also not fail under very specific 
conditions we investigated using interaction analyses, but on the contrary performed 
particularly well in the case of a high number of attributes and attribute levels (i.e. a 
large number of parameters) with respect to absolute recovery and prediction errors. 
In addition, DPM-MNL and MoN-MNL models provided huge prediction errors for 
deterministic utilities in treatments with a large inner-segment heterogeneity, a factor 
which is not observable in empirical data prior to model estimation. Since MoN-MNL 
and DPM-MNL models are much more complex (including the need to specify a much 
larger number of prior settings) and standard software is not available to date, we can 
recommend practitioners to continue using the well-established HB-MNL model for 
market (preference) simulations. Note that we ran 200,000 burn-in iterations for each 
model to ensure convergence of the markov chains, which is of course essential in 
practical applications, too. (2) If managers work on a segment perspective to design 
products and related marketing activities, the LC-MNL model can definitely be recom-
mended to identify true segment structures as far as such exist. In contrast, the ability 
of both DPM-MNL and MoN-MNL models to recover the “true” number of segments 
was considerably worse and rather disappointing in our study. One possibility for man-
agers to nevertheless address inner-segment heterogeneity would be to estimate a LC-
MNL model at first and subsequently a HB-MNL model for (some of) the identified 
segments. Alternatively, the segment-specific part-worths obtained from the LC-MNL 
model could be weighted by a respondent’s posterior segment membership probabili-
ties to arrive at individual part-worth utility estimates for each individual (e.g., Ver-
munt and Magidson 2007). (3) Of course, findings on predictive validity from artificial 
data sets need not coincide with those from empirical settings with real data. Synthetic 
data may contain inadvertent biases from not considering real-world phenomena like 
simplification strategies of respondents or respondent fatigue in later choice tasks (e.g., 
Selka et al. 2014). Note that we considered the latter issue with an experimental fac-
tor that limited the number of choice tasks to a manageable number following related 
meta studies. In a recent empirical study for eleven CBC data sets, Voleti et al. (2017) 
reported higher hit rates and higher hit probabilties for the DPM-MNL model compared 
to the HB-MNL, MoN-MNL, and LC-MNL models. The DPM-MNL model improved 
hit rates / hit probabilities on average by 5% / 3% over the HB-MNL, however the HB-
MNL outperformed the MoN-MNL by 2% / 8% and LC-MNL models by 3% / 9%, on 
average. In our study, holdout sample hit rates were comparable across the four mod-
els, whereas the HB-MNL (DPM-MNL) performed clearly best (worst) in predicting 
deterministic utilities. More research is needed here to explore the differences in predic-
tive accuracy between the DPM-MNL and the HB-MNL in empirical versus artificial 
settings. Nevertheless, the HB-MNL also predicted surprisingly well in the empirical 
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study of Voleti et al. (2017). We elaborate on this issue still in more detail below in our 
outlook on future research opportunities.

Future work should further verify if our findings hold for different distributions 
of heterogeneity than assumed in the present study. For example, if the distribution 
of inner-segment heterogeneity is rather skewed, one might expect a superior perfor-
mance of the MoN-MNL or the DPM-MNL models compared to the HB-MNL, LC-
MNL and aggregate MNL models. In a Monte Carlo study, Ebbes et  al. (2015) for 
example additionally estimated so-called DPP models. In DPP models, the distribution 
of part-worth utilities is drawn from a Dirichlet Process, with the resulting part-worth 
utilities representing a mixture of discrete vectors. Performance measures for the DPP 
models did not differ significantly from the measures obtained for the MoN models 
in the study of Ebbes et al. (2015).18 However, the authors conjectured that the DPPs 
will outperform MoN models if the distribution of inner-segment heterogeneity differs 
from a normal distribution. It should be noted that Andrews et al. (2002a) found no 
differences in measures of performances between different choice models when com-
paring normally distributed preferences to gamma distributed preferences. However, 
they only compared a LC-MNL model, a HB-MNL model and an aggregate model 
and did not consider the MoN-MNL and the DPM-MNL models. Kim et al. (2004) 
concluded that the recovery performance of models with a Dirichlet Process prior was 
getting worse for data sets with a mixture of skewed distributions compared to data 
sets with a mixture of normal distributions. However, they did not compare the recov-
ery performance to a HB-MNL model with an unimodal distribution of heterogeneity 
or to LC-MNL models.

Future research could also investigate how well the different models predict truly out-
of-sample, i.e. not just for new observations of the respondents in holdout choice sets 
but for entirely new respondents (e.g., Pachali et al. 2020). In this case, possible con-
cerns that a model is trained not only to fit the data well, but also may favor “overfit-
ting” holdout choices could be eliminated. Basically, there are several ways to predict 
the choice behavior out-of-sample. One option would be using the posterior means of 
the respondents’ part-worths from the estimation sample and just integrating over this 
distribution of posterior means for predictions. Alternatively, one might simulate draws 
from the density of the respondents’ posterior means instead of using the posterior 
means resulting directly from the Markov chain after convergence. In both cases, pre-
dictions for the new sample would be based on the posterior means of the respondents 
of the estimation sample. However, Pachali et al. (2020) showed for the normal distri-
bution that the heterogeneity of respondents would be underestimated from the poste-
rior means of individual part-worths, a finding that we could confirm not only for the 
HB-MNL model with its single normal distribution but also for the MoN-MNL model 
with its mixture-of-normals, please directly compare the posterior mean distributions 
versus the fitted population distributions displayed for selected treatments in Fig. 5 in the 
Appendix. In order to adequately “exploit” the heterogeneity of respondents, it therefore 

18  Since groups of respondents share identical part-worth utilities, the DPP-MNL model is closely 
related to the LC-MNL model. As the DPP-MNL model performed very worse and often not better than 
a chance model concerning hit probabilities in the empirical CBC study of Voleti et al. (2017) we did not 
include it in our study.
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seems more reasonable at first glance to use the fitted population distributions for out-
of-sample predictions. In order to get an impression how results could change out-of-
sample, we compared the HB-MNL model with the MoN-MNL model for a randomly 
selected treatment with a large separation and small within-segment heterogeneity (i.e. a 
clearly multimodal preference structure). For this, we estimated the two models for 400 
respondents (estimation sample), threw away the posterior mean estimates of the estima-
tion sample and instead simulated 400 random draws from the fitted population-level 
distributions,19 and finally predicted the choices for each of the 200 new respondents 
(validation sample) based on these 400 simulated draws. Out-of sample hit rates of the 
two models were highly comparable (HB-MNL: 82.5%; MoN-MNL: 82.3%), indicating 
that the HB-MNL performs competitive out-of-sample, too. Of course, this represents 
just one instance and much more research is necessary to generalize this finding. On 
the other hand, this result is not even surprising with regard to the plots shown in Fig. 5 
which already suggested that the MoN-MNL model was not working as expected on the 
upper level in recovering the existing segment structures. Hence, the Mon-MNL model 
could not play its theoretical advantage against the HB-MNL model which is expected 
to predict worse for a new sample of respondents by definition if population-level prefer-
ences are (clearly) multimodal. Given that (1) the HB-MNL model has been proven to 
recover multimodal distributions of individual-level parameters in the estimation sample 
despite its very wrong assumption of a single normal population distribution, and (2) 
the MoN-MNL model might be not able to recover a multimodal population distribu-
tion satisfactory even if a clear separation of true segments exists (like in our study), for 
both models the bias from an underestimation of the degree of heterogeneity when using 
the distribution of posterior means of the estimation sample might be eventually smaller 
than the bias from using a wrong population distribution.

Finally, future research could analyze the performance of the competing models 
when taking into account simplification strategies of respondents, which are known 
to occur in empirical studies. Simplification strategies can, for example, be the result 
of (a) straightlining behavior of respondents who pay attention to only one or two key 
attributes when choosing brands, (b) some kind of cheating behavior of professional 
respondents as can be more and more observed in online panels, or (c) simply boring-
ness of respondents (Hein et al. 2020). Simplification strategies reduce the quality of 
the data compared to artificial studies and thus may affect the relative performance of 
the different models studied in this paper. To the best of our knowledge, no simulation 
study has yet compared the performance of the aggregate MNL, LC-MNL, HB-MNL, 
MoN-MNL and DPM-MNL models in the presence of simplification strategies of at 
least parts of respondents. Moreover, including the sample size as an additional experi-
mental factor might provide further insights about the overlapping mixtures problem 
(Kim et al. 2004), which affects the performance of DPM and MoN models.

Appendix

See Tables 9, 10 and Fig. 5

19  For the MoN-MNL model, the number of draws for each mixture component was determined by the 
estimated membership probabilities.
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Fig. 5   Selected density plots for “true” distributions of part-worth utilities (black lines) versus re-esti-
mated distributions of part-worth utilities by model type (HB-MNL: blue lines; MoN-MNL: green lines). 
Upper left panel: 3 “true” segments, large separation, small heterogeneity. Upper right panel: 2 segments, 
small separation, large heterogeneity. Lower left panel: 2 segments, large separation, large heterogene-
ity. Lower right panel: 2 segments, small separation, small heterogeneity. The upper panel displays fitted 
population-level distributions, the lower panel displays the distributions of posterior means of part-worth 
utilities
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