Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/309516 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Journal of Evolutionary Economics [ISSN:] 1432-1386 [Volume:] 33 [Issue:] 3 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2023 [Pages:] 797-835
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
This paper argues that the typical practice of performing growth decompositions based on log-transformed productivity values induces fallacious conclusions: using logs may lead to an inaccurate aggregate growth rate, an inaccurate description of the micro sources of aggregate growth, or both. We identify the mathematical sources of this log-induced fallacy in decomposition and analytically demonstrate the questionable reliability of log results. Using firm-level data from the French manufacturing sector during the 2009–2018 period, we empirically show that the magnitude of the log-induced distortions is substantial. We find that around 60–80% of four-digit industry results are prone to mismeasurement depending on the definition of accurate log measures. We further find significant correlations of this mismeasurement with commonly deployed industry characteristics, indicating, among other things, that less competitive industries are more prone to log distortions. Evidently, these correlations also affect the validity of studies investigating industry characteristics' role in productivity growth.
Schlagwörter: 
Productivity decomposition
Growth
Log approximation
Geometric mean
Arithmetic mean
JEL: 
C18
L22
L25
O47
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.