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Abstract
This paper argues that the typical practice of performing growth decompositions based
on log-transformed productivity values induces fallacious conclusions: using logsmay
lead to an inaccurate aggregate growth rate, an inaccurate description of the micro
sources of aggregate growth, or both. We identify the mathematical sources of this
log-induced fallacy in decomposition and analytically demonstrate the questionable
reliability of log results. Using firm-level data from the French manufacturing sector
during the 2009–2018 period, we empirically show that the magnitude of the log-
induced distortions is substantial. We find that around 60–80% of four-digit industry
results are prone to mismeasurement depending on the definition of accurate log mea-
sures. We further find significant correlations of this mismeasurement with commonly
deployed industry characteristics, indicating, among other things, that less compet-
itive industries are more prone to log distortions. Evidently, these correlations also
affect the validity of studies investigating industry characteristics’ role in productivity
growth.

Keywords Productivity decomposition · Growth · Log approximation ·
Geometric mean · Arithmetic mean

JEL Classification C18 · L22 · L25 · O47

1 Introduction

This paper questions the commonpractice of performing growth decompositions based
on productivity growth rates proxied by log-differenced productivity values. We argue
that this procedure leads to an inaccurate aggregate growth rate, an inaccurate descrip-
tion of the micro sources of aggregate growth, or both. These three cases of potential
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misconceptions comprise what we refer to as the fallacy in productivity decompo-
sition. Therefore, policy recommendations stemming from log-based decomposition
exercises may prove inappropriate.

Productivity decomposition methods are useful tools to shed light on the underly-
ing causes of aggregate productivitymovements. Themost commonly used shift-share
decomposition methods include those proposed by Griliches and Regev (1995), Fos-
ter, Haltiwanger and Krizan (2001) and Melitz and Polanec (2015). While the former
two are time-series approaches and refinements of the seminal contribution by Baily,
Hulten and Campbell (1992), the latter is based on the cross-sectional methodol-
ogy by Olley and Pakes (1996). Despite their technical differences, they all use the
weighted average of firm-level productivity and decompose aggregate productivity
growth according to its underlying micro sources. These typically include firm learn-
ing, resource reallocation, and net entry of firms.

The use of productivity decomposition methods differs in various ways. Some
studies use labor productivity, whereas others use total factor productivity. Some use
inputs, whereas others choose output shares as weights (see, e.g., Fagerberg 2000;
Foster et al. 2001; Melitz and Polanec 2015; Decker et al. 2017). They also differ with
respect to the analyzed time length, which, in the case of short periods, leads to larger
contributions of firm learning (Brown et al. 2018). All of these methodological differ-
ences affect the comparability of productivity decomposition studies. Nevertheless,
there are good reasons behind the specific choice of the respective methodology. What
many of these studies have in common, however, is the use of log-based productivity
growth rates – the technical procedure that we criticize in this paper.

There are numerous good reasons for using logs in a wide range of applications
in economics. To begin with, log differences are symmetrical, which is a useful char-
acteristic in the computation of job flows (see, e.g., Davis and Haltiwanger 1999;
Haltiwanger et al. 2013). Furthermore, they are additive and therefore facilitate the
seamless calculation of compound interest rates (Törnqvist et al. 1985). In growth
accounting, the log-linearization of production functions allows the application of
simple OLS regression, which is also the standard procedure to estimate total factor
productivity (TFP).1 The estimated coefficients can be interpreted as production fac-
tors’ output elasticity, and last but not the least, the use of logs simultaneously reduces
the impact of outliers. Hence, the logarithm is and continues to remain a valuable tool
and all the described practices are untouched by our criticism.

However, we argue that no well-grounded reasoning exists for using logs to decom-
pose productivity growth. As our literature review shows, it is typical to base such
growth decomposition on log-transformed productivity values (see Appendix A). The
papers included in this literature review do not provide any reasons as to why they
use logs. According to Van Biesebroeck (2008), the main reason is that logs linearize
and facilitate the decomposition exercise. This linearization is achieved because log
differences can be considered an approximation to growth rates in percent, that is, in

1 In this paper, we confine our investigation to labor productivity. However, when decomposing TFP
estimated in logs, the same log-induced misinterpretations will occur. Hence, our recommendation is to
exponentiate the log-based TFP measure and to run the decomposition on levels of TFP.
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The fallacy in productivity decomposition 799

levels.2 This practice, however, can lead to severe misrepresentations because using
log-approximated growth rates in productivity decomposition generates inaccuracies
beyond the well-known log approximation error.

More fundamentally, we show that log-based productivity growth decomposition
leads to the following three sources of deviations from results calculated in levels:
(i) the log approximation error, as a consequence of the logarithm’s concavity; (ii)
the reference deviation, arising from a different reference assumption implicit in log
differences; and (iii), the mean deviation, caused by the difference in the deployed
benchmark productivity. The consequences of these three distortions significantly
outweigh the facilitating impact of log linearization in decomposition exercises. There-
fore, we advocate performing productivity decompositions in levels.

Our paper makes several contributions to the literature. We demonstrate the fallacy
in decomposition: using logsmay lead to either an inaccurate aggregate growth rate, an
inaccurate description of the contribution of the micro sources of productivity growth,
or both. We enrich the case proposed by Dias and Marques (2021a) who shed light
on the potential misconceptions in productivity decompositions propelled by the fact
that the aggregation of logs leads to a geometric instead of an arithmetic mean. In
contrast to their paper, however, we analyze the impact of logs from the perspective of
an individual firm’s contribution to aggregate growth instead of adopting the aggregate
perspective. Adopting the firm-level perspective reveals that the discrepancy between
level and log results for individual productivity components can be traced back to
three sources of distortions: the log approximation error, the reference deviation, and
the mean deviation. The separation of the three log distortions provides a straight-
forward analytical framework to determine the circumstances under which firm-level
contributions are overestimated or underestimated by logs.

In addition, our study is the first to quantify the fallacy in decomposition by exploit-
ing data on four-digit industries. We show that around 60–80% of four-digit industry
results are subject to mismeasurement depending on the definition of accurate log
measures.

Moreover, we document those log distortions associated with industry characteris-
tics, revealing, in particular, that the lack of competition and a high degree of industry
openness reinforce log distortions. We thereby take an important step toward evaluat-
ing the extent to which past and future studies of industry dynamics may be affected
by the use of logs and how they compare with one another.

Furthermore, unlike Dias and Marques (2021a), who use a modified version of
the decomposition method outlined by Melitz and Polanec (2015), we investigate the
consequences of using log-transformed productivity measures in the widely applied
decomposition method of Foster et al. (2001) (hereafter: FHK). We further show that
our findings also hold true for the method proposed by Griliches and Regev (1995)
and the decomposition method by Melitz and Polanec (2015).

The remainder of the paper is structured as follows. Section 2 defines and formalizes
the first two distortions, namely, the log approximation error and the reference devi-
ation. Section 3 discusses the use of logs in the productivity components of the FHK

2 See, for instance,Melitz and Polanec (2015), who remarked that “... [a]ll productivity changes are reported
as log percents (or log points) – and can thus be interpreted as percentage point changes” (p. 371 Melitz
and Polanec 2015).
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decomposition method, which reveals the mean deviation as the third log-induced
distortion. Section 4 shows the magnitude of the log distortions using firm-level data
derived from the French manufacturing sector. Section 5 quantifies the fallacy in
productivity decomposition, whereas Section 6 addresses how the log-induced dis-
crepancies correlate with certain industry characteristics. Section 7 concludes this
paper.

2 Log approximation error and reference deviation

It is common practice in productivity decompositions to represent firm-level produc-
tivity in logs. The main motive lies in the linearization of the decomposition exercise
(Van Biesebroeck 2008), which is achieved by using a log difference as an approxi-
mation to a productivity growth rate as follows:

ϕi2 − ϕi1

ϕi1
≈ ln(ϕi2) − ln(ϕi1) (1)

where ϕi1 and ϕi2 denote productivity levels of firm i in two successive periods. Due
to the concavity of the logarithmic function, logged values underestimate productivity
growth, that is, (ϕi2 − ϕi1)/ϕi1 − (ln(ϕi2) − ln(ϕi1)) ≥ 0. This is the well-known
log approximation error – the discrepancy between the growth rate measured as a
percentage change of absolute productivity and the growth rate measured by a log
difference. This leads to the first proposition:

Proposition 1 The use of logs introduces a log approximation error, that is, a system-
atic underestimation of productivity growth rates.

It is usually argued that the approximation error can be restricted within reasonable
limits as long as the growth rates fluctuate within a range of approximately ±10%,
as is well known among economists. However, we observe that this problem is not
addressed in many studies. For instance, the decomposition studies conducted by
Foster et al. (2001), Scarpetta et al. (2002), and Melitz and Polanec (2015) report
average growth rates that go well beyond the conventional ±10% threshold.3

The second distortion takes into consideration the discrepancy that arises between
levels and logs when aggregating firm-level growth rates. In contrast to levels, where
absolute changes in firm-level productivity are measured relative to some reference
productivity – usually, the aggregate productivity of the previous period – the reference
of a productivity growth rate, calculated with log-transformed values, is implicit in
the (firm-individual) log difference. This is what we refer to as reference deviation.
For each firm-specific productivity growth rate, the reference productivity will differ
from the reference productivity calculated with levels.

Proposition 2 Aggregating log differences as a proxy for growth rates induces a ref-
erence deviation that arises from the idiosyncratic reference productivity implicit in
the log difference.

3 To make things worse, a ±10% threshold on the aggregate growth rate does not guarantee that the
productivity components will not exceed this threshold.
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The fallacy in productivity decomposition 801

To illustrate the two log distortions mentioned above, we start with the standard
textbook definition of aggregate productivity as the sum of firm-level output over the
sum of firm-level input(s). In the case of aggregate labor productivity, this reads as
follows:

�t =
∑

Yit
∑

Lit
(2)

where Yit denotes the output (e.g., value-added) and Lit indicates the input (e.g.,
working hours) of firm i at time t .We further define growth in aggregate productivity as
the differencebetween twoaggregate productivity values in two successive periods, say
�2 and �1, divided by its initial value �1. Representing aggregate productivity as the
share-weightedmean of firm-level productivity, this implies for aggregate productivity
growth in levels, �̂lev:

�̂lev =
(∑

si2 · ϕi2 −
∑

si1 · ϕi1

) 1

�1
(3)

where ϕi1 and ϕi2 denote productivity levels of firm i in two successive periods, and si1
and si2 share weights. To ensure that the aggregation of firm-level data corresponds
to the industry aggregate as defined in Eq. (2), we use input shares for weighing
individual firm productivity, that is, sit = Lit∑

L jt
. In using input shares, we follow the

’denominator rule in share-weighting aggregation’ of Färe and Karagiannis (2017),
who show that, when aggregating, consistent results are achieved only by using the
denominator of the productivity measure as weights.

If, instead, firm-level productivity is measured in logs, then the share-weighted
industry aggregate is defined as �t,log = ∑

sit · ln ϕi t (see, e.g., Van Biesebroeck
2008; Bartelsman et al. 2013; Melitz and Polanec 2015; Decker et al. 2017). As
the difference between two log aggregates corresponds to a percentage change, the
aggregate productivity growth in logs can be expressed as follows:

�̂log =
∑

si2 · ln ϕi2 −
∑

si1 · ln ϕi1 (4)

which is equivalent to the log difference of two geometric means:

�̂log = ln
∏

ϕ
si2
i2 − ln

∏
ϕ
si1
i1 (5)

In other words, instead of a growth rate between two share-weighted arithmeticmeans,
logs approximate a growth rate between two share-weighted geometric means (see,
e.g., Van Biesebroeck 2008; Brown et al. 2018; Dias and Marques 2021a). This pro-
cedure affects the resulting productivity growth rate because a geometric mean is
more sensitive to smaller than larger numbers. It mitigates the impact of high values
while reinforcing the impact of low values. Moreover, as is well known from Jensen’s
inequality, the (weighted) geometric mean is always smaller than the (weighted) arith-
metic mean unless all numbers constituting the means are equal (Casella and Berger
2002).
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This, however, does not imply that the growth rate between two geometric means is
always smaller than the growth rate between two arithmetic means. As shown by Dias
andMarques (2021a), this hinges on the composition of the respective means and their
changes over time. Specifically, it depends on each firm’s productivity, input share,
its initial position in the industry’s productivity distribution, and the changes of these
values over time. To elaborate on this point, let us adopt an individual firm’s perspec-
tive. In Eqs. (3) and (4), we can extract the individual firm productivity contribution
Ci to aggregate productivity growth measured in levels and logs, respectively:

Ci,lev = (si2ϕi2 − si1ϕi1) · 1

�1
(6)

Ci,log = si2 · ln ϕi2 − si1 · ln ϕi1 (7)

ComparingCi,lev andCi,log will reveal the two log distortionswe identified in Proposi-
tions (1) and (2). In Appendix B, we provide a general derivation of the two distortions
that result from subtracting Eq. (7) from Eq. (6). The endeavor to identify the log
approximation error is trivial. Suppose all weights si . were equal to one, then we, in
principle, end up with Eq. (1), which substantiates the log approximation with one
difference: the reference productivity �1 from Eq. (6). This leads us directly to the
next distortion, that is, the reference deviation. In contrast to the reference productivity
�1 for levels, the implicit reference in Eq. (7) is ϕi1.4

Due to the reference deviation, logged firm-level productivity growth rates can
either underestimate, that is, Ci,lev > Ci,log , or overestimate, that is, Ci,lev < Ci,log ,
the contribution to aggregate growth when compared to levels. To illustrate this point,
let us assume two firms with constant input shares sit = 10% for i={1,2}, productivity
levels ϕ11 = 50 and ϕ21 = 150, and an initial aggregate productivity �1 = 100.
Suppose both firms increase their productivity by 10%. With logs, the contribution of
both firms to aggregate productivity growth will be the same, namely, 0.1 · ln(1.1) ≈
0.953%. However, when calculated in levels, the impact of firm 1 will be smaller than
the impact of firm 2, namely, 0.1 · 55−50

100 = 0.5% for firm 1 and 0.1 · 165−150
100 = 1.5%

for firm 2. Hence, logs overestimate the impact of firm 1 and underestimate the impact
of firm 2.

Following this line of reasoning, when aggregating logged firm contributions to
aggregate productivity growth, the resulting aggregate growth rate is susceptible to
bias. The industry structure and its change over time determine the extent to which
productivity growth contributions are underestimated or overestimated. This raises
doubts about the reliability and comparability of productivity measures based on logs.

In the following section, we flesh out our propositions by decomposing aggregate
productivity growth according to the FHK method. For each productivity component
in the FHK method, we propose a separation of the different log distortions, which

4 Note that we draw this analogy based on the approach that a log difference between ϕi2 and ϕi1 approx-
imates the ratio of the absolute difference (ϕi2 − ϕi1) and the initial productivity ϕi1, while we isolate the
inaccuracy caused by the log approximation in the approximation error. Hence, our analogy is not opposed
to Törnqvist et al. Törnqvist et al. (1985), who stated that a log difference equals the ratio of the absolute
difference (ϕi2 −ϕi1) and the logarithmic mean L(ϕi1, ϕi2), with L(ϕi1, ϕi2) = (ϕi2 −ϕi1)/ ln(ϕi2/ϕi1)
and (ϕi1ϕi2)

1/2 < L(ϕi1, ϕi2) < (ϕi1 + ϕi2)/2 for ϕi1 �= ϕi2.
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The fallacy in productivity decomposition 803

provides a straightforward analytical approach to determine the circumstances under
which firms’ productivity contributions are underestimated or overestimated by logs.

3 Decomposing the log distortions in the FHK decomposition

The FHK decomposition distinguishes three groups of firms, that is, surviving (S),
entering (N), and exitingfirms (X).The contributionof survivingfirms is further broken
down into three subcomponents, which they label as the within-firm effect (WFE), the
between-firm effect (BFE), and the cross-firm effect (CFE).When expressed in levels,
the decomposition reads as follows:

�̂lev =
∑

i∈S

1

�1
· si1 · �ϕi

︸ ︷︷ ︸
WFEi,lev

+
∑

i∈S

1

�1
· �si · (ϕi1 − �1)

︸ ︷︷ ︸
BFEi,lev

+
∑

i∈S

1

�1
· �si · �ϕi

︸ ︷︷ ︸
CFEi,lev

+
∑

i∈N

1

�1
· si2 · (ϕi2 − �1)

︸ ︷︷ ︸
Ni,lev

+
∑

i∈X

1

�1
· si1 · (�1 − ϕi1)

︸ ︷︷ ︸
Xi,lev

(8)

In logs, the individual productivity components are expressed as follows:

�̂log =
∑

i∈S
si1 · � ln ϕi︸ ︷︷ ︸
WFEi,log

+
∑

i∈S
�si · (ln ϕi1 − �1,log)
︸ ︷︷ ︸

BFEi,log

+
∑

i∈S
�si · � ln ϕi︸ ︷︷ ︸

CFEi,log

+
∑

i∈N
si2 · (ln ϕi2 − �1,log)
︸ ︷︷ ︸

Ni,log

+
∑

i∈X
si1 · (�1,log − ln ϕi1)
︸ ︷︷ ︸

Xi,log

(9)

Note that in the BFE as well as in the components of entering and exiting firms, firm-
level productivity is set in relation to aggregate productivity as a benchmark, which is
�1 for levels and�1,log for logs.As noted in Section 2,we can rewrite the log aggregate
as �1,log = ∑

si1 ln ϕi1 = ln
∏

ϕ
si1
i1 . In turn, we will denote the geometric mean of

firm-level productivity as �1, that is, �1,log = ln
∏

ϕ
si1
i1 = ln�1, distinguishing it

from the arithmetic mean used in case of levels, �1. Self-evidently, the discrepancy in
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meanswill induce a further distortion in the computation of productivity growth,which
we term as mean deviation.

Proposition 3 Logs introduce a mean deviation in the between-firm effect and the
components of entering and exiting firms, as logs use a geometric mean instead of an
arithmetic mean as benchmark productivity.

In contrast to the first two propositions, Proposition (3) does not emerge in com-
putations of aggregate growth rates (as in Eqs. 3 and 4) but only appears due to the
introduction of a benchmark productivity when decomposing productivity growth.
There are two reasons behind deploying a benchmark productivity in decomposition
methods. First, it ensures that in theBFE, the impact of input share fluctuations depends
on the individual firm’s productivity relative to the aggregate. Second, it allows one
to assess the growth contribution of entering and exiting firms relative to surviving
firms.

As follows from Eqs. (8) and (9) and as Proposition (3) emphasizes, the mean
deviation will only appear in the BFE and in the components of entering and exiting
firms. Conversely, the impact of the mean deviation on the discrepancy between the
log and the level aggregate growth rate will always be zero, as input shares sum to
one in each period, that is,

∑
si1 = ∑

si2 = 1 (see, e.g., Melitz and Polanec 2015).
Not all productivity decompositionmethods deploy abenchmarkproductivity. Take,

for instance, the decomposition proposed in the seminal contribution by Baily et al.
(1992), which is exactly identical to the FHK method with the exception of a bench-
mark productivity. Therefore, this method will not be subject to a mean deviation.
Nonetheless, the use of a benchmark productivity, as shown in Eqs. (8) and (9), is not
unique to the FHK decomposition method but rather a typical feature for the afore-
mentioned reasons. The resulting mean deviation will vary with the decomposition
method and the deployed benchmark productivity. Griliches and Regev (1995), for
instance, use the average aggregate productivity as benchmark. In addition, Melitz
and Polanec (2015) use productivity benchmarks albeit in a slightly different way.
Irrespective of which benchmark productivity is used in the decomposition, a mean
deviation is inevitable between level-based and log-based growth rates. Appendix G
demonstrates that our main conclusions also hold true for these related decomposition
methods.

The following sections show the extent to which the three identified log distortions,
that is, the log approximation error, the reference deviation, and the mean deviation,
affect the individual components of the FHK decomposition method. In Appendix
B, we generalize our approach and show the impact of the three propositions on a
non-decomposed, aggregate productivity growth rate.

3.1 Log distortions in the within-firm effect

The within-firm effect (WFE) denotes the contribution of firm learning to aggregate
productivity growth. As Eqs. (8) and (9) show, it is calculated as the input share-
weighted change in firmproductivity, either calculatedwith levels or logs, respectively.
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The fallacy in productivity decomposition 805

By subtracting the WFE in Eq. (9) from the WFE in Eq. (8), we can decompose the
log distortion as follows:

εi,W = WFEi,lev − WFEi,log

= si1

(�ϕi

�1
− � ln ϕi

)

= si1

(�ϕi

ϕi1
− � ln ϕi

)

︸ ︷︷ ︸
εi,W ,appr

+ si1

(�ϕi

�1
− �ϕi

ϕi1

)

︸ ︷︷ ︸
εi,W ,re f

(10)

Note that the input shares si1 simply function as a scaling factor of the two log
distortions. The magnitude of the log approximation error (εi,W ,appr ) increases in
|�ϕi |. Therefore, industries that experience high fluctuations in firm-level productivity
will be subject to large log approximation errors. Due to the concavity of the logarithm,
the log approximation error is always greater than or equal to zero (εi,W ,appr ≥ 0).
Hence, it introduces a systematic underestimation of theWFE. The sign andmagnitude
of the reference deviation (εi,W ,re f ) depend on the position of the firm’s productivity
and its development within the industry’s productivity distribution. More precisely, it
depends on the relationship between ϕi1 and �1 and the directional change in �ϕi .
It is positive, if (ϕi1 > �1 ∧ �ϕi > 0) ∨ (ϕi1 < �1 ∧ �ϕi < 0), and negative if
(ϕi1 > �1 ∧ �ϕi < 0) ∨ (ϕi1 < �1 ∧ �ϕi > 0). This implies that an industry that
experiences a widening productivity gap between the most and the least productive
firms is likely to be subject to a positive reference deviation and vice versa.

Summarizing the log distortions in theWFE, the reference deviation will either add
to the consistently positive log approximation error, compensate or even overcompen-
sate it. As noted by Dias and Marques (2021a), the described tendencies in the two
error terms anticipate a mostly positive log distortion in theWFE. This is also reflected
in our empirical findings in Section 4.

3.2 Log distortions in the between-firm effect

The between-firm effect (BFE) captures the change in productivity growth induced by
the reallocation of inputs within an industry. In its calculation, productivity remains
constant, and only input shares may change. To motivate Propositions (1) to (3), we
subtract the BFE in logs from the BFE in levels (see Eqs. 8 and 9) and decompose the
log distortion as follows:

εi,B = BFEi,lev − BFEi,log

= �si

(
ϕi1 − �1

�1
− (ln ϕi1 − ln�1)

)
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806 S. Bruhn et al.

= �si

(
ϕi1 − �1

�1
− (ln ϕi1 − ln�1)

)

︸ ︷︷ ︸
εi,B,appr

+�si

(
ϕi1 − �1

�1
− ϕi1 − �1

�1

)

︸ ︷︷ ︸
εi,B,re f

+�si

(
�1 − �1

�1

)

︸ ︷︷ ︸
εi,B,�mean

(11)

We define the log approximation error (εi,B,appr ) as the difference between the
growth rate (ϕi1 − �1)/�1 and its approximation via the log difference (ln ϕi1 −
ln�1).5. In line with Proposition (2), the reference productivity embodied in the log
difference is �1, whereas the reference productivity deployed by the BFE in levels
is �1. This introduces the reference deviation (εi,B,re f ). The remaining discrepancy
is rooted in the mean deviation (εi,B,�mean). In levels, firm productivity is measured
against the arithmetic mean; for logs, it is compared to the geometric mean.

Let us now look at the potential magnitude of the distortions. The magnitude of
εi,B,appr increases with the difference (ϕi1 − �1) and is simultaneously scaled by
the change in input share �si . In line with Proposition (2), εi,B,appr is positive for
�si > 0 and negative for �si < 0. Therefore, the log approximation error will
have a considerable impact on firms that are located at the fringes of the productivity
distribution and that experience high changes in their input share. The impact of
εi,B,re f depends on the sign and magnitude of the change in input share �si and
the position of firm productivity ϕi1 relative to the geometric mean �1. According
to Jensen’s inequality, we can state that �1 > �1, so that εi,B,re f is positive if
(ϕi1 > �1 ∧ �si < 0) ∨ (ϕi1 < �1 ∧ �si > 0) and negative if (ϕi1 > �1 ∧ �si >

0)∨(ϕi1 < �1∧�si < 0). Hence, ifwe assume an industrywith a positiveBFE, which
implies that input shares tend to be allocated away from the least to themost productive
firms, the two conditions for a negative reference deviation are likely to be dominant
in this industry. Therefore, we would expect a negative aggregate reference deviation
in such a case. The sign and magnitude of εi,B,�mean depend on the magnitude of the
difference between the two means, (�1 − �1), and the change in input share �si .
Provided that �1 > �1, the sign of the distortion for an individual firm will take the
opposite sign of the change in input share �si , scaled by its absolute magnitude. In
the aggregate, the direction of the mean deviation depends on the changes in input
shares of surviving firms relative to exiting and entering firms. It will be positive, if
the sum of changes in shares of surviving firms is negative, that is,

∑
i∈S �si < 0,

which implies that the share of entering firms exceeds the share of exiting firms.
Overall, each of the three distortions in the BFE can be either positive or negative,

both at the individual firm level and at the aggregate level.

5 Note that even though the BFE holds the productivity measure constant, it is still subject to a log approx-
imation error. This is because normalizing the impact of an individual firm using the weighted mean
corresponds to the mathematical equivalent of a growth rate (see Eqs. 8 and 9)
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3.3 Log distortions in the cross-firm effect

The cross-firm effect (CFE) is the interaction between the two previous components,
that is, between the WFE and the BFE. We derive the log distortions in the CFE
component from Eqs. (8) and (9) as follows:

εi,C = CFEi,lev − CFEi,log

= �si

(�ϕi

�1
− � ln ϕi

)

= �si

(�ϕi

ϕi1
− � ln ϕi

)

︸ ︷︷ ︸
εi,C,appr

+�si

(�ϕi

�1
− �ϕi

ϕi1

)

︸ ︷︷ ︸
εi,C,re f

(12)

The log approximation error in the CFE (εi,C,appr ) increases with |�ϕi |. It is
weighed and scaled by �si and follows this scaling factor in terms of sign and mag-
nitude. The sign and magnitude of the reference deviation (εi,C,re f ) depends on the
development of�si , the position of ϕi1 relative to�1, and the change in firm-level pro-
ductivity �ϕi . All these determinants of εi,C,re f lead to a variety of biased results that
either arbitrarily overestimate or underestimate productivity growth contributions.6

Overall, the approximation error and the reference deviation may induce a positive
or a negative bias in the CFE. It is also conceivable that the distortions balance out in
the aggregate.

3.4 Log distortions in entry and exit

The contribution of entering or exiting of a firms to aggregate productivity growth can
be positive or negative, depending on the entering or exiting firm’s position relative
to the industry’s benchmark productivity. In the case of the FHK decomposition, the
industry benchmark is �1 for levels and �1 for logs. Analogous to the BFE, we can
decompose the log-induced distortion to isolate three different distortions in the entry
and exit components: the log approximation error (εi,·,appr ), the reference deviation
(εi,·,re f ), and the mean deviation (εi,·,�mean). For entering firms, this leads to the
following equation:

εi,N = Ni,lev − Ni,log

= si2

(
ϕi2 − �1

�1
− (ln ϕi2 − ln�1)

)

6 For completeness: εi,C,re f is positive for (ϕi1 > �1 ∧ �si > 0 ∧ �ϕi > 0) or (ϕi1 > �1 ∧ �si <

0∧�ϕi < 0) or (ϕi1 < �1 ∧�si > 0∧�ϕi < 0) or (ϕi1 < �1 ∧�si < 0∧�ϕi > 0) and it is negative
for all complementary cases.
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= si2

(
ϕi2 − �1

�1
− (ln ϕi2 − ln�1)

)

︸ ︷︷ ︸
εi,N ,appr

+ si2

(
ϕi2 − �1

�1
− ϕi2 − �1

�1

)

︸ ︷︷ ︸
εi,N ,re f

+ si2

(
�1 − �1

�1

)

︸ ︷︷ ︸
εi,N ,�mean

(13)

The more distant the entering firm’s productivity ϕi2 from the benchmark produc-
tivity �1, the greater the log approximation error (εi,N ,appr ). In line with Proposition
(1) and the fact that si2 can take only positive values, εi,N ,appr must be non-negative.
The distortion caused by the reference deviation (εi,N ,re f ) is almost identical to its
counterpart in theBFE, with the exception of its weights. Assuming�1 > �1, εi,N ,re f

will be positive if (ϕi2 − �1) < 0 and vice versa. The magnitude of the mean devi-
ation (εi,N ,�mean) depends on input share si2, which scales the difference between
the geometric (�1) and the arithmetic (�1) means. As the benchmark productivity
for evaluating the contribution of entering firms is smaller for logs than for levels, the
distortion is always negative.

In the case of exiting firms, we obtain the following mirror image:

εi,X = Xi,lev − Xi,log

= si1

(
�1 − ϕi1

�1
− (ln�1 − ln ϕi1)

)

= si1

(

(ln ϕi1 − ln�1) − ϕi1 − �1

�1

)

= si1

(

(ln ϕi1 − ln�1) − ϕi1 − �1

�1

)

︸ ︷︷ ︸
εi,X ,appr

+ si1

(
ϕi1 − �1

�1
− ϕi1 − �1

�1

)

︸ ︷︷ ︸
εi,X ,re f

+ si1

(
�1 − �1

�1

)

︸ ︷︷ ︸
εi,X ,�mean

(14)

The log approximation error in the exit component (εi,X ,appr ) is always negative for
exiting firms. The reference deviation (εi,X ,re f ) is positive for ϕi1 > �1 and negative
for ϕi1 < �1. The mean deviation, (εi,X ,�mean) is always positive.

Overall, as is the case in the previous productivity components, it is conceivable
that the individual log distortions in the entry and exit components balance out in the
aggregate or induce an overestimation or underestimation, which essentially depends
on firm and industry characteristics.
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4 Empirical application

4.1 Data

We use firm-level panel data covering the French manufacturing sector for the 2009–
2018 period. The relevant information is derived fromannual census data namedFARE
and covers over 3 million companies per year. The data provides information regard-
ing firms’ income statements and balance sheets, from which, in turn, we retrieved
the value-added and the number of employees. As we did not observe prices, we
used industry-specific value-added deflators provided by the French statistical office
INSEE. For labor, we used the industry-specific annual number of hours worked per
employee (provided by INSEE) andmultiplied it by the number of employees to obtain
the total number of hours worked per company.

As an industry classification, we used the intermediate SNA/ISIC aggregation A38,
which aggregates similar ISIC two-digit divisions to 13 sectors (Eurostat 2008), as
listed inAppendix C.We excluded the industry of coke and refined petroleum products
(ISIC 19) in our analysis.We restricted our sample to firmswith at least ten employees.
Increasing the minimum size of the firm ensures higher data quality – a key element
in growth rate computations. To avoid artificial breaks in the series, we did not trim
observations with fewer than ten employees on a firm-year basis. Instead, we screened
out firms for which the median number of employees was strictly lower than ten over
the entire period. We focused on labor productivity as our efficiency measure, defined
as the value-added to hoursworked ratio.We excludedfirms reporting a negative value-
added. We further truncated the data by excluding firms with at least one observation
in the bottom and top 0.5% of the productivity distribution and by discarding firms
that experienced suspicious negative and positive jumps in their efficiency series.7 The
application of such restrictions yielded a sample of approximately 260,000 firm-year
observations. Appendix D reports the corresponding summary statistics.

Given our sample of firms in the remaining 12manufacturing sectors, we performed
the FHK decomposition using Eqs. (8) and (9) for each industry and year. During the
period between 2010 and 2018, this method yields a sample of 12× 9 = 108 decom-
positions, once in levels and once in logs, which allows us to recover the aggregate
log distortions in aggregate productivity growth (εA = ∑

i εi,A = �̂lev − �̂log), in
the WFE (εW = ∑

i εi,W ), in the BFE (εB = ∑
i εi,B), in the CFE (εC = ∑

i εi,C ),
in the entry (εN = ∑

i εi,N ) and the exit component (εX = ∑
i εi,X ). We further sep-

arated these total distortions according to our three propositions (log approximation
error, reference deviation, mean deviation) as in εA = εA,appr + εA,re f + εA,�mean ,
for the example of aggregate growth. We followed the same logic for the productivity
components.

Subsequently, we created a weighted average industry of the industry-level results,
using labor input as weights, averaged over the beginning and ending years of the
period in which the respective growth rate was measured.

7 More precisely, we excluded firms for which we observed a change in labor productivity by a factor of
more than 3 from one year to another.
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4.2 Decomposition results in levels and logs in themanufacturing sector

Table 1 reports the decomposition results in levels and logs and quantifies the misrep-
resentation caused by the log distortions.

Aggregate productivity growth shows distortions (εA) ranging from −0.64 to 1.36
percentage points. Relative to the productivity contribution in levels, the distortions
range from −35% (2010) to 27% (2017). The distortions in aggregate growth are not
distributed equally among the FHK productivity components. The WFE and the exit
and entry components are affected most, whereas the BFE and the CFE are subject
to smaller distortions. Nonetheless, if expressed in relative terms, the distortions in
the BFE and CFE can also be substantial. In all five components, productivity growth
contributions are neither systematically overestimated nor underestimated using logs.
The distortions in the WFE range from −17% in 2010 to 25% in 2015. In the BFE,
the largest overestimation occurs in 2012 with−19%, and the largest underestimation
is observed in 2011 with 18%, while the distortions in the CFE range from −14%
(2011) to 11% (2018). The relative discrepancies are most pronounced with respect to
the entry and exit components. For entries, the discrepancy ranges from −6% (2012)
to as much as 766% (2011) and for exits from −239% (2013) to 51% (2018).

The magnitude of log distortions can be substantial, implying a severely distorted
image of the productivity growth components. Importantly, log distortions can lead to
a sign flip in the productivity components (see, for instance, the sign flip in the entry
component in 2011), leading to severely misguided conclusions. In our decomposition
of industry-level results documented in Appendix E, we provide further evidence for
the presence of sign flips in different productivity components and even in terms of
aggregate growth.

Apart from investigating the magnitude of productivity components individually,
decomposition methods are frequently used to analyze which components, relative
to the other components, have been the driving forces behind aggregate productivity
growth over a given time span. As Table 1 highlights, such an analysis may be strongly
blurred by logs. This is especially visible in the years 2010 and 2011. Both for levels
and for logs, theWFE is the most relevant component for aggregate growth. However,
while levels clearly point toward the BFE as the next most relevant component, the
impact of exiting firms significantly exceeds that of the BFE when using logs.

Strikingly, there is no systematic overestimation or underestimation either in aggre-
gate growth or its decomposed components. This implies that trends in productivity
developments may be judged differently in logs than in levels. For instance, calculated
in levels, the aggregate growth in 2017 is more than double the aggregate growth in
2010. On the other hand, in logs, it increases by only about 43%. As a further example,
while aggregate growth in levels shows a slight increase between 2010 (1.83%) and
2014 (1.99%), logs suggest a slowdown in productivity growth from 2.47 to 1.83%.
With respect to individual productivity components, 2016 and 2017 provide a notable
example of the potential misconceptions. While the contributions of entering and exit-
ing firms are quite balanced with logs, the exit component clearly dominates with
levels, as it is approximately three times the size of the entry component.
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Table 1 Productivity decomposition results in levels and in logs

WFElev WFElog εW BFElev BFElog εB CFElev CFElog εC

2010 1.22 1.42 −0.21 0.83 0.82 0.01 −0.68 −0.65 −0.03

2011 2.29 2.27 0.02 0.92 0.76 0.16 −0.85 −0.74 −0.12

2012 3.07 2.84 0.23 0.66 0.79 −0.13 −0.52 −0.47 −0.05

2013 0.51 0.48 0.03 0.60 0.58 0.02 −0.41 −0.39 −0.03

2014 1.70 1.49 0.21 0.46 0.46 0.00 −0.45 −0.44 −0.01

2015 −1.44 −1.80 0.36 0.30 0.30 −0.01 −0.44 −0.42 −0.02

2016 4.21 3.93 0.28 0.24 0.25 −0.01 −0.79 −0.69 −0.11

2017 4.99 3.91 1.08 0.50 0.44 0.06 −0.63 −0.68 0.05

2018 1.79 1.92 −0.14 0.42 0.48 −0.06 −0.62 −0.69 0.07

Mean 2.04 1.83 0.21 0.55 0.54 0.00 −0.60 −0.57 −0.03

Nlev Nlog εN Xlev Xlog εX �̂lev �̂log εA

2010 −0.09 −0.25 0.16 0.55 1.12 −0.57 1.83 2.47 −0.64

2011 0.02 −0.15 0.18 0.65 1.01 −0.36 3.03 3.15 −0.12

2012 −0.67 −0.63 −0.04 −0.24 −0.19 −0.04 2.31 2.33 −0.03

2013 −0.27 −0.65 0.39 0.12 0.41 −0.29 0.54 0.43 0.12

2014 −0.23 −0.46 0.22 0.52 0.78 −0.27 1.99 1.83 0.16

2015 −0.07 −0.32 0.26 0.32 0.62 −0.30 −1.33 −1.61 0.28

2016 −0.13 −0.52 0.39 0.38 0.57 −0.18 3.91 3.53 0.37

2017 −0.07 −0.30 0.23 0.29 0.35 −0.06 5.07 3.72 1.36

2018 0.51 0.48 0.03 0.16 0.08 0.08 2.26 2.28 −0.02

Mean −0.11 −0.31 0.20 0.31 0.53 −0.22 2.18 2.01 0.16

Notes: The panel sets out the decomposition results and log distortions for the average manufacturing
industry. The productivity components are in %, the log distortions are in percentage points

4.3 Decomposition of the log distortions according to their sources

We now turn to the decomposition of the log-induced distortions according to the
three propositions formulated in Sections 2 and 3. This will help explain the observed
discrepancies in the total distortions described in the previous section. Table 2 illus-
trates the mean and the respective interval of each log distortion. To begin with, the
table shows that all three distortions, the log approximation error (Proposition 1), the
reference deviation (Proposition 2) and the mean deviation (Proposition 3), decisively
contribute to the discrepancy between levels and logs, albeit with variations across the
productivity components and aggregate growth.

Subsequently, we investigate all three propositions at the level of the individual
productivity components. At the end of this section, we shed light on the contribution
of the three propositions to the total log distortion for each of the five FHKproductivity
components and aggregate growth. The analysis will clarify the drivers of the three log
distortions to elucidate when and why a respective distortion is of particular relevance.
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Table 2 Decomposition of the log distortions

Log approximation error Reference deviation Mean deviation Total distortion
ε·,appr ε·,re f ε·,�mean ε·

WFE 2.75 −2.54 – 0.21

[2.29, 3.62] [−3.83, −1.79] [−0.21, 1.08]

BFE 0.14 −0.06 −0.07 0.00

[−0.23, 0.38] [−0.10, −0.03] [−0.26, 0.20] [−0.13, 0.16]

CFE −0.03 0.00 – −0.03

[−0.17, 0.05] [−0.13, 0.22] [−0.12, 0.07]

N 0.54 −0.02 −0.31 0.20

[0.36, 0.75] [−0.12, 0.01] [−0.64, −0.13] [−0.04, 0.39]

X −0.61 0.01 0.38 −0.22

[−1.06, −0.35] [−0.03, 0.06] [0.23, 0.74] [−0.57, 0.08]

�̂ 2.78 −2.61 0.00 0.16

[2.36, 3.34] [−3.97, −1.85] [0.00, 0.00] [−0.64, 1.36]

Notes: The table sets out the decomposed log distortions for the average manufacturing industry according
to the three propositions stated in Sections 2 and 3. For each productivity component, the first row represents
the mean while the second row depicts the interval, that is, the minimum andmaximum, of the annual values
for the respective distortion during the 2009–2018 period. Note that “·” is a placeholder for the notation
of the log distortions for each productivity component, as defined in Section 4.1. All log distortions are
reported in percentage points

However, it will become evident that, owing to the variety of influencing factors, a high
degree of uncertainty is prevalent with respect to the final impact of the propositions
on productivity growth.

4.3.1 Proposition 1: Log approximation error

In the aggregate, the log approximation error (Proposition 1) is consistently positive
with a mean of 2.78. With respect to its decomposition, Table 2 reveals that the main
driver of the distortion is the WFE, where the error term is consistently positive due
to the concave logarithmic function. It is particularly large in years with high firm-
level growth rates in absolute terms (see Section 3.1). The fact that its mean of 2.75
strongly exceeds the log approximation errors of the other productivity components
is unsurprising, given that the approximation error inherent in the WFE is weighted
with the input shares of all incumbent firms.

The approximation errors in the BFE and CFE are weighted by changes in input
shares, �si , which induce either positive or negative distortions at the firm level,
reducing the aggregate impact of the approximation error (see Sections 3.2 and 3.3).
This also implies that there is no discernible pattern in the distortions of the two
components.

With respect to entering and exiting firms, one can generally assume that their
input shares are small when compared to incumbents, which also explains their com-
paratively small aggregate approximation errors. Indeed, the investigation of the log
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approximation error on an annual basis in our dataset reveals a close relationship
between the shares of entering and exiting firms, respectively, and their aggregate log
approximation error. The annual changes in the share of entry and exit also explain
the fluctuations observed in the log approximation errors of entry and exit, as reflected
in the intervals (see Table 2). Despite these fluctuations, the two distortions are con-
sistently positive for entering and negative for exiting firms. Once again, this is a
consequence of the concavity of the logarithm (see Section 3.4).

In sum, the log approximation error in aggregate growth �̂ can generally be assumed
to be positive. The log approximation errors of entry and exit can be expected to
compensate each other to a certain extent, leaving the always positive and large log
approximation error in theWFE to dominate the aggregate. This theoretical derivation
is also confirmed by our empirical results, which do not report a single industry-year
combination with a negative log approximation error in aggregate growth. Still, the
possibility of a negative approximation error is theoretically possible, if an industry
experiences an enormous wave of exiting firms, combined with low entry activity and
an almost stagnant productivity development of incumbents. However, such a scenario
is highly unlikely, given that a wave of market withdrawals is likely to be caused by
strongly decreasing productivity levels of incumbents. This would induce a strongly
positive log approximation error in the WFE, which, in turn, would lead to a positive
approximation error in aggregate growth.

4.3.2 Proposition 2: Reference deviation

In our sample, the reference deviation (Proposition 2) in aggregate productivity growth
is consistently negative with a mean of −2.61. With respect to the composition of the
reference deviation across the productivity components, the dominance of the WFE
is even more pronounced than for the first proposition (see Table 2). A major reason
behind this observation is again the previously mentioned high aggregate input share
of incumbents (see Section 4.3.1). Another reason can be found in the mechanism
causing the reference deviation in the first place. As explained in Section 3.1, the ref-
erence deviation in theWFE emerges because logs use ϕi1 instead of �1 as reference.
Due to a typically high degree in firm-level productivity dispersion, even within nar-
rowly defined industries (Bartelsman et al. 2013), the discrepancy between ϕi1 and�1
can be substantial. Interestingly, the reference deviation in theWFE was consistently
negative. This is an artifact, as we cannot conclude the sign of the aggregate reference
deviation from our theoretical analysis in Section 3.1. In fact, only three out of the 108
industry-year combinations show a positive reference deviation. A possible explana-
tion is that firms with below-average productivity (ϕi1 < �1) tended to increase their
productivity, whereas firms with above-average productivity (ϕi1 > �1) tended to
decrease their productivity.8 Overall, this contributes to a negative reference deviation
in the WFE. Despite being a plausible explanation, note that it should be considered
only an indication because the exact reference deviation is ultimately determined by
the difference between the firm-level and the reference productivity as well as by

8 Between 2009 and 2018, 57% of firms with below-average productivity increased productivity, and 58%
of above-average firms decreased productivity (averages over all industries and years).
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the magnitude of each firm’s productivity growth and input share (see Section 3.1).
This variety of influencing factors also helps explain the large interval in the WFE’s
reference deviation.

We now turn to the reference deviation in the BFE, which is almost negligible com-
pared to theWFE. Recall from Section 3.2 that the reference deviation appears in the
BFE because the log difference entails the geometricmean�1 instead of the arithmetic
mean �1 as reference. Evidently, the gap between the two means will generally be
smaller than between ϕi1 and �1, as was the case for theWFE. Despite showing only
small annual deviations, the reference deviation in the BFE is consistently negative.
This confirms our theoretical analysis in Section 3.2, where we predict that a positive
BFE (see Table 1) will be subject to a negative reference deviation.

Compared to theWFE, the reference deviation in the CFE is substantially smaller.
This is because in theCFE the difference in the reference productivity is multiplied by
each firm’s change in input share�si , instead of si1. Because�si can be both positive
and negative, we observe a certain balancing effect when aggregating the firm-level
reference deviations to the industry level.

With respect to entry and exit, the reasoning behind the small reference deviations
is similar to the BFE. They appear because logs use �1 instead of �1 as reference.
Due to the high correlation between the twomeans combined with their comparatively
small input shares, the reference deviation does not yield large distortions in the entry
and exit component.

In sum, the reference deviation in aggregate productivity growth �̂ is almost exclu-
sively determined by the reference deviation in the WFE. Owing to a persistently
negative reference deviation in the WFE in our sample, it also persists in aggregate
productivity growth. It should be emphasized, however, that the sign of the reference
deviation in the WFE remains undetermined from a theoretical point of view, as we
argue in Section 3.1. Moreover, in our decomposition results in Appendix E, we can
report positive values for the reference deviation in the WFE and the aggregate.

4.3.3 Proposition 3: Mean deviation

By definition, the impact of the mean deviation (Proposition 3) on aggregate produc-
tivity growth �̂ is zero. Despite its irrelevance to aggregate productivity growth, it is
worth investigating the mean deviation because it makes a difference at the level of the
productivity components. In contrast to the first two propositions, the mean deviation
does not emerge in each component of the FHK decomposition, but only in the BFE
and the components of entering and exiting firms. As explained in Section 3, the pro-
ductivity contributions of these three components are measured against a benchmark
productivity, �1 in case of levels and �1 in case of logs.

We start with the mean deviation in the BFE. While the average mean deviation
is rather small, the interval at which the distortions range is comparatively large.
Recalling Section 3.2 that the difference between �1 and �1 is always positive, the
actual sign and magnitude of the mean deviation eventually depend on the change of
incumbent firms’ input shares relative to entering and exiting firms. In our sample, the
majority of mean deviations are negative across periods. Hence, the share of entering
firms exceeds that of exiting firms in most periods.
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The mean deviation in the entry component is consistently negative, and it is con-
sistently positive in the exit component. This finding is in line with our analysis in
Section 3.4. However, we see considerable fluctuations in both components’ mean
deviations, as reported in Table 2. The reasons behind these variations are two-fold:
first, high variations in input shares of entering and exiting firms, and second, annual
fluctuations in the difference between the arithmetic mean �1 and the geometric
mean �1.

In sum, the difference between the positive and negative mean deviations of exiting
and entering firms will always be compensated by the either positive or negative
distortion in the BFE, so that the mean deviation in aggregate productivity growth �̂

is consistently zero.

4.3.4 Interaction of Propositions 1–3: Total log distortion

In this section, we investigate the extent to which we can derive general statements
about the interaction of the three log distortions with respect to the total distortions in
the five FHK productivity components and aggregate productivity growth.

As the right column of Table 2 illustrates, the log distortions evoke a positive
tendency in the total distortions in the WFE (εW ) and the entry component (εN ) as
well as a negative tendency in the distortion of the exit component (εX ). The distortions
for the BFE (εB) and CFE (εC ) paint a rather balanced picture. Overall, this leads to
a positive tendency in the aggregate log distortion (εA). Nonetheless, looking at the
intervals of total distortions, we see that both positive and negative values are possible
in each productivity component as well as in the aggregate.

When comparing the impact of the three log distortions on the FHK components
and aggregate growth, our sample may lead to the conclusion that the log approxi-
mation error is the most relevant one, as it is the log distortion with the highest mean
in each component in Table 2. However, as shown in Section 4.2, severe misinter-
pretations in decomposition studies not only occur due to the mismeasurement of a
specific observation but also due to flawed comparisons across time and industries.
Such comparisons are particularly aggravated if the log distortion is subject to large
fluctuations. Hence, if one defines the relevance of log distortions not by their aver-
age magnitude but by their variation, the most relevant distortion for theWFE and for
aggregate productivity growth, for instance, would be the reference deviation due to its
large interval, whereas it would be the mean deviation for entering firms. In sum, in a
certain sample, determining the most relevant log distortion depends on the definition
of relevance, which, in turn, depends on the research purpose.

Overall, we emphasize that determining the most relevant log distortion essen-
tially depends on the sample used for conducting a decomposition exercise. Another
sample with a different development of firm-level productivity and input shares will
most likely generate different distortions. As there is no deterministic development
of these firm-specific values, it is impossible to make a general statement regarding
the log distortions. This stresses the gravity of our contribution to a greater extent,
as a researcher cannot know the magnitude and direction of the log distortions in
productivity decomposition in advance.
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4.4 Practical implications for productivity decompositions

The empirical findings of the previous sections have three major implications with
respect to productivity decomposition studies that measure firm-level productivity in
logs. First, the considerable log distortions and their unpredictable nature imply that the
magnitude and even the sign of aggregate productivity growth and productivity com-
ponents in log-based decomposition studies are unreliable. Second, the unsystematic
pattern of the log distortions implies that comparisons between log-based results over
time and across industries may be severely flawed. Third, policy implications based on
decomposition studies using logs may be subject to pitfalls. In other words, policies
that are or were proposed based on inaccurate evidence are likely to be inappropriate.

The solution we propose is straightforward: productivity decomposition should be
performed in levels instead of logs. Although theremay be several good reasons behind
using the logarithm, as mentioned in the introduction of this paper, we claim that the
potential pitfalls outweigh the advantages of using log linearization in productivity
decomposition exercises.

5 Fallacy in productivity decomposition

The previous section showed that log-based decompositions embody the fallacy in
decomposition – using logs may lead to either an inaccurate aggregate growth rate,
an inaccurate description of the contribution of the micro sources, or both. In this
section, we quantify this fallacy to provide a general idea of the accuracy of log-based
decompositions and the scope of the log-induced misinterpretations.

To simplify our investigation, we define three micro sources of economic growth
– firm learning, defined as the within-firm effect holding the input share constant and
allowing firm efficiency to vary (WFE in Eqs. 8 and 9); the resource reallocation effect,
resulting from changes in the input shares of firms (BC = BFE +CFE); and industry
churning, defined as the effect of entry into and exit from the market (N X = N + X ).

To quantify the fallacy in decomposition, we perform the FHK decomposition
using Eqs. (8) and (9), respectively, at the four-digit industry level for each year.
We then measure the overall log distortion εA and the log distortions in the individ-
ual productivity components, that is, in the within component εW , the reallocation
component εBC (εBC = ∑

i εi,B + ∑
i εi,C ), and the churning component εN X

(εN X = ∑
i εi,N + ∑

i εi,X ). Trimming the bottom and the top 1% of each of these
four log distortions yields 2805 observations.

We, in turn, infer the fallacy in decomposition by simply counting the frequency of
’inaccurate’ measurements, whichwe define as follows: first, with respect to aggregate
growth, we arbitrarily qualify a measurement as ’accurate’ if the aggregate growth in
logs does not differ from the aggregate growth in levels by more than ±α%, where
α represents the tolerance level below which the log measure is considered accurate:
|εA/�̂lev| ≤ α%. Second, we define the measurement of the contribution of com-
ponents as accurate if no log components’ contribution to aggregate growth in logs
deviates by more than ±α percentage points from the respective counterpart in levels.
That is: �θWFE ∧ �θBC ∧ �θNX ≤ α/100, where �θZ = |Zlev/�̂lev − Zlog/�̂log|
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The fallacy in productivity decomposition 817

Table 3 The fallacy in
decomposition – four-digit
industry level

Contribution of components

Aggregate growth Accurate Inaccurate

α = 5

Accurate 7.9 6.5

Inaccurate 23.7 61.9

α = 10

Accurate 21.6 6.6

Inaccurate 28.2 43.6

α = 20

Accurate 43.3 5.9

Inaccurate 24.8 26.0

Notes: N = 2805 Parameter α denotes the tolerance level that deter-
mines whether a measure is accurate or inaccurate. As for aggregate
growth, it represents the magnitude of the aggregate distortion (εA)
relative to the true growth rate (�̂lev). A log-based aggregate growth
rate is considered accurate when |εA/�̂lev | ≤ α%. The contribu-
tion of components is considered accurate if no log components’
contribution to aggregate growth in logs deviates by more than α per-
centage points from the respective level counterpart. That is:�θWFE∧
�θBC ∧ �θN X ≤ α/100, where �θZ = |Zlev/�̂lev − Zlog/�̂log |
and Z = {WFE; BC; N X}. The χ2 test reveals that the two events
’accuracy in aggregate growth using logs’ and ’accuracy of contribu-
tions using logs’ are related at 1% significance level, irrespective of
the tolerance level α. Numbers in the table are in % of industry-year
combinations, that is, of N = 2805

and Z = {WFE;BC;NX}. We counted the frequency of accurate and inaccurate mea-
surements of both aggregate growth and the contribution of the individual productivity
components and built a 2 × 2 table that presents the frequencies of the four possible
cases.9 Table 3 documents the results for three tolerance levels, namelyα = 5,α = 10,
and α = 20.

Starting with a low tolerance level, where α = 5, we observe that the log-based
decomposition exercise proves accurate for only 8% of the decomposition exercises.
In the majority of cases (62%), decomposition using logs yields an inaccurate aggre-
gate growth rate and inaccurate contributions of the three components. In almost one
out of four cases, log-based decomposition yields inaccurate aggregate growth rates
without affecting individual contributions. This result implies that, in these cases, the
overall mismeasurement in aggregate growth stems from a roughly equal mismea-
surement in all growth components. Only 6.5% of the decomposition exercises yield
inaccurate contributions with accurate aggregate growth rates. Altogether, at α = 5,
decompositions are inaccurate in more than nine out of ten cases.

Increasing the tolerance level α to 10 and 20 mechanically increases the number of
accurate decomposition exercises to 22 and 43%, respectively. However, this hardly

9 In Appendix F, we provide a more detailed explanation of the four possible cases.
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affects the ’inaccurate-accurate’ cases, vice versa, with still approximately three cases
in ten. Hence, increasing the tolerance level barely affects the fact that 30%of such log-
based decompositions produce inaccurate results. The second observation is that even
though an increase in the tolerance level increases the frequency of accurate results, a
substantial number of decompositions remains inaccurate – eight decompositions out
of ten for α = 10 and six out of ten for α = 20. Overall, the message from Table 3
is clear – log-based decompositions generally yield inaccurate results with accurate
decompositions as the exception, and not the rule.

6 Log distortions and industry characteristics

This section investigates the extent to which distortions caused by log-based produc-
tivity growth rates correlate with industry characteristics.We thereby provide evidence
regarding whether some industries are more exposed to log distortions than others.

We deployed industry characteristics often used in the literature as a candidate
explanation for the observed aggregate productivity growth. These comprehend export
intensity (ExpInt: industry sum of export divided by the industry sum of sales), profit
rate (PrRate: industry sum of profit divided by the industry sum of value-added),
investment rate (InvRate: industry sum of investment divided by the industry sum of
value-added), the number of firms in the four-digit industry (firm count FC, in logs),
mean firm size (MFS, in logs: industry sum of working hours divided by industry num-
ber of firms), and industry concentration as measured by the Herfindahl–Hirschman
Index (HHI) for market shares in sales. We do not have any particular prior on whether
and how these industry characteristics are associated with log distortions, and by no
means do we intend to depict causal relationships running from industry characteris-
tics to log distortions. This advocates the use of an ordinary least squares estimator
and the following model specification:

Yst = α + B′Xst + εst (15)

where Y = {εA, εW , εBC , εN X } and X includes the six industry characteristics men-
tioned above. Subscripts s and t stand for four-digit sector s at time t . Column vectorB
represents the parameter estimates, which, in this case, should be interpreted as mere
partial correlation coefficients.

The process of documenting how industry characteristics are associated with log
distortions is not as straightforward as it may initially seem. As log distortions can
be positive or negative, the sign of the parameter estimates in model (15) cannot
simply be interpreted as increasing or decreasing the distortion. To illustrate this point,
imagine that the distortion is positive (Y > 0), that is, that logs underestimate the
productivity component. Subsequently, a positive parameter estimate suggests that
the given industry characteristic is positively associated with log distortions. Instead,
imagine that the average distortion is negative. Then, a positive parameter implies that
the given industry characteristic moderates log distortions. To resolve this ambiguity,
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The fallacy in productivity decomposition 819

one could use the absolute value of distortions as the LHS variable. This, however,
excludes the possibility of an asymmetrical correlation, that is, that a given industry
characteristic only underestimates but does not overestimate aggregate growth and
vice versa. Therefore, we allowed the partial correlations to differ between a positive
(Y > 0) and a negative log distortion (Y < 0) and ranmodel (15) on the two respective
subsamples.

Furthermore, we built our two subsamples exclusively on whether εA is positive or
negative. In our data, the overall number of observations is 2805, of which 1619 pertain
to an underestimation of aggregate productivity growth (εA > 0), and 1186 pertain to
an overestimation of aggregate productivity growth (εA < 0). We then regressed εA,
εW , εBC and εN X , as defined in Section 5, sequentially on the vector of explanatory
variables X. As εA = εW + εBC + εN X , the reported parameter estimates pertaining
to the dependent variables εW , εBC and εN X all sum to the estimate pertaining to εA:
β̂εA = β̂εW + β̂εBC + β̂εN X . This method allows us to depict where the sources of the
overall log distortion stem from andwhether this affects the respective contributions.10

The left (right) panel of Table 4 displays the results for underestimated (overes-
timated) aggregate growth rates. Focusing first on the left panel and starting with
export intensity, we observe that sectors more committed to international trade are
associated with larger log-induced underestimations (β̂εA>0

εA,ExpInt = 0.615). This
result mainly stems from a significant underestimation of the within component
(β̂εA>0

εW ,ExpInt = 0.872), though partially compensated by amoderating churning coeffi-

cient (β̂εA>0
εN X ,ExpInt = −0.310). This result implies that the contribution of firm learning

is systematically underestimated in more open industries. Looking at the right panel,
we find no significant overestimation issue for more open industries, except for the
within component (β̂εA<0

εW ,ExpInt = 0.395). Altogether, industry openness is associated
with a systematic underestimation of aggregate growth and affects the contributions
of the micro sources of growth.

Turning to the profit rate, we observe a similar pattern – industries with higher profit
rates are associated with a larger log-induced underestimation (β̂εA>0

εA,Pr Rate = 0.912),
whereas there is no significant association with an overall log-induced overestimation.
In the former case, the distortions essentially stem from an underestimation of the
reallocation component (β̂εA>0

εBC ,Pr Rate = 0.500). In the latter case, where no significant
association between profit rate and a log-induced overestimation can be identified, the
distortion is caused by a positive association of the within component (β̂εA<0

εBC ,Pr Rate =
0.651), which is compensated by the negative association of the churning coefficient
(β̂εA<0

εN X ,Pr Rate = −0.726).
Industry concentration is a characteristic that always exacerbates log distortions

by increasing both underestimations and overestimations (β̂εA>0
εA,HH I = 3.306 and

β̂
εA<0
εA,HH I = 1.785). Such distortions spread across all components, except for the

reallocation and the net entry distortion component in the case of overestimation. This

10 This also implies that the interpretation of whether the respective industry characteristic exacerbates or
reduces log distortions applies to εA exclusively.
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is a clear indication that highly concentrated industries are prone to distortions when
decomposing aggregate productivity growth based on log-transformed measures of
efficiency. This not only affects the estimated productivity growth but also casts doubt
on the relevance of the contribution of each component.

With respect to the investment rate, industries with a high investment rate appear not
to correlate with log distortions (apart from a negligible but still significant, distortion-
reducing firm learning effect in the case of overestimation), neither with regard to the
aggregate growth rate nor with any of the respective contributions of the micro sources
of growth.

The two key variables that significantly reduce log distortions are the number of
firms and the average size of firms. Regarding firm count, the within (εN X ) and the
churning (εW ) components reduce distortions. For the reallocation component, a high
number of firms is associated with a larger underestimation (β̂εA>0

εBC ,FC = 0.026). If
competition becomes more intense with an increasing number of firms in an industry,
then profit rates, market shares, and price–cost margins should decline. This, in turn, is
likely to translate into a less right-skewed distribution of sales and size, weakening the
position of dominant firms. With respect to average firm size, the churning component
decreases distortions, supported by a distortion-reducing firm-learning component.
Our interpretation is that a higher mean firm size is a proxy for entry barriers. In turn,
fewer movements in firm entry and exit reduce distortions due to industry churning.

Overall, the results unambiguously show that industries with a low degree of com-
petition, as measured by industry concentration or profit rate, as well as industries with
a high openness to international trade, proxied by export intensity, are associated with
higher log distortions. Accordingly, more competitive industries are associated with
lower log distortions. With this in mind, the validity of decomposition studies with
log-based productivity growth rates, which examine the role of industry characteris-
tics in productivity growth, must be put into perspective as the use of log-transformed
productivity components will inevitably induce severe endogeneity problems in infer-
ential regression analyses.

7 Conclusion

The use of logs in productivity decomposition induces fallacious conclusions – using
logsmay lead to either inaccurate aggregate productivity growth, an inaccurate descrip-
tion of the contribution of the productivity components, or both. As we show, this
fallacy is caused due to three log distortions: (i) the log approximation error, as a
consequence of the logarithm’s concavity; (ii) the reference deviation, arising from a
different reference assumption implicit in log differences; and (iii), themean deviation,
caused by the difference in the deployed benchmark productivity.

Leveraging the FHK decomposition method, we calculated the respective distor-
tions analytically and showed their magnitude empirically using firm-level data of
the French manufacturing sector during 2009–2018. The results suggest that the use
of logs can lead to substantial misconceptions regarding productivity developments.
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822 S. Bruhn et al.

Log-induced distortions appear to be unsystematic, which implies that each productiv-
ity component as well as aggregate productivity growth may be either overestimated
or underestimated. This impairs the comparison between log and level results as well
as the comparison between log results themselves. Overall, our empirical exercise
suggests that logs tend to underestimate the growth contribution of the WFE and the
entry component, while overestimating the contribution of the exit component. Con-
versely, the BFE and CFE appear to be less affected by the use of logs. In sum, these
tendencies result in a log-induced underestimation of aggregate productivity growth.

Performing decompositions at a fine-grained industry level has allowed us to quan-
tify this fallacy in log-based decompositions. As the results show, evenwith reasonably
high levels of tolerance, the odds that a log-based decomposition will yield misleading
results are high.With a simple study on the association of industry characteristics with
log distortions, we further show that the magnitude of log distortions is substantial for
inferential productivity analyses. The results unambiguously show that industries with
a low level of competition are associated with higher log distortions. We, therefore,
conclude that the use of log-based growth rates in productivity decomposition studies
should be avoided.
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Appendix A: Literature overview

Table 5 Application of levels and logs as a labor productivity measure in past decomposition studies

Contribution Method Data Levels/Logs

Griliches and Regev (1995) GR Israel Central Bureau of
Statistics (CBS) -
Industrial Surveys

Levels

Baily et al. (1996) BHC (modified) US Census -
Manufacturing Sector

Levels

Davis and Haltiwanger (1999) FHK US Census - Manufacturing Sector Logs

Baily et al. (2001) GR (modified) US Census - Annual Survey of
Manufactures of the Longitudinal
Research Database

Levels

Foster et al. (2001) FHK US Census - Manufacturing and
Services Sector

Logs

Scarpetta et al. (2002) GR, FHK Firm-level data from ten OECD
countries: United States, Germany,
France, Italy, United Kingdom,
Canada, Denmark, Finland,
Netherlands, and Portugal

Logs

Bernard et al. (2003) FHK Simulated data - Based on
parameters from US Manufacturing

Levels

Disney et al. (2003) BHC, GR, FHK UK Census of Production - Annual
Census of Production Respondents
Database

Logs

Van Biesebroeck (2003) BHC (modified) US - Automobile Assembly Plants
and Longitudinal Research
Database

Logs

Bartelsman et al. (2004) GR, FHK Firm-level data from 24 countries Logs

Van Biesebroeck (2005) BHC (modified) Firm-level data from nine African
countries: Based on surveys in the
Manufacturing Sector

Logs

Foster et al. (2006) FHK US Census - Census of Retail Trade Logs

Hakkala (2006) GR, FHK Statistics Sweden - Sample
Manufacturing Sector

Levels

Lentz and Mortensen (2008) FHK Danish Business Statistics Register -
Annual panel of privately owned
firms

Levels

Bartelsman et al. (2009) GR, FHK Firm-level data from 14 countries:
Estonia, Hungary, Latvia,
Romania, Slovenia, Argentina,
Brazil, Chile, Colombia, Mexico,
Venezuela, Indonesia, South Korea,
and Taiwan [China]

Logs

Haskel and Sadun (2009) FHK UK Annual Respondents Database
(ARD) - Retail Sector

Logs

Maliranta and Määttänen (2015) OP (augmented) Statistics Finland - Structural
Business Statistics Data

Logs
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Table 5 continued

Contribution Method Data Levels/Logs

Melitz and Polanec (2015) DOPD Slovenian AJPES - Slovenian
Manufacturing Sector

Logs, (Levels)

Decker et al. (2017) DOPD, FHK US Census - Revenue-enhanced
Longitudinal Business Database
(ReLBD)

Logs

Acemoglu et al. (2018) FHK US Census - Manufacturing Sector Levels

Alon et al. (2018) DOPD US Census - Revenue-enhanced
Longitudinal Business Database
(ReLBD)

Logs

Brown et al. (2018) DOPD Mexico - Annual Industrial Survey
(EIA); Columbia - Manufacturing
Survey (EAM); Chile - National
Annual Manufacturing Survey
(ENIA); Peru - Annual Economic
Survey (EEA)

Levels, (Logs)

Dias and Marques (2021b) DOPD/FHK (modified) Statistics Portugal - Portuguese
nonfinancial firms

Logs

Notes: This table provides an overview of recent decomposition literature and documents the measure
deployed for representing firm-level productivity (levels and/or logs). BHC: Baily, Hulten and Campbell
(1992), GR: Griliches and Regev (1995), FHK: Foster, Haltiwanger and Krizan (2001), DOPD: ’Dynamic
Olley-Pakes Decomposition’ by Melitz and Polanec (2015); ’Levels’ and ’Logs’ in parentheses means that
some results were reported in these measures as a supplement to the mainly applied measure

Appendix B: Generalization of log distortions

Here, we show the validity of our propositions regarding the distortions induced by
logs when computing aggregate productivity growth rates in a more generalized form.
In the main text, we focused on the FHK decomposition method and showed how the
use of logs induces three types of distortions which we formalized in three propo-
sitions. Proposition (1) depicts the log approximation error as a consequence of the
logarithm’s concavity. In Proposition (2), we explain that logs induce a reference
deviation, arising from the difference in the reference productivity deployed by lev-
els and logs, respectively. Proposition (3) captures the mean deviation, caused by the
discrepancy in the deployed benchmark productivity.

In the following, we do not decompose productivity growth and abstract from
within-, between- or cross-firm effects as well as from entry and exit components.
Consequently, the findings are independent of a specific decomposition method and
can be applied more generally to productivity growth computations.

To start with, this more general approach entails an important change regarding the
separation of log-induced distortions according to the aforementioned propositions.
As we are not decomposing growth contributions, the requirement for a benchmark
productivity no longer applies. This implies that the mean deviation (Proposition 3)
will have no impact on this aggregate perspective – a finding which is also in line
with our statements in Section 3, where we introduce the mean deviation as our third
proposition.Moreover, dropping the benchmarkproductivitywill also affect the impact
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The fallacy in productivity decomposition 825

of the two distortions depicted by Propositions (1) and (2), because their manifestation
in the FHK components takes the existence of the two different means for levels and
logs, respectively, into account.

To reveal the manifestation of the two remaining log distortions of Propositions (1)
and (2) in a more general manner, we concentrate on the contribution of a single firm
i to the aggregate productivity growth rate, as we have done in the main text:

Ci,lev = (si2ϕi2 − si1ϕi1) · �−1
1 (B1)

Ci,log = si2 ln ϕi2 − si1 ln ϕi1 (B2)

The difference in the contribution between levels (Eq. B1) and logs (Eq. B2) will
only be zero, if the log distortions, that is, the log approximation error and the reference
deviation, are simultaneously nil. Obviously,�Ci �= 0 will be the most common case.
Calculating this difference yields:

�Ci = (si2ϕi2 − si1ϕi1) · �−1
1 − (si2 ln ϕi2 − si1 ln ϕi1) (B3)

As the use of logs only affects the productivity measure but not input shares, we
rewrite Eq. (B3) by separating the productivity contribution caused by changes in
shares and changes in productivity:

�Ci = si1

(�ϕi

�1
− � ln ϕi

)

+ �si

(�ϕi

�1
− � ln ϕi

)

+ �si

(
ϕi1

�1
− ln ϕi1

)

(B4)

Using Eq. (B4), we can now separate the total difference according to the two distor-
tions depicted by Propositions (1) and (2) in the main text, namely the approximation
error and the reference deviation, as follows:

�Ci = (si1 + �si )

(
T1

︷ ︸︸ ︷
�ϕi

ϕi1
− � ln ϕi

)

+ �si (

T2
︷ ︸︸ ︷
1 − ln ϕi1)

︸ ︷︷ ︸
εi,appr

+ (si1�ϕi + �si�ϕi + ϕi1�si )
(
�−1

1 − ϕ−1
i1

)

︸ ︷︷ ︸
εi,re f

(B5)

The log approximation error (εi,appr ) contains the difference between values in
levels and their logged counterparts. The reference deviation (εi,re f ) contains the
distortion caused by the difference in the respective reference productivity, which is
ϕi1 as the implicit reference productivity of a log difference, and �1, as the actual
reference productivity of levels.

Note that the log approximation error arises from two terms. The first term (T1)
captures the log approximation of the contribution of a firm-level productivity increase
to aggregate productivity growth. The second term (T2) depicts the fact that, even if
firm-level productivity is constant, logs approximate the contribution of a change in
firm-level input shares to aggregate productivity growth. To illustrate the derivation of
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this second term, we compare Eqs. (B1) and (B2) under the assumption of a constant
productivity level over time (ϕi1 = ϕi2). Moreover, we take the reference deviation
substantiated in Proposition (2) into account, that is, we assume that levels had the
same implicit reference ϕi1 instead of �1. Then, a change in share weight �si will
only be equal in levels ((si2 · ϕi1 − si1 · ϕi1) · ϕ−1

i1 ) and logs (si2 · ln ϕi1 − si1 · ln ϕi1)
if ln ϕi1 = ϕi1/ϕi1 = 1. From this, it follows that any deviation of ϕi1 from the
logarithm’s base will create a distortion induced by the log approximation error if the
respective firm changes its input share.

Conclusively,Eq. (B5) comprises the two logdistortions pointedout byPropositions
(1) and (2), and thereby accounts for the total discrepancy between levels and logs.

Appendix C: Industry classification

Table 6 A38 and ISIC industry classification in manufacturing

A38 ISIC Description

CA 10-12 Manufacture of food products, beverages, and tobacco products

CB 13-15 Manufacture of textiles, wearing apparel, leather, and related products

CC 16-18 Manufacture of wood and paper products; printing and reproduction of recorded
media

CD 19 Manufacture of coke and refined petroleum products

CE 20 Manufacture of chemicals and chemical products

CF 21 Manufacture of basic pharmaceutical products and pharmaceutical preparations

CG 22-23 Manufacture of rubber and plastics products, and other non-metallic mineral
products

CH 24-25 Manufacture of basic metals and fabricated metal products, except machinery and
equipment

CI 26 Manufacture of computer, electronic, and optical products

CJ 27 Manufacture of electrical equipment

CK 28 Manufacture of machinery and equipment n.e.c

CL 29-30 Manufacture of transport equipment

CM 31-33 Other manufacturing; repair and installation of machinery and equipment

Notes: The table sets out the intermediate SNA/ISIC aggregation A38, which aggregates similar ISIC two-
digit divisions to 13 different categories. It is the industry classification deployed in the main text, excluding
the industry of coke and refined petroleum products (ISIC 19)
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Appendix D: Summary statistics

Table 7 Summary statistics for French manufacturing 2009-2018

Obs Mean Sd Min Med Max

All manufacturing

Value-Added 260,674 5,951,312 4, 81 · 107 1,405.84 1,309,477 6, 04 · 109
Employees (FTE) 260,674 77.14 519.53 5 23 68326.5

Working Hours 260,674 117,363 791,967.40 7,177.97 35,211 1, 04 · 108
Value-Added/Working Hours 260,674 40.64 20.44 0.09 36.30 724.62

Manufacturing of chemicals and chemical products (ISIC 20)

Value-Added 8,252 1, 47 · 107 4, 42 · 107 65,269.38 3,302,234 8, 96 · 108
Employees (FTE) 8,252 139.16 422.65 5 40 8447.5

Working Hours 8,252 208,831.10 634,371 7,455.88 59,790.08 1, 26 · 107
Value-Added/Working Hours 8,252 61.01 38.49 2.89 52.35 486.37

Notes: The numbers for ’All manufacturing’ include firms of all manufacturing industries with the exception
of the coke and refined petroleum products industry (ISIC 19). The number of employees is documented
in the form of full-time equivalents (FTE). The statistics are reported for the cleaned sample. Value-Added
is reported in deflated e

Appendix E: Log distortions in individual industries

In this appendix,we report log distortionswithin individual industries, as opposed to
the average industry values thatwe investigated in themain text. To this end,we applied
Eqs. (8) and (9) to eachof the 12 industries listed inTable 6.We subsequently calculated
the log-induced discrepancy, resulting in 108 industry-year observations. We treated
the large quantity of results by reporting percentiles in Table 8. Subsequently, we
present detailed results for manufacturers of chemicals and chemical products (ISIC
20). Over the 2009–2018 period, this industry shows a high frequency of log-induced
sign flips in aggregate growth and its components, which highlights the potential
misconceptions induced by logs in productivity decomposition.

Table 8 Log distortions in individual industries

Min p10 p25 Med p75 p90 Max

εW −1.84 −0.78 −0.29 0.24 0.66 1.46 3.80

εB −0.56 −0.17 −0.07 −0.01 0.08 0.15 0.77

εC −0.85 −0.23 −0.09 −0.03 0.03 0.10 0.49

εN −1.30 0.02 0.08 0.16 0.32 0.52 1.22

εX −2.94 −0.73 −0.36 −0.20 −0.10 −0.04 1.44

εA −3.36 −1.15 −0.43 0.09 0.72 1.34 4.56

Notes: N = 108. The table sets out the distribution of the annual log distortions occurring in the decompo-
sition exercises conducted for the 12 industries in our sample in the period 2009-2018. For each component,
the number of industry-year combinations is N = 108. The reported values for the log distortions are in
percentage points; p(·) reflect percentiles
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As shown in Table 8, most distortions are restricted within the range of approxi-
mately ±1 percentage point, even though it is possible that log distortions reach or
even exceed values of 3 percentage points. Analogous to our previous findings, the
BFE and CFE are, in absolute terms, less affected by log distortions. Nonetheless,
even these two components can be subject to considerable distortions, exceeding our
observations for the average industry. Moreover, for the 108 industry-year combina-
tions within our sample, we identified 25 combinations with a sign flip either in at least
one of the five components or in aggregate productivity growth. This result implies
that almost one out of four industry-year combinations is affected by a sign flip, which
underlines the potential impact of log distortions on individual industries.

Comparing the distortions between different industries, we detect that some indus-
tries are strongly affected by logs, whereas others are less affected. This means that
when performing a decomposition exercise for an individual industry, the results are
not necessarily strongly distorted by logs. The observed differences between industries
raise the question of whether there is a systematic pattern or certain characteristics
that make an industry more or less prone to log distortions. We provided evidence
regarding such relationships in Section 6.

We now turn to the decomposition results for manufacturers of chemicals and
chemical products (see Table 9). The summary statistics for the chemicals industry
are reported in Appendix D in Table 7. Overall, the results are in line with our findings
regarding the average industry. However, the magnitude and fluctuations of the distor-
tions exceed those for the average industry. The distortions in aggregate productivity
growth range from −2.07 to 3.96 percentage points. In relative terms, the distortion
varies between −69% (2012) and 143% (2017). These distortions are mostly driven
by the large deviations in theWFE,which range from−47% in 2012 to 191% in 2017.
In the BFE, the span of distortions reaches from −94% in 2017 to 71% in 2011. For
the CFE, the largest overestimation amounts to −81% in 2010, whereas the underes-
timation is the strongest in 2017, with 28%. Once again, the relative distortions are
most pronounced in the entry and exit components. In the case of the entry component,
the discrepancy is always positive, ranging from 21% in 2011 to 434% in 2018. The
distortion in the exit component is consistently negative, ranging from −1122% in
2017 to −8% in 2011.

It is obvious that the combination of the magnitude and volatility of these log
distortions can lead to severe misconceptions concerning productivity growth. This is
especially evident in the prevalence of signflips in aggregate productivity growth (2011
and 2017), the WFE (2017) and the exit component (2013 and 2017), as reported in
Table 9. A look at the BFE reveals a further example of a misconception. Considering
the development of the BFE between 2011 and 2012, logs create the impression that
the BFE has almost doubled between 2011 and 2012, whereas the results in levels
show that it has actually decreased.

The described high fluctuations are also reflected in the large ranges of the log
distortions in all components, especially in the WFE, BFE, CFE, and aggregate pro-
ductivity growth (see Table 10). Despite the volatility in distortions, we again detect an
average positive distortion in theWFE (εW ), the entry component (εN ), and aggregate
growth (εA), whereas the average distortion in the exit component (εX ) is negative.
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Table 9 Productivity decomposition results in levels and in logs in the chemical industry

WFElev WFElog εW BFElev BFElog εB CFElev CFElog εC

2010 −4.16 −3.53 −0.63 −0.09 −0.13 0.04 −0.36 −0.07 −0.29

2011 −1.76 −1.97 0.21 0.69 0.20 0.49 −0.89 −0.67 −0.22

2012 0.77 1.14 −0.36 0.47 0.37 0.11 −0.43 −0.27 −0.16

2013 7.94 8.62 −0.68 0.80 0.69 0.12 −0.84 −0.63 −0.21

2014 −2.53 −3.00 0.47 0.35 0.46 −0.11 −0.80 −1.01 0.21

2015 −5.10 −8.91 3.80 1.12 1.24 −0.12 −1.59 −1.73 0.14

2016 15.05 16.89 −1.84 1.45 1.48 −0.03 −2.21 −2.27 0.06

2017 1.38 −1.26 2.63 −0.23 −0.01 −0.21 −0.12 −0.16 0.03

2018 5.03 5.84 −0.81 0.51 0.48 0.03 −0.76 −0.71 −0.05

Mean 1.85 1.54 0.31 0.57 0.53 0.04 −0.89 −0.84 −0.05

Nlev Nlog εN Xlev Xlog εX �̂lev �̂log εA

2010 1.41 1.03 0.38 −1.00 −0.26 −0.73 −4.20 −2.97 −1.23

2011 2.29 1.81 0.48 0.38 0.41 −0.03 0.71 −0.22 0.94

2012 −0.29 −0.39 0.10 0.52 0.93 −0.41 1.05 1.77 −0.72

2013 −0.12 −0.29 0.17 −0.08 0.05 −0.13 7.71 8.44 −0.74

2014 −0.14 −0.33 0.19 −0.37 −0.20 −0.16 −3.49 −4.08 0.59

2015 −0.42 −0.65 0.23 0.25 0.34 −0.09 −5.75 −9.70 3.96

2016 −0.16 −0.24 0.08 −0.54 −0.20 −0.34 13.59 15.66 −2.07

2017 0.88 0.42 0.46 −0.02 0.20 −0.22 1.89 −0.81 2.70

2018 −0.09 −0.50 0.41 −0.49 −0.31 −0.18 4.20 4.80 −0.60

Mean 0.37 0.09 0.28 −0.15 0.11 −0.26 1.75 1.43 0.31

Notes: The panel sets out the decomposition results and log distortions for the industry of ’Chemicals and
chemical products’ (ISIC 20). The productivity components are in %, the log distortions are in percentage
points

The occurrence of positive values in the reference deviation of the WFE (εW ,re f ) in
the results for the chemicals industry in Table 10 is most striking. Recall that the
reference deviation exhibits a strong negative tendency in our sample, for which we
offered the opposite direction of the development of below and above-average pro-
ductivity firms as a possible explanation. In the chemicals industry, we detect positive
values for the reference deviation in the years 2015 (0.76) and 2017 (0.064). Again,
the development of firms with below and above-average productivity may provide one
possible explanation for the reference deviation in those two years. As both below and
above-average firms mostly decrease their productivity in 2015 and 2017, the negative
reference deviation of the first group seems to be compensated by the positive refer-
ence deviation of the second group, yielding an overall positive reference deviation.11

11 Of firms with an initial productivity above the mean (ϕi1 > �1), 64% (2015) and 61% (2017) decrease
their productivity. Of below-average firms (ϕi1 < �1), 61% and 55%, respectively, decrease their produc-
tivity.
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Table 10 Decomposition of the log distortions in the chemical industry

Log approximation error Reference deviation Mean deviation Total distortion
ε·,appr ε·,re f ε·,�mean ε·

WFE 3.41 −3.10 – 0.31

[2.11, 6.05] [−7.89, 0.76] [−1.84, 3.80]

BFE 0.25 −0.08 −0.14 0.04

[−0.13, 1.08] [−0.23, 0.01] [−0.47, 0.09] [−0.21, 0.49]

CFE −0.08 0.03 – −0.05

[−1.25, 0.29] [−0.40, 1.31] [−0.29, 0.21]

N 0.61 −0.07 −0.26 0.28

[0.25, 1.16] [−0.28, 0.02] [−0.49, −0.08] [0.08, 0.48]

X −0.72 0.07 0.39 −0.26

[−1.50, −0.18] [−0.01, 0.19] [0.10, 0.86] [−0.73, −0.03]

�̂ 3.47 −3.16 0.00 0.31

[2.69, 4.61] [−6.69, 0.52] [0.00, 0.00] [−2.07, 3.96]

Notes: The table sets out the decomposed log distortions for the industry of ’Chemicals and chemical
products’ (ISIC 20) according to the three propositions stated in Sections 2 and 3. For each productivity
component, the first row represents the mean while the second row depicts the interval of the annual values
for the respective distortion during the 2009-2018 period. Note that “·” is a placeholder for the notation
of the log distortions for each productivity component, as defined in Section 4.1. All log distortions are
reported in percentage points

Hence, by revealing how log distortions are driven by the idiosyncratic development
of firms and industries, the chemicals industry offers an instructive example of the
difficulty in predicting the impact of log distortions.

Appendix F: Decomposition fallacy: Four hypothetical cases

In Section 5, we quantified the fallacy in productivity decomposition, which we infer
by counting the frequency of the different types of log-induced mismeasurements.
Table 11 illustrates these types of mismeasurement. It is based on the assumption that
the correct decomposition exercise is performed using levels according to Eq. (8), as
opposed to using logs according to Eq. (9).

In Table 11, case 1 describes the situation when the log-based decomposition pro-
duces the same results as those obtained from the level-based decomposition. In case 2,
using logs leads to an overestimation of aggregate growth (6 versus 4%), while leaving
the relative contribution of each component unaffected. In case 3, log-based decom-
position generates inaccurate relative contributions (for example, 25 versus 50% for
theWFE component) while leaving aggregate growth unaffected. Case 4 is the worst-
case scenario when both types of mismeasurement apply. Cases 2 to 4 all represent
the fallacy in decomposition when using logs. All imply an incorrect representation
of the sources of aggregate productivity growth.

123



The fallacy in productivity decomposition 831

Table 11 Decomposition fallacy: Four hypothetical cases

�̂ WFE BC NX

Results using level-based decomposition

Correct values 4 2 1.5 0.5

100 50 37.5 12.5

Possible cases using log-based decomposition

Case 1: No error 4 2 1.5 0.5

100 50 37.5 12.5

Case 2: Error in aggregate growth 6 3 2.25 0.75

100 50 37.5 12.5

Case 3: Error in contributions 4 1 2 1

100 25 50 25

Case 4: Both types of errors 6 1.5 3 1.5

100 25 50 25

Notes: Figures in italics represent the respective contributions of the within-firm effect (WFE), the reallo-
cation effect (BC), and the net-entry effect (NX) in % of aggregate growth (�̂) as defined in Section 5

Appendix G: Log distortions in related decompositionmethods

The aim of this section is to show that the general patterns we have identified for the
FHK decomposition also hold true for the related methods proposed by Griliches and
Regev (1995) (GR) and Melitz and Polanec (2015) (DOPD: ’Dynamic Olley-Pakes
Decomposition’), which represent two commonly used alternatives. In addition to the
similarities, we will note important differences in the DOPD method.

Like the FHKmethod, the method proposed byGriliches and Regev (1995) is a lon-
gitudinal approach. The GR method decomposes productivity using average weights.
For simplicity, we express the decomposition in a somewhat ‘neutral’ form, not
differentiating between levels and logs in the denotation, as done, for instance, by
Baily et al. (2001).

�̂GR =
∑

i∈S
si · �ϕi︸ ︷︷ ︸
WFEi

+
∑

i∈S
�si · (ϕi − �)
︸ ︷︷ ︸

BFEi

+
∑

i∈N
si2 · (ϕi2 − �)
︸ ︷︷ ︸

Ni

+
∑

i∈X
si1 · (� − ϕi1)︸ ︷︷ ︸

Xi

(G1)

As with the FHK method, when using levels, the decomposition formula above
would require a reference productivity for calculating growth rates. As Griliches and
Regev use average weights, the choice of � may be the most intuitive one in this case
(VanBiesebroeck, 2008).However, in linewith the approach ofBaily et al. (2001),who
deployed a modified version of the GRmethod, we use�1 as a reference productivity.
This method also facilitates a comparison between our results for the GR and the
FHK method. By using the averages of firm-level productivity ϕi and input shares
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si , there is no interaction term or cross-firm effect, as in the FHK method. A further
important difference from the FHK method is the choice of benchmark productivity,
which measures the impact of input share reallocations and entering and exiting firms.
Instead of the initial aggregate productivity �1, the GR method deploys �, that is, the
average between the aggregates in the starting and ending period.

The log distortions for the weighted average industry for the 2009–2018 period are
shown in Table 12. The results are similar to those presented for the FHK method.
The distortions in aggregate productivity growth range from−0.64 to 1.36 percentage
points and are mostly driven by the distortions in theWFE. The exit and entry compo-
nents also show considerable absolute distortions, whereas the BFE is less affected.
Analogous to the results for the FHKmethod, on average, logs underestimate theWFE
and the entry component, but they overestimate the exit component. The BFE shows
a minor negative tendency. Taken together, this induces, on average, a positive log
distortion in aggregate productivity growth.

The decomposition method proposed by Melitz and Polanec (2015) is based on
the cross-sectional approach proposed by Olley and Pakes (1996). Instead of tracking
individual firms over time, the DOPD method decomposes aggregate productivity in
two different periods and, in turn, contrasts the individual components. Apart from
the entry and exit components, they decompose the contribution of incumbents into a

Table 12 Decomposition of the
log distortions in the GR
decomposition

εW εB εX εN εA

2010 −0.22 0.00 −0.59 0.17 −0.64

2011 −0.04 0.11 −0.36 0.17 −0.12

2012 0.21 −0.15 −0.03 −0.06 −0.03

2013 0.02 0.01 −0.29 0.38 0.12

2014 0.21 −0.01 −0.26 0.22 0.16

2015 0.35 −0.01 −0.30 0.25 0.28

2016 0.23 −0.06 −0.18 0.38 0.37

2017 1.10 0.01 0.02 0.22 1.36

2018 −0.10 −0.05 0.07 0.06 −0.02

Mean 0.19 −0.02 −0.21 0.20 0.16

SD 0.39 0.07 0.21 0.14 0.53

Median 0.21 −0.01 −0.26 0.22 0.12

Notes: The table sets out the annual decomposed log distortions dur-
ing the 2009–2018 period for the entire manufacturing sector, using
the decomposition method by Griliches and Regev (1995) (GR). The
results are based on the annual averages of the industry-level results
for the 12 industries in our sample. As industry weights, we used labor
input in the form of hours worked, averaged over the beginning and
ending years of the period in which the respective growth rate was
measured. All reported values for the log distortions are in percentage
points
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Table 13 Decomposition of the
log distortions in the DOPD
decomposition

εW εB εX εN εA

2010 −0.42 −0.03 −0.62 0.20 −0.87

2011 −0.22 0.10 −0.40 0.19 −0.33

2012 −0.02 −0.05 0.01 −0.19 −0.25

2013 0.08 −0.15 −0.29 0.39 0.02

2014 −0.01 0.08 −0.29 0.23 0.01

2015 0.27 0.03 −0.32 0.25 0.22

2016 0.63 −0.62 −0.19 0.39 0.21

2017 0.73 0.23 −0.05 0.22 1.14

2018 0.33 −0.62 0.11 0.04 −0.14

Mean 0.15 −0.11 −0.23 0.19 0.00

SD 0.38 0.31 0.22 0.18 0.54

Median 0.08 −0.03 −0.29 0.22 0.01

Notes: The table sets out the annual decomposed log distortions during
the 2009–2018 period for the entire manufacturing sector, using the
decomposition method by Melitz and Polanec (2015) (DOPD). The
results are based on the annual averages of the industry-level results
for the 12 industries in our sample. As industry weights, we used labor
input in the form of hours worked, averaged over the beginning and
ending years of the period in which the respective growth rate was
measured. All reported values for the log distortions are in percentage
points

within-firm and a between-firm effect.

�̂DOPD = �ϕS︸︷︷︸
WFE

+�covS(ϕi t , sit )︸ ︷︷ ︸
BFE

+ sN2 · (�N2 − �S2)︸ ︷︷ ︸
N

+ sX1 · (�S1 − �X1)︸ ︷︷ ︸
X

(G2)

In the DOPD decomposition, the WFE is represented by the development of the
unweighted average of firm-level productivity in survivingfirms. TheBFE is expressed
by the change in the covariance between the firm-level productivity of incumbents and
their input shares. The last two terms represent the contribution of entering and exiting
firms relative to the aggregate productivity of surviving firms at a certain point in time.

When representing firm-level productivity in logs, Eq. (G2) can simply be used
in the above form. For levels, however, it requires a slight modification to ensure
scale invariance in the covariance term. Melitz and Polanec (2015) provide a level
representation of the decomposition method in the appendix of their paper. Note that
they deployed � as a reference productivity. We followed their suggested approach
for the results presented in Table 13.

The distortions in aggregate productivity growth range from −0.87 to 1.14 per-
centage points. What stands out as a striking difference between the DOPD method
and the FHK and GR methods, is that the BFE is subject to significantly stronger
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distortions, ranging from −0.62 to 0.23 percentage points with a negative mean. This
result implies that, in contrast to the other twomethods, whose reallocation component
is (in absolute terms) affected only to a limited extent, each of the four productivity
components in the DOPD decomposition may be considerably distorted by using logs.
Moreover, the log distortions in the BFE show a clearly negative tendency on average.
This implies that logs tend to overestimate the BFE in the DOPD method. This nega-
tive tendency also appears to balance out the distortion in aggregate growth, resulting
in an average distortion of approximately zero. Hence, for the DOPD method, our
sample shows that calculations based on logs are, on average, on spot with respect to
aggregate growth.
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