Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/309018 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Statistical Papers [ISSN:] 1613-9798 [Volume:] 65 [Issue:] 2 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2023 [Pages:] 557-596
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
We obtain discrete mixture representations for parametric families of probability distributions on Euclidean spheres, such as the von Mises–Fisher, the Watson and the angular Gaussian families. In addition to several special results we present a general approach to isotropic distribution families that is based on density expansions in terms of special surface harmonics. We discuss the connections to stochastic processes on spheres, in particular random walks, discrete mixture representations derived from spherical diffusions, and the use of Markov representations for the mixing base to obtain representations for families of spherical distributions.
Schlagwörter: 
Mixture distribution
Isotropy
Surface harmonics
Self-mixing stable distribution families
Almost sure representations
Skew product decomposition
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.