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Abstract
We obtain discrete mixture representations for parametric families of probability dis-
tributions on Euclidean spheres, such as the von Mises–Fisher, the Watson and the
angular Gaussian families. In addition to several special results we present a general
approach to isotropic distribution families that is based on density expansions in terms
of special surface harmonics. We discuss the connections to stochastic processes on
spheres, in particular random walks, discrete mixture representations derived from
spherical diffusions, and the use of Markov representations for the mixing base to
obtain representations for families of spherical distributions.

Keywords Mixture distribution · Isotropy · Surface harmonics · Self-mixing stable
distribution families · Almost sure representations · Skew product decomposition

Mathematics Subject Classification Primary 62H11 · secondary 60E05

1 Introduction

A discrete mixture representation for a parametric family {Pθ : θ ∈ �} of probability
measures in terms of another family {Qn : n ∈ N0} of probability measures, the
mixing base, all defined on the same measurable space, is of the form

Pθ =
∞∑

n=0

wθ(n) Qn for all θ ∈ �. (1)

B Ludwig Baringhaus
lbaring@stochastik.uni-hannover.de

Rudolf Grübel
rgrubel@stochastik.uni-hannover.de

1 Institute of Actuarial and Financial Mathematics, Leibniz Universität Hannover,
Postfach 60 09, 30060 Hannover, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00362-023-01393-5&domain=pdf
http://orcid.org/0000-0001-9873-8385


558 L. Baringhaus, R. Grübel

Here, for each θ ∈ �, the mixing coefficients (wθ (n))n∈N0 are the individual prob-
abilities of a distribution Wθ , the mixing distribution, on (the set of subsets of) N0.
A classical case is the representation of non-central chisquared distributions with k
degrees of freedom, Pθ = χ2

k (θ2) with non-centrality parameter θ2 > 0, as Poisson
mixtures of central chisquared distributions, where Qn = χ2

2n+1 := χ2
2n+1(0) and

whereWθ is the Poisson distribution with mean λ = θ2/2; see e.g. the books of Liese
and Miescke (2008) and Mörters and Peres (2010) where the representation appears
in statistics in connection with the power of statistical tests and in probability theory
in connection with the local times of Markov processes respectively. Such mixture
representations can be related to two-stage experiments: In order to obtain a value x
with distribution Pθ we first choose n according to Wθ and then choose x according
to Qn . This leads to an immediate application of discrete mixture representations in
the context of simulation methodology.

In the present paper we continue our previous investigations (see Baringhaus and
Grübel (2021a, b)), and now specifically consider distributions on the Euclidean sphere
Sd := {x ∈ R

d+1 : ‖x‖ = 1} of (d + 1)-dimensional real vectors of unit length. This
case seems to us to deserve some interest, in particular if specific properties of spheres
are taken into account: The group O(d + 1) of orthogonal transformations of the
ambient space Rd+1 acts transitively on Sd , and there is a ‘polar decomposition’ (or
‘tangent-normal decomposition’, see Sect. 4.3) that relates Sd to [−1, 1] × Sd−1 if
d > 1.

We generally assume that the distribution parameters in the above general setup are
of the form θ = (η, ρ), where η ∈ Sd may be seen as a location parameter; instead
of Pθ we also write Pη,ρ . We obtain mixture representations that split the dependence
on the two parts of the parameter in the sense that

Pη,ρ =
∞∑

n=0

wρ(n) Qn,η for all θ = (η, ρ) ∈ �. (2)

In particular, the mixing distributions depend on ρ only. For fixed ρ on the left, or fixed
n ∈ N0 on the right hand side of (2), the families {Pη,ρ : η ∈ Sd} respectively {Qn,η :
η ∈ Sd} are parametrized by the sphere and are defined on its Borel subsets B(Sd). We
assume that these families interact with the group action mentioned above in the sense
that they are isotropic; see (8) below. In particular, their elements are then rotationally
symmetric about the axis specified by η. As a simple application of the representation
(2) we mention that with the finite sums Rη,ρ(A) := ∑n

k=0 wθ(n) Qk(A) we have
monotonically increasing approximations of the probabilities Pη,ρ(A), A ∈ B(Sd),
with uniform error bounds in the sense that

0 ≤ Pη,ρ(A) − Rη,ρ(A) ≤
∞∑

k=n+1

wρ(n) for all η ∈ Sd , A ∈ B(Sd).

The literature contains several other applications; see for example the relation to non-
parametric Bayesian inference in Baringhaus and Grübel (2021b), Section 5.1.
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Discrete mixture representations... 559

In Sect. 2 we collect some basic notation and obtain mixture representations for
the von Mises–Fisher family and two spherical Cauchy families in Theorem 2, the
Watson family in Theorem 3, and an angular Gaussian family in Theorem 5. The
mixing bases are chosen specifically for the respective family, with a view towards
reflecting its properties. A different base will generally lead to a different representa-
tion, as demonstrated by Baringhaus and Grübel (2021a) in the context of non-central
chisquared distributions. In Sect. 3 we present a general approach that uses expansions
of densities in terms of special surface harmonics. The resulting mixing base has a
structural property that we call self-mixing stability. This property makes it compara-
bly easy to relate different expansions to each other. We obtain representations with
this mixing base for the wrapped Cauchy and the wrapped normal families in Theo-
rem 8, and for the von Mises–Fisher families in Theorem 9. These results only hold
under conditions on the parameter ρ that ensure that the respective distribution is not
too far away from the uniform distribution on the sphere; in Example 11 we work out
a possibility for extending this range.

For fixed ρ or n we may regard Pη,ρ and Qn,η as probability kernels via
(η, A) �→ Pη,ρ(A), (η, A) �→ Qn,η(A). This provides a general connection with
Markov processes. We briefly return to the classical mixture representation of non-
central one-dimensional chisquared distributions, which may be written as

(X + θ)2 =D X2 + 2
N (θ)∑

j=1

E j . (3)

Here the random variables N (θ), X , E1, E2, . . . are independent, X has the standard
normal distribution, E1, E2, . . . are exponentially distributed with mean 1, and N (θ)

has the Poisson distributionwith parameter θ2/2. The path-wise point of view displays
the distributions χ2

1 (θ), θ ≥ 0, as the distributions of randomly stopped partial sums
of independent random variables, and (3) may be used to read off stochastic mono-
tonicity and infinite divisibility of non-central chisquared distributions. Note that the
representation only covers the one-dimensional marginal distributions of the process
((X + θ)2)θ≥0, as the left hand side of (3) is obviously not pathwise monotone in the
‘time parameter’ θ . Quite generally, (1) can be related to randomly stopped stochastic
processes: If X = (Xn)n∈N0 is such that Xn has distribution Qn for all n ∈ N0 then
Xτ has distribution Pθ if τ is independent of X and has distribution Wθ .

In Sect. 4we discuss several connections between families of spherical distributions
and stochastic processes on spheres.We consider randomwalks on spheres in Sect. 4.1,
distribution families that arise in connection with diffusion processes in Sect. 4.2, and
the use of Markov representations of the mixing base in connection with almost sure
representations for distribution families in Sect. 4.3. The ultraspherical mixing base
from Sect. 3 will be useful at various stages.

For a single transition kernelwe obtain a family (Xη
n )n∈N0 ofMarkov chains indexed

by their initial state η, meaning that Xη
0 = η with probability 1. Isotropy of the kernel

then extends to isotropy of the corresponding distributions on the path space. For
the elements of the mixing base in Sect. 3 the marginal distributions of these chains
have a particular simple description. Further, isotropy relates a family {Pη : η ∈ Sd}
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560 L. Baringhaus, R. Grübel

to a single distribution on [−1, 1] via the latitude projection x → ηt x , with η as
‘north pole’. For the chain Xη = (Xη

n)n∈N0 we obtain an associated latitude process
Y = (Yn)n∈N0 via Yn := ηtXn for all n ∈ N0. For isotropic kernels this is again a
Markov chain, now on [−1, 1] and with start at 1. Finally, for the von Mises–Fisher
distributions we show that a homogeneousMarkov process on the sphere with these as
marginal distributions does not exist, see Theorem 16, and we obtain a result similar
to (3), see Example 18.

Proofs are collected in Sect. 5.
Mixing of distributions is a standard topic in probability theory and statistics, see

e.g. Lindsay (1995). Spherical data and families of spherical distributions have simi-
larly been investigated for a long time and by many researchers; standard references
are the classic monograph of Watson (1983) and, more recently, the book of Mardia
and Jupp (2000). For a review of distributions on spheres we refer to Pewsey and
García-Portugués (2021), see also Watson (1982). Of particular interest for the top-
ics treated here is the very recent paper of Mijatović et al. (2020) where a discrete
mixture representation for the marginal distributions of spherical Brownian motion is
developed. More specific references will be given at the appropriate places below.

2 Generalities and some special results

We need some basic notions and definitions.Wewrite X ∼ μ if X is a random variable
on some background probability space (	,F ,P) with distribution μ. Formally, let
(	,A) and (	′,A′) be measurable spaces and suppose that T : 	 → 	′ is (A,A′)-
measurable. Then the push-forward PT of a probability measure P on (	,A) under
T is the probability measure on (	′,A′) given by PT (A) = P(T−1(A)), A ∈ A′, and
X ∼ μ is the same as PX = μ. For many of the measurable spaces considered below
there is a canonical uniform distribution, often defined by invariance under a group
operation. To avoid tiresome repetitions we agree that densities refer to the respective
uniform distribution if not specified otherwise.

We fix a dimension d ≥ 1, but instead of d we often use

λ = λ(d) := (d − 1)/2, (4)

as this is common in connection with families of special functions. In particular,
whenever d and λ appear together, they are related by (4). The group O(d + 1) of
orthogonal (d + 1) × (d + 1)-matrices U acts on Sd via x �→ Ux , and the uniform
distribution unif(Sd) on the sphere is the unique probability measure on the Borel
subsets of Sd that is invariant under all such transformations. For a fixed η ∈ Sd the
push-forward νd of unif(Sd) under the mapping x �→ ηtx has density hd with respect
to the uniform distribution unif(−1, 1) on the interval [−1, 1], where

hd(y) := �(λ + 1)

�( 12 )�(λ + 1
2 )

(1 − y2)λ−1/2, −1 < y < 1. (5)
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Discrete mixture representations... 561

Note that this does not depend on η ∈ Sd . Further, if X ∼ unif(Sd) andY = ηtX ∼ νd ,
then the conditional distribution of X given Y = y is the uniform distribution on

Cd(η, y) := {x ∈ Sd : ηtx = y}, (6)

with unif(Cd(η, y)) the unique probability measure on this set that is invariant under
the subgroup {U ∈ O(d +1) : Uη = η} ofO(d +1). This may be seen in the context
of the polar decomposition mentioned in the introduction.

Conversely, given a probability measure ν on [−1, 1] and a parameter η ∈ Sd , we
can construct a distributionμ = μη on Sd via the kernel (y, A) �→ unif(Cd(η, y))(A).
In particular, for bounded and measurable functions φ : Sd → R,

∫
φ(x) μ(dx) =

∫

[−1,1]

∫

Cd (η,y)
φ(x) unif(Cd(η, y))(dx) ν(dy).

For η ∈ Sd and a measurable function g : [−1, 1] → R the function fη : Sd → R

given by

fη(x) = g(ηtx), x ∈ Sd , (7)

is unif(Sd)-integrable if and only if g is νd -integrable, and then

∫
fη(x) unif(Sd)(dx) =

∫
g(t) νd(dt).

Thus fη is the density of a probability measure on Sd if and only if g is the νd -density
of a probability measure on [−1, 1]. In particular, a probability density g on [−1, 1]
generates a family {Qη : η ∈ Sd} of spherical distributions via (7), and such families
are isotropic in the sense that

QU
η = QUη for all U ∈ O(d + 1), η ∈ Sd . (8)

In particular, each Qη is invariant under all rotations with axis η. As the function η �→∫
A g(η

tx) unif(Sd)(dx) isB(Sd)-measurable for all A ∈ B(Sd), Q· : Sd×B(Sd) → R

defined by Q·(η, A) = Qη(A), (η, A) ∈ Sd × B(Sd), is a Markov kernel from
(Sd ,B(Sd)) to (Sd ,B(Sd)). Further, if Q is a Markov kernel from (Sd ,B(Sd)) to
(Sd ,B(Sd)) and U ∈ O(d + 1), then the kernel QU : Sd × B(Sd) → R defined by
QU (η, A) = Q(η,U tA), (η, A) ∈ Sd × B(Sd), with U tA := {U tx : x ∈ A}, is the
push-forward of Q under U . The kernel Q is isotropic if

QU (η, ·) = Q(Uη, ·) for all η ∈ Sd and all U ∈ O(d + 1). (9)

Some classical special functions will be needed below. Let

(α)n := �(α + n)

�(α)
, α > 0, n ∈ N0,
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562 L. Baringhaus, R. Grübel

be the ascending factorials. Themodified Bessel functions Iα of the first kind are given
by

Iα(x) =
∞∑

n=0

1

n! �(n + α + 1)

( x
2

)2n+α

, x ≥ 0, (10)

with real nonnegative parameter α, the confluent hypergeometric functions are

1F1(α;β; x) =
∞∑

n=0

(α)n

(β)n n! x
n, x ∈ R,

with real positive parameters α and β, and the hypergeometric functions are

2F1(α, β; γ ; x) =
∞∑

n=0

(α)n(β)n

(γ )n n! xn, −1 < x < 1,

with real positive parameters α, β, and γ .

Example 1 (a) Let p > − 1
2 and let ν be the distribution on [−1, 1] with unif(−1, 1)-

density y �→ �(p+λ+1)

�(p+ 1
2 )�(λ+ 1

2 )
|y|2p(1 − y2)λ−1/2. Then ν has νd -density y �→

�( 12 )�(p+λ+1)

�(p+ 1
2 )�(λ+1)

|y|2p, and we obtain the spherical power distribution SPd(η, p) with

density

f SPd (x |η, p) = �( 12 )�(p + λ + 1)

�(p + 1
2 )�(λ + 1)

|ηtx |2p, x ∈ Sd .

We mainly use this with p = n ∈ N0, and then have

f SPd (x |η, n) = (λ + 1)n
( 12 )n

(ηtx)2n, x ∈ Sd .

(b) Starting with ν = Beta[−1,1](p + λ − 1
2 , q + λ − 1

2 ), p, q > 1
2 − λ, the

beta distributions on [−1, 1] with densities y �→ c(p + λ − 1
2 , q + λ − 1

2 )(1 −
y)p+λ− 3

2 (1 + y)q+λ− 3
2 , where c(p + λ − 1

2 , q + λ − 1
2 ) = �(p + q + 2λ −

1)/
(
2p+q+2(λ−1)�(p + λ − 1

2 )�(q + λ − 1
2 )

)
, we obtain the spherical beta distri-

butions SBetad(η, p, q), with densities

f SBetad (x |η, p, q) = cd(p, q) (1 − ηtx)p−1(1 + ηtx)q−1, x ∈ Sd ,

where the norming constants are given by

cd(p, q) = 2−(p+q+2(λ−1)) �( 12 )�(λ + 1
2 )�(p + q + 2λ − 1)

�(λ + 1)�(p + λ − 1
2 )�(q + λ − 1

2 )
. (11)
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Discrete mixture representations... 563

(c) The von Mises–Fisher distributions, which we denote by MFd(η, ρ), ρ > 0,
arise if we start with νd -density proportional to y �→ exp(ρy), −1 ≤ y ≤ 1. The
continuous density of the associated spherical distribution is

f MF
d (x |η, ρ) = cd(ρ) exp(ρ ηtx), x ∈ Sd ,

where the norming constants are given by

cd(ρ) = ρλ

2λ�(λ + 1)Iλ(ρ)
.

Further, MFd(η, 0) = unif(Sd).
(d) The Watson distributions Watd(η, ρ), ρ ∈ R, arise if we begin with νd -density

proportional to y �→ exp(ρy2),−1 ≤ y ≤ 1. The continuous density of the associated
spherical distribution is

fWat
d (x |η, ρ) = cd(ρ) exp

(
ρ (ηtx)2

)
, x ∈ Sd ,

with norming constants cd(ρ) = (
1F1(

1
2 ; λ + 1; ρ)

)−1. Clearly, Watd(η, 0) =
unif(Sd).

(e) The angular Gaussian distributions are the distributions of X = Z/‖Z‖, where
Z has the (d + 1)-variate normal distribution Nd+1(a, �) with mean vector a ∈
R
d+1 \ {0} and symmetric positive definite covariance matrix �; see, e.g. Watson

(1983, p. 108). Here, we exclusively deal with the case where � is the identity matrix
Id+1, as the radial parts then lead to isotropic families. The distributions arising in this
special case seem to have first been studied in detail by Saw (1978). Putting η = a/‖a‖
and ρ = ( 12‖a‖2) 1

2 we denote by AGd(η, ρ) the distribution of X and speak of the
angular Gaussian distribution with parameters η and ρ. Its density is represented by
the infinite series

f AGd (x |η, ρ) = e−ρ2
∞∑

k=0

(2ρ ηtx)k
�((d + 1 + k)/2)

k!�((d + 1)/2)
, x ∈ Sd , ρ > 0.

We refer to Saw (1978), where it is also pointed out that, with a random variable
S ∼ χ2

d+1, the density can be written as

f AGd (x |η, ρ) = E
(
e−ρ2

exp(2
1
2 ρ S

1
2 ηtx)

)
. (12)

(f) We consider two types of spherical Cauchy distributions: The spherical Cauchy
distributions of type I have the unif(Sd)-densities

f CId (x |η, ρ) =
(

1 − ρ2

1 − 2ρ ηt x + ρ2

)d

, x ∈ Sd ,
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564 L. Baringhaus, R. Grübel

and the spherical Cauchy distributions of type II have the unif(Sd)-densities

f CIId (x |η, ρ) = 1 − ρ2

(
1 − 2ρ ηt x + ρ2

)(d+1)/2
, x ∈ Sd ,

both with parameters η ∈ Sd and ρ ∈ (0, 1). We denote by CId(η, ρ) the distribution
with unif(Sd)-density f CId ( · |η, ρ), and by CIId(η, ρ) the distribution with unif(Sd)-
density f CIId ( · |η, ρ). Clearly, CId(η, 0) = CIId(η, 0) = unif(Sd).

The distributions in Example 1 (a) - (e) and their push-forwards under x �→ ηtx ,
respectively, are all classical; for basic as well as specific properties and interesting
historical comments we refer to Watson (1982, 1983) and Mardia and Jupp (2000). It
is well known, for example, that the von Mises–Fisher family in part (c) arises from
the multivariate normal distributions in part (e) by conditioning on ‖Z‖. A well known
relation with Brownian motion on Sd is addressed in Sect. 4.2 below. In the special
case d = 1 = (d + 1)/2 the distributions WC1(η, ρ) := CI1(η, ρ) = CII1(η, ρ) in
Example 1 (f) are known as the wrapped Cauchy or circular Cauchy distributions; see,
e.g. Mardia and Jupp (2000) and Sect. 3 below. Hence, with the two types of spherical
Cauchy distributions given above we have two different extensions of this distribution
family to higher dimensions. For distinction, we added the name supplement ‘of type
I’ and ‘of type II’, respectively. The spherical Cauchy distributions of type I were
introduced and studied by Kato and McCullagh (2020). Generalizing results obtained
by McCullagh (1996) for d = 1, the authors especially deal with the behavior of the
spherical Cauchy distributions of type I under Möbius transformations. The densities
f CIId ( · |η, ρ)were considered byMcCullagh (1989), though the author does not speak
of spherical Cauchy distributions but, with the push-forward of CII(η, ρ) under x �→
ηtx , of a noncentral version of the univariate symmetric beta distribution.

We recall from the introductory remarks that for a discrete mixture representation
we need a mixing base (Qn,η)n∈N0 , η ∈ Sd , where each Qn,η is a probability measure
on the sphere, andmixing distributions onN0 that depend on ρ only; see (2). Of special
interest in the latter context are the the negative binomial distributions NB(r , p) with
parameters r > 0, p ∈ (0, 1), and probability mass function

nb(n|r , p) = (r)n
n! (1 − p)n pr , n ∈ N0,

the confluent hypergeometric series distributionsCHS(α, β, τ ) onN0 with parameters
α, β, τ > 0 and probability mass functions

chs(n|α, β, τ ) = (
1F1(α;β; τ)

)−1 (α)n

(β)n

τ n

n! , n ∈ N0,

and the hypergeometric series distributions HS(α, β, γ, τ ) on N0 with parameters
α, β, γ, τ > 0 and probability mass functions

hs(n|α, β, γ, τ ) = (
2F1(α, β; γ ; τ)

)−1 (α)n(β)n

(γ )n

τ n

n! , n ∈ N0.
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Discrete mixture representations... 565

For τ = 0 we take CHS(α, β, τ ) and HS(α, β, τ ) to be the one-point mass at 0. The
distribution CHS(α, β, τ ) arises as the stationary distribution of a birth-death process
with birth rates (α + i)τ and death rates i(β + i − 1), i ∈ N0; see Hall (1956).
Note that these three distribution families are subclasses of the family of generalized
hypergeometric distributions considered recently by Themangani et al. (2020). We
also require that each family {Qn,η : η ∈ Sd} is isotropic.

We can now state our first results. Let d ∈ N be fixed and let λ be as in (4).

Theorem 2 (a) The family {MFd(η, ρ) : η ∈ Sd , ρ ≥ 0} has a unique discrete mix-
ture representation with mixing base SBetad(η, 1, n+1), n ∈ N0. This representation
is given by

MFd(η, ρ) =
∞∑

n=0

chs(n|λ + 1

2
, 2λ + 1, 2ρ)SBetad(η, 1, n + 1). (13)

(b) The family {CId(η, ρ) : η ∈ Sd , ρ ∈ (0, 1)} has a unique discrete mixture
representation with mixing base SBetad(η, 1, n + 1), n ∈ N0. This representation is
given by

CId(η, ρ) =
∞∑

n=0

nb

(
n|λ + 1

2
, 4ρ/(1 + ρ)2

)
SBetad(η, 1, n + 1). (14)

(c) The family {CIId(η, ρ) : η ∈ Sd , ρ ∈ (0, 1)} has a unique discrete mixture
representation with mixing base SBetad(η, 1, n + 1), n ∈ N0. This representation is
given by

CIId(η, ρ) =
∞∑

n=0

hs

(
n|λ + 1

2
, λ + 1, 2λ + 1, 4ρ/(1 + ρ)2

)
SBetad(η, 1, n + 1).

(15)

In our next result the mixing base depends on the value of ρ.

Theorem 3 (a)The family {Watd(η, ρ) : η ∈ Sd , ρ ≥ 0} has a unique discretemixture
representation with mixing base SPd(η, n), n ∈ N0. This representation is given by

Watd(η, ρ) =
∞∑

n=0

chs(n|1/2, λ + 1, ρ)SPd(η, n). (16)

(b) The family {Wat(η, ρ) : η ∈ Sd , ρ ≤ 0} has a unique discrete mixture represen-
tation with mixing base SBetad(η, n + 1, n + 1), n ∈ N0. This representation is given
by

Watd(η, ρ) =
∞∑

n=0

chs(n|λ + 1/2, λ + 1,−ρ)SBetad(η, n + 1, n + 1). (17)
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566 L. Baringhaus, R. Grübel

In order to obtain a similar representation for the family of {AGd(η, ρ) : η ∈
Sd , ρ > 0} of angular Gaussian distributions we make use of the integral representa-
tion

Dν(z) = e−z2/4

�(−ν)

∫ ∞

0
t−ν−1e−zt−t2/2 dt, z ∈ R, (18)

of the parabolic cylinder functions Dν with real index ν < 0; see Magnus (1966,
p. 328).

Lemma 4 Let δ > 1
2 and τ > 0. Then dpc( · |δ, τ ) with

dpc(k|δ, τ ) = 1

k! (2
1
2 τ)k2k+δ−1 (k + 2δ − 1)�(k + δ − 1

2 )

�( 12 )

×e−τ 2/2D−(k+2δ)(2
1
2 τ), (19)

k ∈ N0, is a probability mass function.

Wewrite DPC(δ, τ ) for the associated discrete parabolic cylinder distributionwith
parameters δ > 1

2 and τ > 0. For the special values δ = λ + 1 = (d + 1)/2 with
d ∈ N the statement of the lemma also follows from (20) below as the values on the
right hand side of (19) are all nonnegative.

Theorem 5 The family {AGd(η, ρ) : η ∈ Sd , ρ > 0} has a unique discrete mixture
representation with mixing base SBetad(η, 1, n + 1), n ∈ N0. This representation is
given by

AGd(η, ρ) =
∞∑

n=0

dpc(n|λ + 1, ρ)SBetad(η, 1, n + 1). (20)

Remark 6 (a) Regarding probability measures as real functions on a set of events, we
may define the series in (13) - (17) and (20) as referring to pointwise convergence of
functions. In fact, as the distributions involved all have smooth densities and compact
domain, convergence even holds with respect to uniform convergence in spaces of
continuous functions.

(b) The representations are minimal in the sense that the respective mixing base
cannot be reduced. This follows from the uniqueness and the fact that the mixing
probabilities are strictly positive.

(c) In connection with the base in Theorem 2 all mixtures have densities that are
increasing in ηtx , and in Theorem 3 and Theorem 5 all mixtures are invariant under
the reflection x �→ −x .

(d) Interestingly, the vonMises–Fisher family, the spherical Cauchy families and the
angular Gaussian family have the same mixing base of spherical beta distributions.
So, these families are obtained by picking at random (the index n of) the element
SBetad(η, 1, n + 1) according to the respective mixing distributions. Another family
with this mixing base is the family of spherical normal distributions; see Sect. 4.2.
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(e) For a discussion of other similarities as well as differences between the von
Mises–Fisher family and the spherical Cauchy family of type I we refer to Kato and
McCullagh (2020). The von Mises–Fisher family and the spherical Cauchy family
of type II both have representations in terms of multivariate Brownian motion. To be
specific, let X = (Xt )t≥0 be a standard Brownian motion in R

d+1, let Y = (Yt )t≥0
with Yt = ρηt + Xt for t ≥ 0 be the drifted standard Brownian motion with constant
drift vector ρη, where ρ ≥ 0, η ∈ Sd , and let Z = (Zt )t≥0 with Zt = ρη + Xt

for t ≥ 0, where 0 ≤ ρ < 1, η ∈ Sd , be the Brownian motion starting at ρη.
With TY := inf{t ≥ 0 : ‖Yt‖ ≥ 1} as the first time that Y exits the Euclidean
unit ball Bd = {x ∈ R

d+1 : ‖x‖ < 1} it then holds that YTY ∼ MFd(η, ρ); see
Gatto (2013) for a more recent proof and historical remarks on this result. Further,
with TZ := inf{t ≥ 0 : ‖Zt‖ ≥ 1} the first time that Z exits Bd it holds that
ZTZ ∼ CIId(η, ρ); see Chung (1982, p. 170), and McCullagh (1989).

3 Ultraspherical mixing bases

Our aim in this section is a mixing base that is applicable for general distribution
families where, as before, we consider distributions Pθ on (Sd ,B(Sd)), with θ =
(η, ρ) ∈ Sd × I and I ⊂ R+ an interval, that have densities fθ of the form

fθ (x) = gρ(ηtx), x ∈ Sd . (21)

We will occasionally omit d or λ from the notation. Recall that λ = (d − 1)/2 and
that νd is the push-forward of unif(Sd) under the mapping x �→ ηtx .

We assume that the functions gρ in (21) are elements of

Hλ := L2([−1, 1],B([−1, 1]), νd
)
,

and on Hλ we use the inner product

〈 f , g〉λ =
∫

f (t)g(t) νd(dt)

and the norm ‖ f ‖λ = 〈 f , f 〉1/2λ . Then (Hλ, 〈·, ·〉λ) is a Hilbert space. We deal with
a special complete sequence of orthogonal polynomials in this space. For d = 1 and
λ = 0 this is the sequence of Chebyshev polynomials Tn of the first kind of degree
n ∈ N0, for d > 1 and λ > 0 we use the sequence of Gegenbauer or ultraspherical
polynomials Cλ

n of degree n ∈ N0; see Erdélyi et al. (1953b, Chs. X, XI). These
functions play an important role in directional statistics, especially nonparametric
directional statistics; see e.g. the papers of Bingham (1972), Giné (1975), Prentice
(1978), Baringhaus (1991), Jupp (2008), and García-Portugués et al. (2021). The
functions are standardized such that

Cλ
n (1) = �(2λ + n)

�(2λ)n! = (2λ)n

n! for all n ∈ N0
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568 L. Baringhaus, R. Grübel

if λ > 0; further, Tn(1) = 1 for all n ∈ N0. In particular, Cλ
0 ≡ 1 ≡ T0. Of course, for

n > 0 none of these functions is a probability density with respect to νd . However, it is
known that the Chebyshev polynomials and, for λ > 0, the Gegenbauer polynomials
attain their absolute maximum on [−1, 1] at t = 1; see Erdélyi et al. (1953b, p. 206,
formula (7)) and Abramowitz and Stegun (1964, p. 786). Hence the standardization

Dλ
n (t) :=

{
Tn(t) if λ = 0,

Cλ
n (1)−1 Cλ

n (t) if λ > 0,

provides a sequence (Dλ
n )n∈N0 of orthogonal polynomials that are bounded in absolute

value on [−1,+1] by their value 1 in t = 1. As (Dλ
n )n∈N0 is complete inHλ, we have

the series expansion converging in Hλ

gρ =
∞∑

n=0

〈gρ, Dλ
n 〉λ ‖Dn‖−2

λ Dλ
n = 1 +

∞∑

n=1

βn(ρ) Dλ
n , (22)

with βn(ρ) := 〈gρ, Dλ
n 〉λ ‖Dn‖−2

λ for n ∈ N. We assume throughout this section that
gρ is such that

β(ρ) :=
∞∑

n=1

|βn(ρ)| < ∞. (23)

For fixed n ∈ N0 and η ∈ Sd the function Hλ
n,η : Sd → R defined by

Hλ
n,η(x) = Dλ

n (η
tx), x ∈ Sd ,

is the unique surface harmonic of degree n that depends only on ηtx and that satisfies
Hλ
n,η(η) = 1; see Erdélyi et al. (1953b, p. 238). Obviously, Hλ

n,η is invariant under
the subgroup {U ∈ O(d + 1) : Uη = η} of O(d + 1), i.e. for all elements U of the
subgroup it holds that Hλ

n,η(Ux) = Hλ
n,η(x) for all x ∈ Sd .

Let

γ 0
0 := 1, γ 0

n := 1/2 for all n ∈ N,

γ λ
n := 1

(1 + n/λ)Cλ
n (1)

for all λ > 0, n ∈ N0.
(24)

We will repeatedly make use of the basic formulas

∫
Dλ
m(ηtx)Dλ

n (ξ
tx) unif(Sd)(dx) = 0, η, ξ ∈ Sd , m, n ∈ N0,m �= n, (25)

and
∫

Dλ
n (η

tx)Dλ
n (ξ

tx) unif(Sd)(dx) = γ λ
n D

λ
n (η

tξ), η, ξ ∈ Sd , n ∈ N0; (26)

123



Discrete mixture representations... 569

see e.g. Erdélyi et al. (1953b, p. 245) and Saw (1984, formula (1.14)|).
The mixing bases considered in what follows are of a very simple structure: The

densities of the base distributions are built with only two special surface harmonics.
To be precise, for n ∈ N and real numbers −1 ≤ α ≤ +1 the functions

x �→ 1 + αDλ
n (η

tx), x ∈ Sd , (27)

are unif(Sd)-densities of probability distributions �λ
n,η,α on Sd . These distribu-

tions can be regarded as a multivariate generalization of the cardioid distributions
introduced by Jeffreys (1948), p. 302; see also Mardia and Jupp (2000), Section
3.5.5. Let �λ

0,η,α := unif(Sd). Here we mainly deal with the special distributions

�λ
n,η := �λ

n,η,1, but see also Remark 10 (a) and Proposition 12 below. So, for n ∈ N

the unif(Sd)-density of �λ
n,η is simply the sum of the two special surface harmonics

Hλ
0,η ≡ 1 and Hλ

n,η.

With the mixing base �λ
n,η, n ∈ N0, given for each η ∈ Sd , we obtain discrete

mixture representations for all spherical distributions with densities of the form (21)
that are not too far away from unif(Sd). This may be seen as an instance of the
perturbation approach discussed in the survey paper of Pewsey and García-Portugués
(2021) and, indeed, the value of β(ρ) may be interpreted as a distance between νd and
the measure with νd -density gρ . By an ultraspherical mixing base we mean a family
{�λ

n,η : n ∈ N0}.
The followinggeneral formula is an immediate consequence of the above definitions

and the expansion in (22).

Proposition 7 Suppose that βn(ρ) ≥ 0 for all n ∈ N and that β(ρ) ≤ 1. Let η ∈ Sd .
Then Pη,ρ has the discrete mixture expansion

Pη,ρ =
∞∑

n=0

wρ(n)�λ
n,η, (28)

with wρ(0) = 1 − β(ρ) and wρ(n) = βn(ρ) for all n ∈ N.

Applying this construction to several specific families we have to take care of the
crucial condition β(ρ) ≤ 1, equivalently wρ(0) ≥ 0. In each case, we obtain the
mixing distribution and a range of ρ-values for the validity of the representation. Any
distribution onN0 may be written as a mixture of unit mass at 0 and a distribution onN
and it turns out that the latter are occasionally from a standard family. For a distribution
on N0 with mass function w on N0 such that w(0) < 1 we call the distribution on N

with mass function n �→ w(n)/(1 − w(0)), n ∈ N, its zero-truncated counterpart.
Some of the results stated in what follows turn out to be simple consequences of
Proposition 7.

In the first theoremwe consider two families of wrapped distributions, hence d = 1
and λ = 0. There are different notational conventions in the literature; here, we regard
the wrapped distribution associated with a given distribution μ on (the Borel subsets
of) the real line as the push-forward μT of μ under the mapping T : R → S1,

123



570 L. Baringhaus, R. Grübel

x �→ (cos(x), sin(x))t. This is often applied to location-scale families. Alternatively,
the interval [−π, π) is used instead of S1 as the base set for the wrapped distribution.
This means that with X ∼ μ one deals with the [−π, π)-valued random variable
X0 as the variable X reduced modulo 2π . If X has the density f with respect to
the Lebesgue measure, then X0 has the unif ([−π,+π))-density 2π

∑+∞
n=−∞ f (s +

2πn), s ∈ [−π, π). If the characteristic function ϕ of X is absolutely integrable, then
f is continuous and the Poisson summation formula applies, i.e.

2π
+∞∑

n=−∞
f (s + 2πn) =

+∞∑

n=−∞
ϕ(n) e−ins, s ∈ [−π, π); (29)

see Feller (1971, p. 632). For example, the wrapped normal distribution WN1(η, ρ)

arises from the normal distribution N (α, σ 2) with mean α and variance σ 2, where
η = (cos(α), sin(α))t and ρ = σ 2. Note that some authors use ρ = 2σ 2, see, e.g.
Hartman and Watson (1974). With X ∼ N

(
α, σ 2

)
we deduce from (29) that X0 has

the density

1 + 2
∞∑

n=1

e−n2ρ/2 cos n(s − α), s ∈ [−π,+π),

which means that T ◦ X ∼ WN1(η, ρ) has the unif(S1)-density

fWN
1 (x |η, ρ) = 1 + 2

∞∑

n=1

e−n2ρ/2 Tn(η
tx), x ∈ S1. (30)

It is worthwhile to note that as ρ → 0 the distributionWN1(η, ρ) converges weakly to
the one-pointmass distribution at η. This is in contrast to other distributions considered
here. For example, MF1(η, ρ), Wat1(η, ρ), AG1(η, ρ) all converge weakly to the
uniform distribution unif(S1) as ρ → 0. Also, as ρ → ∞, the distributionWN1(η, ρ)

converges weakly to unif(S1).
For the wrapped Cauchy distribution WC1(η, ρ) we follow the definition given

by Pewsey and García-Portugués (2021): If X has a standard Cauchy distribution
with density x �→ 1/(π(1 + x2)), x ∈ R, then we apply the wrapping procedure to
Y := σ X + α, where σ > 0, α ∈ R, and take η as in the wrapped normal case. For
the scaling we use the parametrization ρ := e−σ ∈ (0, 1) and augment this with the
limiting uniform distribution at ρ = 0. Using (29) again we obtain that the distribution
WC1(η, ρ) has the density

fWC
1 (x |η, ρ) = 1 + 2

∞∑

n=1

Tn(η
tx)ρn = 1 − ρ2

1 − 2ρ ηtx + ρ2 , x ∈ S1; (31)

see also Pewsey and García-Portugués (2021).
We write geoN0

(n|p) = p(1 − p)n , n ∈ N0, for the probability mass function
of the geometric distribution on N0 with parameter p ∈ (0, 1), and geoN for the
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mass function of its zero-truncated counterpart. Recall that the function β for a given
distribution family is defined in (23).

Theorem 8 (a) For the wrapped Cauchy distributions we have β(ρ) = 2ρ/(1 − ρ)

and, for 0 ≤ ρ ≤ 1/3,

WC1(η, ρ) = (1 − β(ρ)) unif(S1) + β(ρ)

∞∑

n=1

geoN(n|1 − ρ)�0
n,η.

(b) For the wrapped normal distributions we have β(ρ) = 2
∑∞

n=1 e
−n2ρ/2. Let ρ0 ≈

1.570818 be the unique solution of the equation β(ρ) = 1. Then, with

br(n|ρ) := 2β(ρ)−1e−n2ρ/2 for all n ∈ N,

and ρ ≥ ρ0, it holds that

WN1(η, ρ) = (1 − β(ρ)) unif(S1) + β(ρ)

∞∑

n=1

br(n|ρ)�0
n,η.

We deal with the vonMises–Fisher families next. For these, we need variants of the
Skellam distribution with parameter ρ. This distribution arises as the distribution of
N1 − N2 where N1, N2 are independent random variables that both have the Poisson
distribution with parameter ρ/2; see Irwin (1937), and see Skellam (1946) where
the more general case with possibly different means for N1 and N2 is considered.
In the one-dimensional case we need the positive Skellam distribution, which is the
conditional distribution of |N1 − N2| given that N1 �= N2. The associated probability
mass function is given by

psk(n|ρ) = 2e−ρ In(ρ)

1 − e−ρ I0(ρ)
, n ∈ N. (32)

For d > 1 we use the generalized positive Skellam distributionwith parameters κ > 0
and τ > 0, with mass function

gpsk(n|κ, τ ) :=
(
1 + n

κ

) (2κ)n

n!
2κ�(κ + 1)τ−κe−τ Iκ(τ )

1 − 2κ�(κ + 1)τ−κe−τ Iκ(τ )

Iκ+n(τ )

Iκ(τ )
, n ∈ N.

It will turn out as part of the proof of the next result that this is indeed a probabilitymass
function. We have limκ→0

1
κ

(2κ)n
n! = 2

n , which gives limκ→0 gpsk(n|κ, τ ) = psk(n|τ)

for all n ∈ N. Hence the positive Skellam distribution appears as the limiting case of
the generalized positive Skellam distribution as κ → 0.

Theorem 9 We consider the von Mises–Fisher families {MFd(η, ρ) : ρ ≥ 0}, η ∈ Sd .
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572 L. Baringhaus, R. Grübel

(a) If d = 1 then β(ρ) = eρ/I0(ρ) − 1, the equation β(ρ) = 1 has a unique finite
positive solution ρ0 ≈ 0.876842, and for 0 ≤ ρ ≤ ρ0 it holds that

MF1(η, ρ) = (1 − β(ρ)) unif(S1) + β(ρ)

∞∑

n=1

psk(n|ρ)�0
n,η.

(b) If d > 1 then

β(ρ) = βλ(ρ) := ρλeρ

2λ�(λ + 1)Iλ(ρ)
− 1,

the equation βλ(ρ) = 1 has a unique finite positive solution ρ0(λ), and for 0 ≤ ρ ≤
ρ0(λ) it holds that

MFd(η, ρ) = (1 − βλ(ρ)) unif(Sd) + βλ(ρ)

∞∑

n=1

gpsk(n|λ, ρ)�λ
n,η.

Remark 10 (a) The condition that βn(ρ) ≥ 0 for all n ∈ N in Proposition 7 is satisfied
in all of the above families, but it can easily be removed by an appropriate extension of
the mixing base. For this, let �λ,−

n,η be the distribution with density x �→ 1− Dλ
n (η

tx),
x ∈ Sd . Then the representation (28) continues to hold if we take Qn,η = �

λ,−
n,η and

wρ(n) = −βn(ρ) whenever βn(ρ) < 0.

(b) The condition β(ρ) ≤ 1 in Proposition 7 holds if Pη,ρ is sufficiently close to
the uniform distribution on the sphere. If instead of Pη,ρ we consider a mixture of
this distribution with the uniform, with enough weight on the latter, then the result
is close enough to the uniform, and we again obtain a mixture representation. In
the von Mises–Fisher case with d = 1, for example, we get for ρ > ρ0 and with
α(ρ) := (1 − 2e−ρ I0(ρ))/(1 − e−ρ I0(ρ)),

α(ρ) unif(S1) + (1 − α(ρ))MF1(η, ρ) =
∞∑

n=1

psk(n|ρ)�0
n,η.

(c) Is there a countable mixing base that represents all isotropic spherical distribu-
tions with densities of the form x �→ g(ηtx) with η ∈ Sd and g ∈ Hλ? This may be
rephrased in terms of the set of extremal points of a convex set in an infinite dimen-
sional space. We refer to Baringhaus and Grübel (2021b) for such geometric aspects
in general, and for the construction of tree-based mixing bases that would lead to a
positive answer for the set of all g ∈ Hλ that are Riemann integrable.

The passage from an L2-expansion (22) of gρ to the mixture representation (28)
heavily relies on the nonnegativity of the functions 1 + Dλ

n (respectively 1 − Dλ
n in

part (a) above). More generally, we may consider a mixing base (Qn,η)n∈N where the
density of Qn,η is a polynomial of degree n in ηtx . This leads to the consideration of
general linear combinations of ultraspherical polynomials; indeed, finding conditions

123



Discrete mixture representations... 573

for such polynomials to be nonnegative (on a given interval) is an ongoing research
topic, see Askey (1975).

We confine ourselves to an example with λ = 0 and the Chebyshev polynomials.
A change of mixing base will obviously lead to a change in the sequence of mixing
coefficients. It turns out that this may lead to a representation of wider applicability.

Example 11 We define functions gρ : [−1, 1] → R+, 0 ≤ ρ < 1, by

gρ(t) := (1 − ρt + φρ(t))1/2

21/2φρ(t)
, −1 ≤ t ≤ 1, (33)

where φρ(t) := (1 − 2ρt + ρ2)1/2. These can be written as

gρ(t) =
∞∑

n=0

( 12 )n

n! Tn(t) ρn, (34)

seeMagnus et al. (1966, p. 259). In particular,
∫ 1
−1 gρ(t) dt = 1, so that we may define

a family of distributions Pη,ρ on S1 via their densities x �→ gρ(ηtx), x ∈ S1.
We first derive an expansion in terms of the distributions �0

nη. With t = 1 we get

β(ρ) =
∞∑

n=1

( 12 )n

n! ρn = (1 − ρ)−
1
2 − 1,

and it follows that β(ρ) ≤ 1 if and only if ρ ≤ 1− 2− 1
2 =: ρ0. We now introduce the

zero-truncated negative binomial distribution with parameters r > 0, p ∈ (0, 1), and
probability mass function

znb(n|r , p) = (r)n
n! (1 − p)n

pr

1 − pr
, n ∈ N.

Then (34) leads to the discrete mixture representations

Pη,ρ = (
1 − β(ρ)

)
unif(S1) + β(ρ)

∞∑

n=1

znb(n|1
2
, 1 − ρ)�0

n,η, (35)

for all η ∈ S1, 0 < ρ ≤ ρ0.
On the other hand, Turán (1953) proved that, for all n ∈ N0,

n∑

k=0

( 12 )k

k! cos(kϑ) > 0 for 0 < ϑ < π.

In viewof Tk(cosϑ) = cos(kϑ) this can be used to obtain an alternative representation.
For this, let �n,η be the distribution on S1 with density x �→ ∑n

k=0 αkTk(ηtx), where
αk := ( 12 )k/k! and n ∈ N0. Then (34), together with a summation by parts, leads to
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Pη,ρ =
∞∑

n=0

geoN0
(n|1 − ρ)�n,η

= (1 − ρ) unif(S1) + ρ

∞∑

n=1

geoN(n|1 − ρ)�n,η, (36)

where geoN0
and geoN are as in Theorem 8. Both (35) and (36) hold for all η ∈ S1,

but note that the range of permissible ρ-values has increased from 0 ≤ ρ ≤ 1− 2−1/2

to the full interval 0 ≤ ρ < 1.

As pointed out earlier mixing families constructed with surface harmonics can be
used with all distributions of the form (21) as long as these are sufficiently close
to the uniform. The following result gives a property which we interpret as self-
mixing stability of the distribution families Dλ

0 := {unif(Sd)}, Dλ
n := {�λ

n,η,α : η ∈
Sd , −1 ≤ α ≤ +1}, n ∈ N, and Dλ := ⋃

n∈N0
Dλ

n : Mixing two elements of the same
family results in a distribution that belongs to this family as well. Additionally, mixing
any two elements moves the mixing distribution closer to the uniform distribution.
Generally, the mixing operation relates distributions with different location parameter
η ∈ Sd to each other.

Proposition 12 Let γ λ
n be the constants defined in (24).

(a) For all n ∈ N0 and η ∈ Sd , −1 ≤ α, β ≤ +1,

∫
�λ

n,ζ,α(A)�λ
n,η,β(dζ ) = �λ

n,η,γ λ
n αβ

(A)

= (1 − γ λ
n ) unif(Sd)(A) + γ λ

n �λ
n,η,αβ(A)

for all A ∈ B(Sd).

(b) For all n,m ∈ N0 with n �= m, and all η ∈ Sd , −1 ≤ α, β ≤ +1,

∫
�λ

m,ζ,α(A)�λ
n,η,β(dζ ) = unif(Sd)(A) for all A ∈ B(Sd).

We recall that a probability kernel from a measurable space (E, E) to another
measurable space (F,F) is a function Q : E × F → R that is E-measurable in its
first and a probability measure on (F,F) in its second argument. Given a probability
measure P on (E, E) and a kernel Q from (E, E) to (F,F) we define a probability
measure P ◦ Q on (F,F) by

P ◦ Q(A) =
∫

Q(x, A) P(dx) for all A ∈ F . (37)

For a family {Qx : x ∈ E}of probabilitymeasuresQx on (F,F)with the property that
the map x �→ Qx (A) is E-measurable for all A ∈ F , we may regard Q· : E ×F → R

defined by Q·(x, A) = Qx (A), (x, A) ∈ E × F , as a Markov kernel from (E, E) to
(F,F). Then (37) reads
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P ◦ Q·(A) =
∫

Qx (A) P(dx) for all A ∈ F ,

which may be interpreted as a mixing operation. For use in the next section we note
that for a family {Pη : η ∈ Sd} of probability measures Pη on (Sd ,B(Sd)) and a kernel
Q from (Sd ,B(Sd)) to (Sd ,B(Sd)) that are both isotropic in the sense defined by (8)
and (9) respectively, the mixing results in an isotropic family again,

(
Pη ◦ Q

)U = PUη ◦ Q for all η ∈ Sd and all U ∈ O(d + 1). (38)

Further, for α = β = 1 the statements in Proposition 12 can be simply rephrased as

�λ
n,η ◦ �λ

n,· = (1 − γ λ
n ) unif(Sd) + γ λ

n �λ
n,η,

�λ
n,η ◦ �λ

m,· = unif(Sd) if n �= m.

Using the self-mixing stability and the bilinearity of the operation defined in (37) we
obtain a discrete mixture representation for the composition of two families that both
have a representation in terms of the ultraspherical mixing base.

Proposition 13 Suppose that Pη and P ′
η, η ∈ Sd , are distribution families on Sd with

discrete mixture representations Pη = ∑∞
n=0 w(n)�λ

n,η and P ′
η = ∑∞

n=0 w′(n)�λ
n,η

respectively. Then

Pη ◦ P ′· =
∞∑

n=0

w̃(n)�λ
n,η,

where w̃(0) := 1 − ∑∞
n=1 w̃(n) and w̃(n) := γ λ

n w(n)w′(n) for all n ∈ N.

This can be used to obtain the composition ofwrappedCauchy distributions. Indeed,
taken together, Theorem 8(a) and Proposition 13 lead to

WC1(η, ρ) ◦ WC1(·, ρ′) = WC1(η, ρρ′) for all ρ, ρ′ ≤ 1/3. (39)

It is worthwhile to point out that the restriction ρ, ρ′ ≤ 1/3 in (39) can be omitted. In
fact, for all 0 ≤ ρ, ρ′ < 1, using (24), (25), (26), and (31), the density of WC1(η, ρ)◦
WC1(·, ρ′) is easily calculated to be

∫
fWC
1 (x |ξ, ρ′) fWC

1 (ξ |η, ρ) unif(S1)(dξ) = fWC
1 (x |ξ, ρρ′), x ∈ S1.

In the next section this will be put into a wider context.

123



576 L. Baringhaus, R. Grübel

4 Discrete mixture representations andMarkov processes

Let {Pη,ρ : η ∈ Sd , ρ ∈ I }, I ⊂ R+ an interval, be a family of distributions of the type
considered in the previous sections. Below we briefly discuss three different connec-
tions to Markov processes. First, for ρ ∈ I fixed, the corresponding subfamily may be
regarded as a probability kernel and thus induces a Markov chain on spheres. Second,
an isotropic diffusion process on Sd leads to a family of the above type via its one-
dimensional marginal distributions, where η and ρ take over the role of starting point
and (transformed) time parameter respectively. Third, starting with a discrete mixture
representation we may find a discrete time Markov chain with marginal distributions
equal to elements of the mixing base, and thus obtain an almost sure representation of
the family as the distributions of the chain at random times.

4.1 Randomwalks on spheres

Let {Qη : η ∈ Sd} be a family of probability distributions that leads to aMarkov kernel
as described at the end of Section 3. Such kernels arise as transition probabilities of
Markov processes. We may, for example, fix an η ∈ Sd and define a Markov chain
(Xn)n∈N0 with state space (Sd ,B(Sd)) by the requirements that X0 ≡ η and that the
distribution of Xn+1 conditionally on Xn = ξ is given by Qξ . For isotropic kernels
each transition can be divided into two steps that make use of the representation
of Sd by [−1, 1] × Sd−1 that also appeared in connection with (5) and (6). In the
geometrically most familiar case we consider the current position as the ‘north pole’,
then first choose a latitude and thereafter, independently, a longitude uniformly at
random. The result is regarded as the new north pole. A generalization of this setup
has been considered by Bingham (1972), see also the references given there.

The case d = 1 is somewhat special as the wrapping procedure is a group homo-
morphism from the additive group of real numbers into the multiplicative group S1,
regarded as a subset of C and endowed with complex multiplication. Wrapping a
random walk or a Lévy process thus leads to processes with values in S1 that have
stationary and independent increments, where the latter are now to be understood as
ratios rather than differences. In fact, the location-scale family of Cauchy distributions
arises as the one-dimensional marginals of a specific Lévy process, which gives (39)
after an appropriate rescaling of the variance parameter. A similar approach, now using
Brownian motion on the real line, gives a corresponding statement for the wrapped
normal distributions.

We collect some observations in the following result. Recall that the distribution
L(X) of a Markov chain X = (Xn)n∈N0 with state space (Sd ,B(Sd)) is a probability
measure on the path space (S

N0
d ,B(

S
N0
d

)
) of the chain, where the σ -field B(

S
N0
d

)

is generated by the projections πk : S
N0
d → Sd , (xn)n∈N0 �→ xk , k ∈ N0. Any

measurable mapping T : Sd → Sd may be lifted to a mapping from and to paths by
componentwise application.

Proposition 14 Suppose that Q is an isotropic kernel on Sd and that Xη = (Xη
n)n∈N0

is a Markov chain with start at η ∈ Sd and transition kernel Q.
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(a) The family {L(Xη) : η ∈ S
d} of probability measures on the path space is isotropic

in the sense that L(Xη)U = L(XUη) for all η ∈ Sd , U ∈ O(d + 1).
(b) The latitude process Y = (Yn)n∈N0 , with Yn := ηt Xη

n for all n ∈ N0, is a Markov
chain with state space [−1, 1] and start at 1.
(c) Suppose that Q(η, · ) = ∑∞

k=0 w(k)�λ
k,η for all η ∈ Sd . Then the representation

L(Xη
n) =

∞∑

k=0

wn(k)�
λ
k,η for all n ∈ N, η ∈ Sd , (40)

holds with w1(k) := w(k) for all k ∈ N0 and, for n > 1,

wn(k) := (γ λ
k )n−1w(k)n, k ∈ N, wn(0) := 1 −

∞∑

k=1

wn(k).

The fact that the geodesic distances from the starting point are again aMarkov chain
is an instance of lumpability, see Rogers and Pitman (1981) for a general discussion.
That the dependence on η is lost in the lumping transition is part of the assertion of
part (b). Further, it follows from the cosine theorem for spherical triangles that the
transition kernel QY of Y may be written as

QY (y, · ) = L
(
yZ +U (1 − y2)1/2(1 − Z2)1/2

)
(41)

with Z ,U independent, L(Z) = L(ηtXη
1) and L(U ) = νd−1; see also Bingham

(1972). Part (c) shows that the mixing base introduced in Sect. 3 is useful in the
Markov chain context, and (40) may be seen as a discrete mixture representation of
the family {Pη,n : η ∈ Sd , n ∈ N}, with Pη,n = L(Xη

n). It implies that the marginal
distributions of the associated latitude process are given by

L(Yn) =
∞∑

k=0

wn(k) μλ
k for all n ∈ N,

where μλ
k is the push-forward of �λ

k,η under x �→ ηtx .

4.2 Diffusion processes

Let X = (Xt )t≥0 be a homogeneous continuous time Markov process on the sphere
with start at η, i.e. P(X0 = η) = 1, and transition densities pt (x, y), t > 0, x, y ∈ Sd ,
that are isotropic in the sense that pt (Ux,Uy) = pt (x, y) for all t > 0, x, y ∈ Sd

and U ∈ O(d + 1). Then the marginal distributions L(Xt ), t ≥ 0, of the process may
have a discrete mixture representation of the type considered above, with ρ related to
time t .

We sketch the basic argument, see alsoKarlin andMcGregor (1960), and then apply
this in the context of the spherical Brownian motion (Bt )t≥0. For a general discussion
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of the latter we refer to Ito and McKean (1997, Section 7.15) and Hsu (2002, Exam-
ple 3.3.2). We note in passing that the marginal distributions of X characterize the full
distribution L(X) of the process, in view of the Chapman–Kolmogorov equations and
the invariance of the transition mechanism under orthogonal transformations (clearly,
O(d + 1) acts transitively on Sd ).

Suppose that X has transition densities pt (x, y) and that its infinitesimal generator
A has a discrete spectrum. As transitions are isotropic it is enough to consider one
specific starting value x = η. For the Kolmogorov forward equations

(
∂

∂t
p.(η, y)

)
(t) = (Apt (η, ·)) (y)

we may try to find a family of basic solutions φ by a separation ansatz φ(t, y) =
f (t)g(y). This leads to

f ′(t)
f (t)

= (Ag)(y)

g(y)
.

As the left and right hand side respectively depend on t and y only, we may hope that

pt (η, y) =
∞∑

n=0

e−ωn t φn,η(y),

where ωn , n ∈ N0, are the eigenvalues of the operator A, with eigenfunctions φn,η.
Recall that λ = (d − 1)/2.

Theorem 15 Let (Bt )t≥0 be the spherical Brownian motion on Sd , d > 1, with start
at η ∈ Sd . Let

βλ(t) :=
∞∑

n=1

(
1 + n

λ

) (2λ)n

n! e−n(n+2λ)t/2

and let

brλt (n) : = βλ(t)−1
(
1 + n

λ

) (2λ)n

n! e−n(n+2λ)t/2, n ∈ N.

Further, let tλ0 be the unique solution of the equation βλ(t) = 1. Then, for t ≥ tλ0 ,

L(Bt ) = (1 − βλ(t)) unif(Sd) + βλ(t)
∞∑

n=1

brλt (n)�λ
n,η.

In view of the wrapping representation mentioned above the corresponding result
for d = 1 is contained in part (b) of Theorem 8.
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Let B = (Bt )t≥0 be as in the theorem and let Y = (Yt )t≥0 with Yt = ηtBt , t ≥ 0, be
the associated latitude process. Then a polar decomposition shows that, for t > 0 fixed,
Bt can be synthesized (in distribution) from Yt and an independent random variable
Z that is uniformly distributed on Sd−1. On the level of processes the conditional
distribution of B given Y is a result known as the skew product decomposition of
spherical Brownian motion; see Ito and McKean (1997, p. 270) and Mijatović et al.
(2020).

A representation with a different mixing base, closer in spirit to the representations
in Sect. 2, has very recently been obtained by Mijatović et al. (2020). The result is
based on the authors’ observation that for a spherical Brownian motion (Bλ

t )t≥0 with
start at η ∈ Sd , d > 1, the rescaled latitude process (Yt )t≥0, Yt := (1 − ηtBλ

t )/2 for
all t ≥ 0, is a neutral Wright-Fisher diffusion with both mutation parameters equal to
λ. For these, a discrete mixture representation had earlier been given by Jenkins and
Spanò (2017), see also Griffiths and Spanó (2010). Taken together, this leads to

L(Bλ
t ) =

∞∑

n=0

wλ
t (n)SBetad(η, 1, n + 1) for all t > 0, (42)

with

wλ
t (n) =

∞∑

k=n

(−1)k−n (d + 2k − 1)(d + n)k−1

n!(k − n)! e−k(k+d−1)t/2 for all n ∈ N0, t > 0,

where the term (d)−1 appearing with n = k = 0 is defined to be 1/(d − 1); see
Jenkins and Spanò (2017, formula (5)). Interestingly, the mixture coefficients turn
out to be the individual probabilities associated with the marginal distributions of a
particular pure death process (Zt )t>0, i.e. wλ

t (n) = P(Zt = n). In contrast to our
representation in Theorem 15 via surface harmonics no further restrictions on the time
parameter are needed.Moreover, there is also a fascinating probabilistic interpretation,
relating neutralWright-Fisher diffusions toKingman’s coalescent viamoment duality;
see Mijatović et al. (2020) for the details.

Mardia and Jupp (2000) call the L(Bλ
t ) Brownian motion distributions on Sd ; Kent

(1977) regardsL(ηtBλ
t ) as a spherical normal distribution.We adopt the notation of the

latter. Remembering that Bλ starts in η ∈ Sd , we denote by SNd(η, ρ) = L(
Bλ
1/ρ

)
the

spherical normal distribution with parameters η ∈ Sd and ρ > 0. Then, interestingly,
by (42) we have a discrete mixture representation for the family {SNd(η, ρ) : η ∈
Sd , ρ > 0} with the samemixing base of spherical beta distributions SBetad(η, 1, n+
1), n ∈ N0, as obtained in Sect. 2 for the von Mises–Fisher, the spherical Cauchy, and
the angular Gaussian families.

As explained at the beginning of this subsection, isotropic diffusion processes on the
sphere may lead to a discrete mixture representation for the family of their marginal
distributions. Conversely, for a given family of the type considered in the previous
sections, one might ask for a representation of its elements as the marginals of some
diffusion process with values in Sd . The following result answers this question for the
von Mises–Fisher distributions.
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Theorem 16 There is no homogeneous Markov process X = (Xt )t≥0 on Sd with the
property that, for all η ∈ Sd ,

L(Xt |X0 = η) ∈ {
MFd(η, ρ) : ρ > 0

}
for all t > 0. (43)

Alternatively one might start with a diffusion on the ambient space Rd+1 and then
use the transition x �→ x/‖x‖ from R

d+1 to Sd . For example, if B = (Bt )t≥0 is
a Brownian motion on R

d+1 with start at η ∈ Sd , then X = (Xt )t≥0, with Xt :=
‖Bt‖−1Bt for all t ≥ 0, represents the family {AGd(η, ρ) : ρ > 0} in the sense that

L(Xt ) = AGd
(
η, ρ(t)

)
for all t > 0.

Here the bijection ρ : (0,∞) → (0,∞) is given by ρ(t) := (2t)−1/2, t > 0.

Remark 17 We relate Theorem 16 to the infinite divisibility statement for the von
Mises–Fisher distributions obtained by Kent (1977). Interestingly, in both cases the
proofs are based on the same series expansions (57), (59) of the densities f MF

d ( · |η, ρ)

in terms of ultraspherical polynomials. An important ingredient of Kent’s approach is
the associative convolution algebra (F , ◦d ) on the spaceF of probabilitymeasures on
[−1, 1] introduced by Bingham (1972), where the convolution F1◦d F2 of F1, F2 ∈ F

is defined to be the distribution of S1S2 + �(1 − S1)
1
2 (1 − S2)

1
2 , see also (41). Here

S1, S2,� are independent, Si ∼ Fi for i = 1, 2, and � ∼ νd−1. For d = 0 we take
ν0 to be the discrete uniform distribution on S0 := {−1, 1}. With this definition a
probability measure F ∈ F is said to be ◦p-infinitely divisible if for each m ∈ N

there exists an Fm ∈ F such that F is equal to the m-fold convolution F◦dm
m of Fm .

As F ∈ F is uniquely determined by its Fourier transform ϕF : N0 → R defined by

ϕF (m) =
∫

Dλ
m(t) F(dt) for m ∈ N0,

and ϕF1◦d F2 = ϕF1ϕF2 for all F1, F2 ∈ F , it holds that F is ◦d -infinitely divisible
if and only if for each m ∈ N there is a Fourier transform ϕFm : N0 → R of an
Fm ∈ F such that ϕF = ϕm

Fm
for all m ∈ N. The distribution MF∗

d(ρ) of ηtX , with

X ∼ MFd(η, ρ), has the νd -density
ρd

2d�(λ+1)Iλ(ρ)
exp(ρt), t ∈ [−1, 1]. Kent (1977)

showed that MF∗
d(ρ) is ◦d -infinitely divisible. In fact, Kent even gives an interesting

representation of the distributions Fm such thatMF∗
d(ρ) = F◦dm

m based on the spherical
Brownian motion (Bt )t≥0 on Sd with start at η ∈ Sd : He showed that for each m ∈ N

there exists an absolutely continuous distribution Gm on the positive half-line such
that ηtBTm ∼ Fm , where Tm ∼ Gm is independent of (Bt )t≥0. Consequently,

MF∗
d(ρ) = L (

ηtBTm

)◦dm for all m ∈ N. (44)

In order to lift this from the unit interval to the sphere let η ∈ Sd be fixed and let
Pη be the family of distributions P on Sd that are axially symmetric with respect to
η, i.e. PU = P for each U ∈ O(d + 1) with Uη = η, and PU the push-forward of
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P under U . In order to carry over the convolution operation ◦d to Pη, a spherical
addition ⊕ on Sd is defined. Assign to each x ∈ Sd an element Ux ∈ O(d + 1) in
such a way that Uxη = x for all x ∈ Sd and that x → Ux is a measurable injection (a
measurable embedding) from Sd intoO(d+1). Then, for x, y ∈ Sd , let x⊕ y := Ux y.
For P1, P2 ∈ Pη, with independent Sd -valued random vectors Xi ∼ Pi , i = 1, 2,
the �d -convolution P1�d P2 of P1 and P2 is defined to be the distribution of X1 ⊕ X2.
Kent showed that P1�d P2 ∈ Pη, and with Fi as the distribution of ηtXi , i = 1, 2, the
cosine theorem for spherical triangles leads to ηt(X1 ⊕ X2) ∼ F1 ◦d F2, i.e.

L (
ηt(X1 ⊕ X2)

) = L(ηtX1) ◦d L(ηtX2).

From (44) it now follows that MFd(η, ρ) = L(
BTm

)�dm for all m ∈ N.

4.3 Almost sure representations

The basic relation (2) connects {Pθ : θ ∈ �} to the distributions Wρ on N0 and Qn,η

on Sd . Isotropy means that we may consider the η-part of the parameter as fixed. In
this situation, if (Nρ)ρ≥0 and (Xn)n∈N0 are independent stochastic processes such that

L(Nρ) = Wρ for all ρ ≥ 0, L(Xn) = Qn,η for all n ∈ N0,

then

Pη,ρ = L(XNρ ) for all ρ ≥ 0. (45)

Equation (45) may be regarded as an almost sure representation of the distributional
equation (2). Classical examples of such almost sure representations are the Skorohod
coupling in connection with distributional convergence, see e.g. Kallenberg (1997,
Theorem 3.30), and the representation of a sequence of uniformly distributed per-
mutations on the sets {0, 1 . . . , n}, n ∈ N, by the Chinese restaurant process, see
e.g. Pitman (2006, Section 3.1). Of course, such representations are most useful if the
successive variables are close to each other (and not simply chosen to be indepen-
dent). Our aim here are representations of the type (45) for the distribution families
considered above. For this, we first formalize the polar decomposition.

Let η ∈ Sd , we assume that d > 1. Recall from (6) that Cd(η, y) = {z ∈ Sd :
ηtz = y} and let

nη : Sd \ {−η, η} → Cd(η, 0), x �→ x − (ηtx)η

‖x − (ηtx)η‖ ,

be the normalized projection onto the orthogonal complement of the linear subspace of
R
d+1 spanned by η. This can be extended to the whole of the sphere by choosing some

arbitrary of ξ ∈ Sd as the value of nη(±η). Then an inverse of the polar decomposition
x �→ (ηtx, nη(x)) is given by

�η : [−1, 1] × Cd(η, 0) → Sd , (y, z) �→ yη + (1 − y2)1/2z,
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in the sense that �η(η
tx, nη(x)) = x for all x ∈ Sd , and a random vector X with

values in Sd may be written as

X = �η

(
ηtX , nη(X)

)
. (46)

Let Qη be a distribution on (Sd ,B(Sd)) that has a density f with respect to unif(Sd)
which can be written as fη(x) = g(ηtx), x ∈ Sd , see (7). If X ∼ Qη then ηtX
and nη(X) are independent, ηtX has the distribution νd;g with νd -density g, and
nη(X) ∼ unif (Cd(η, 0)); see (Watson 1983, p. 92) and (Mardia and Jupp 2000,
p. 169). So, conversely, if we have independent random variables Y ∼ νd;g and
Z ∼ unif (Cd(η, 0)), then

X =D �η(Y , Z) = Yη + (1 − Y 2)1/2Z . (47)

Mardia and Jupp (2000, p. 161, p. 169) call (46) and the distributional version (47) the
tangent-normal decomposition. In the past this decomposition has been successfully
applied by many authors treating different problems in directional statistics, see e.g.
Saw (1978, 1983, 1984),García-Portugués et al. (2020), andUlrich (1984). In practice,
a random variable X with distribution Qη is simply obtained as follows. Suppose first
that η is equal to e1 = (1, 0, . . . , 0)t, the first unit vector in the canonical basis of
R
d+1. With e1 as ‘north pole’ the polar representation takes on a particularly simple

form: From y ∈ [−1, 1] and z = (z1, . . . , zd)t ∈ Sd−1 we get x ∈ Sd by x = �(y, z)
with

�(y, z) := (
y , (1 − y2)1/2 z1, . . . , (1 − y2)1/2 zd

)t
. (48)

Then, starting with a random variable Y ∼ νd;g and another random variable
Z ∼ unif(Sd−1) independent of Y , we obtain an Sd -valued random variable X with
distribution Qe1 via X := �(Y , Z). For a general η ∈ Sd we use that Qη is the
push-forward QU

e1 of Qe1 under the mapping x �→ Ux , where U ∈ O(d + 1) is such
that η = Ue1, i.e. U has η as its first column. Then, defining �η(y, z) = U�(y, z)
it follows that X := �η(Y , Z) ∼ Qη; see also Saw (1978) and Ulrich (1984) for this
construction.

Starting with a random variable Y that is almost surely equal to 1, it follows that
the random variable X = �η(Y , Z) is almost surely equal to η. This means that from
a Markov chain (Yn)n∈N0 with state space [−1, 1] starting in 1, where for n ∈ N the
distribution of Yn is the push-forward of Qn,η under x �→ ηtx , and a single random
variable Z ∼ unif(Sd−1), we obtain a Markov chain (Xn)n∈N0 with the desired one-
dimensional marginal distributions by putting Xn := �η(Yn, Z) for all n ∈ N0.
Clearly, (Yn)n∈N0 is then the latitude process associated with (Xn)n∈N0 .

This reduces the first step in an almost sure construction (45) to finding a Markov
chain on [−1, 1] with prescribed marginals. For the second step we require a suit-
able integer-valued process N = (Nρ)ρ≥0 with marginal distributions Wρ . One
general possibility is the quantile transformation, which can also be used to con-
struct a Skorohod coupling for real random variables: With U ∼ unif(0, 1) we
obtain a random variable X with distribution function F via X := F−1(U ), where
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F−1(u) := inf{t ∈ R; F(t) ≥ u} for 0 < u < 1. If F = Fρ is the distribution
function associated with Wρ the paths of the process N = (Nρ)ρ≥0 constructed in
this way depend on the relations between the distribution functions for different ρ’s.
In particular, if the distributions Wρ are stochastically monotone, meaning that

1 − Fρ(x) ≤ 1 − Fρ′(x) for all x ∈ R (49)

whenever ρ ≤ ρ′, then the paths of N are increasing. It is well known that this stochas-
tic monotonicity applies to arbitrary distributions Wρ,Wρ′ with monotone likelihood
ratio. To be precise, defining a likelihood ratio of Wρ′ with respect to Wρ to be a
B(R)-measurable function Lρ,ρ′ : R → [0,∞] such that Wρ(Lρ,ρ′ < ∞) = 1 and

Wρ′(A) =
∫

A
Lρ,ρ′(x)Wρ(dx) + Wρ′({Lρ,ρ′ = ∞} ∩ A) for all A ∈ B(R),

the distributions Wρ,Wρ′ with ρ < ρ′ have monotone likelihood ratio if there exists
an increasing function hρ,ρ′ : R → [0,∞] such that

Lρ,ρ′ = hρ,ρ′ (Wρ + Wρ′)-almost everywhere.

Note that if fρ, fρ′ are densities of Wρ,Wρ′ with respect to some σ -finite measure,
then

L∗
ρ,ρ′ = f ′

ρ

fρ
1( fρ > 0) + ∞ 1( fρ = 0, fρ′ > 0)

is a special version of the likelihood ratio ofWρ′ with respect toWρ ; here 1(·) denotes
the indicator function. In fact, (49) holds if Wρ,Wρ′ with ρ < ρ′ have monotone
likelihood ratio; see, e.g. Witting (1985, Satz 2.28).

Again, we consider the special case of the von Mises–Fisher distributions in some
detail.

Example 18 Let η ∈ Sd . In order to translate Theorem 2, see also Example 1 (c), into
an almost sure representation for the family {MFd(η, ρ) : ρ ≥ 0} we need random
variables Yn with Yn ∼ Beta[−1,1](d/2, d/2 + n) for all n ∈ N0. To this end let V ,
Wi , i ∈ N0, be independent random variables with V ∼ �(d/2, 1), W0 ∼ �(d/2, 1),
and Wi ∼ Exp(1) for all i ∈ N. Then, using the well known connection between beta
and gamma distributions, see e.g. Johnson and Kotz (1970), we obtain independent
random variables B0 ∼ Beta(d/2, d/2), Bn ∼ Beta(d + n − 1, 1), n ∈ N, via

B0 := V

V + W0
, Bn := V + W0 + . . . + Wn−1

V + W0 + · · · + Wn
for all n ∈ N,

and products

Ỹn :=
n∏

i=0

Bi = V

V + W0 + . . . + Wn
∼ Beta(d/2, d/2 + n) for all n ∈ N0.
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The transformation Yn := 1 − 2Ỹn , n ∈ N0, now gives the desired sequence Y =
(Yn)n∈N0 . Moreover, Ỹn+1 = Ỹn Bn+1 implies that

Yn+1 = 1 − (1 − Yn) Bn+1. (50)

As Bn+1 is independent of Yn this shows that Y is a Markov chain.
Suppose now that (Nρ)ρ≥0 is a stochastic process with Nρ ∼ CHS(d/2, d, 2ρ) for

all ρ ≥ 0. Let Z ∼ unif(Sd−1) be independent of the variables V andWi , i ∈ N. Then
(Xρ)ρ≥0 with

Xρ := �η

(
YNρ , Z

)
for all ρ ≥ 0, (51)

and �η as in the remarks preceding the example, has the desired property that Xρ ∼
MFd(η, ρ) for all ρ ≥ 0.

For the construction of the counting process we use the quantile transformation.
The likelihood ratios turn out to be

chs(n|d/2, d, 2ρ′)
chs(n|d/2, d, 2ρ)

= 1F1(d/2; d; ρ)

1F1(d/2; d; ρ′)
(2ρ′)n

(2ρ)n

which, as a function of n, is increasing whenever ρ < ρ′. As explained above, this
shows that the paths of (Nρ)ρ≥0 are increasing. From (50) it follows that Yn ≥ Yn−1
for all n ∈ N. Taken together we see that we have found an almost sure representation
(51) with a process (YNρ )ρ≥0 that has increasing paths.

Some comments are in order. Obviously, almost sure representations are generally
not unique. In the first step of Example 18, we could use a sequence (Yn)n∈N0 of
independent random variables with Yn ∼ Beta[−1,1](d/2, d/2 + n) for all n ∈ N0, or
we could use the quantile transformation to obtain suitable variables Yn as functions
of one single U ∼ unif(0, 1) (in fact, the corresponding likelihood ratios would
be increasing). Similar to (3) in the classical case, the representation (51) strikes a
structuralmiddle ground in this spectrum fromnodependence at all to total dependence
between the variables of interest. Also, theMarkov chain featuring in the denominator
of

YNρ = 1 − 2V

V + ∑Nρ

n=0 Wn

has some resemblance to the sum appearing in (3). In Baringhaus and Grübel (2021a,
Remark 4 (a)) we found a discrete mixture representation for the non-central family
of hyperbolic secant distributions that may similarly written as a function of a Markov
chain of this type.

Returning to the general situation, we may regard the right hand side of (3) or (45)
as a representation of a continuous time stochastic process Z = (Zt )t≥0 by indepen-
dent processes X = (Xn)n∈N0 and N = (Nt )t≥0 via Zt = XNt for all t ≥ 0. As
already mentioned in the introduction, equality of the marginal distributions is con-
siderably weaker than equality of the distributions of the processes. For example, the
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representation in Example 18 leads to a process that moves by jumps from η on a fixed
great circle through η towards the equator in a piecewise constant manner. Loosely
speaking, a discrete mixture representation on the process level is only possible for
processes of the pure jump type. However, if the time parameter of the base process
is X continuous too then we obtain a connection to a famous group of results, known
as skew product decompositions. For example, with (Xt )t≥0 a Brownian motion on
R
d+1 starting at a �= 0 and Rt := ‖Xt‖, t ≥ 0, we have R−1

t Xt = BNt for all
t ≥ 0, where (Bt )t≥0 is a Brownian motion on Sd starting at η := ‖a‖−1a, Nt is given
implicitly by

∫ Nt
0 R−2

s ds = t , and B and N are independent. In particular, this leads
to a representation of the distribution of Xt/‖Xt‖, t ≥ 0, which is a family of spherical
distributions, as a continuous mixture. In contrast to discrete mixture representations
these seem to be less suitable for simulation.

5 Proofs

5.1 Proof of Theorem 2

(a) We first simplify the norming constant in (11) for the d-dimensional spherical beta
distribution with parameters p = 1 and q = n + 1, n ∈ N0. Using the duplication
formula

�(
1

2
)�(2z) = 22z−1�(z)�(z + 1

2
), z > 0, (52)

for the gamma function we obtain

cd(1, n + 1) = 2−(n+2λ)
�( 12 )�(n + 2λ + 1)

�(λ + 1)�(n + λ + 1
2 )

= 2−(n+2λ−1) (2λ + 1)n
(λ + 1

2 )n

�( 12 )�(2λ)

�(λ)�(λ + 1
2 )

= 2−n (2λ + 1)n
(λ + 1

2 )n
, (53)

and it follows that the density of SBetad(η, 1, n + 1) can be written as

f SBetad (x |η, 1, n + 1) = 2−n (2λ + 1)n
(λ + 1

2 )n

(
1 + ηtx

)n
, x ∈ Sd . (54)

We now write

exp
(
ρ ηtx

) = exp(−ρ) exp
(
ρ (1 + ηtx)

)
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586 L. Baringhaus, R. Grübel

and use the expansion

exp
(
ρ (1 + ηtx)

) =
∞∑

n=0

ρn

n!
(
1 + ηtx

)n

=
∞∑

n=0

(2ρ)n

n!
(λ + 1

2 )n

(2λ + 1)n
f SBetad (x |η, 1, n + 1)(x), x ∈ Sd ,

together with the identity

e−ρ
1F1(λ + 1

2
; 2λ + 1; 2ρ) = 2λ�(λ + 1)Iλ(ρ)/ρλ

to obtain

f MF
d (x |η, ρ) =

∞∑

n=0

chs(n|λ + 1

2
, 2λ + 1, 2ρ) f SBetad (x |η, 1, n + 1), x ∈ Sd .

In order to prove uniqueness suppose that

∞∑

n=0

vn SBetad(η, 1, n + 1) =
∞∑

n=0

wn SBetad(η, 1, n + 1)

for two sequences v = (vn)n∈N0 , w = (wn)n∈N0 of non-negative real numbers with
sum1. Passing to the respective push-forwards under x �→ ηtx this leads to the equality
of the (continuous) densities,

∞∑

n=0

vn
n + 1

2n+1 (1 + y)n =
∞∑

n=0

wn
n + 1

2n+1 (1 + y)n, −1 < y < 1,

hence the sequences v and w are equal to each other.

(b) From d = 2λ + 1, 1 − 4ρ
(1+ρ)2

= (1−ρ)2

(1+ρ)2
, and (53) it follows that

f CIId (x |η, ρ) =
(

1 − ρ2

(1 + ρ)2

)2λ+1 (
1 − 2ρ

(1 + ρ)2

(
1 + ηtx

))−(2λ+1)

=
(
1 − ρ

1 + ρ

)2λ+1 ∞∑

n=0

(2λ + 1)n
n!

(
2ρ

(1 + ρ)2

)n (
1 + ηtx

)n

=
(

(1 − ρ)2

(1 + ρ)2

)λ+ 1
2 ∞∑

n=0

(2λ + 1)n
n!

(
4ρ

(1 + ρ)2

)n

× (λ + 1/2)n
(2λ + 1)n

f SBetad (x |η, 1, n + 1)
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=
∞∑

n=0

nb

(
n|λ + 1

2
, (1 − ρ)2/(1 + ρ)2

)

× f SBetad (x |η, 1, n + 1), x ∈ Sd .

The proof of the uniqueness is similar to that of part (a).
(c) Noticing (d + 1)/2 = λ + 1, and

2F1

(
λ + 1

2
, λ + 1; 2λ + 1; 4ρ/(1 + ρ)2

)
= (1 + ρ)2λ+1

1 − ρ
,

see Magnus et al. (1966, p. 39), we get arguing as in part (b) that

f CIId (x |η, ρ) = 1 − ρ2

(1 + ρ)2(λ+1)

(
1 − 2ρ

(1 + ρ)2

(
1 + ηtx

))−(λ+1)

= 1 − ρ

(1 + ρ)2λ+1

∞∑

n=0

(λ + 1)n
n!

(
4ρ

(1 + ρ)2

)n

× (λ + 1/2)n
(2λ + 1)n

f SBetad (x |η, 1, n + 1)

=
∞∑

n=0

hs

(
n|λ + 1

2
, λ + 1, 2λ + 1, 4ρ/(1 + ρ)2

)

× f SBetad (x |η, 1, n + 1), x ∈ Sd .

5.2 Proof of Theorem 3

(a) Straightforward manipulations give

fWat
d (x |η, ρ) = 1

1F1(
1
2 ; λ + 1; ρ)

∞∑

n=0

ρn(ηtx)2n

n!

=
∞∑

n=0

chs(n|1
2
, λ + 1, ρ) f SPd (x |η, n).

(b) As at the beginning of the proof of Theorem 2, with p = q = n + 1, n ∈ N0,
the general expression (11) for the norming constants can be simplified to

cd(n + 1, n + 1) = (λ + 1)n
(λ + 1

2 )n
.

Hence the density for the associated spherical beta distribution may be written as

f SBetad (x |η, n + 1, n + 1) = (λ + 1)n
(λ + 1

2 )n

(
1 − (ηt x)2

)n
, x ∈ Sd . (55)
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588 L. Baringhaus, R. Grübel

For ρ < 0 and η ∈ Sd we have

eρ (ηtx)2 = eρe−ρ(1−(ηtx)2) = eρ
∞∑

n=0

(−ρ)n

n!
(λ + 1

2 )n

(λ + 1)n
f SBetad (x |η, n + 1, n + 1)

for all x ∈ Sd . Because of

e−ρ
1F1(

1

2
; λ + 1; ρ) = 1F1(λ + 1

2
; λ + 1;−ρ)

(see, e.g. (Magnus et al. 1966, p. 267)) it follows that

fWat
d (x |η, ρ) =

∞∑

n=0

chs(n|λ + 1

2
, λ + 1,−ρ) f SBetad (x |η, n + 1, n + 1)

for all η ∈ Sd , ρ < 0.
In both cases, it is easy to adapt the uniqueness argument from the vonMises–Fisher

context to the Watson situation.

5.3 Proof of Lemma 4

We write �(δ, α) for the gamma distribution with shape parameter δ > 0, scale
parameter α > 0 and Lebesgue density t �→ �(δ)−1αδtδ−1 exp(−αt), t > 0. Let V
be a positive random variable with V ∼ �(δ, 1

2 ). Then, for k ∈ N0,

E
(
V k/2 exp

(−2
1
2 τ V

1
2
)) = �(k + 2δ)

2δ−1�(δ)
eτ 2/2 D−(k+2δ)(2

1
2 τ).

Writing

(δ − 1
2 )k

(2δ − 1)k
= �(δ − 1

2 + k)

�(δ − 1
2 )

�(2δ − 1)

�(2δ − 1 + k)

and using the duplication formula (52) we obtain

dpc(k|δ, τ ) = 1

k! (2
1
2 τ)k2k

(δ − 1
2 )k

(2δ − 1)k
e−τ 2E

(
V k/2 exp

(−2
1
2 τ V

1
2
))

. (56)

Thus,

∞∑

k=0

dpc(k|δ, τ ) = e−τ 2
∞∑

k=0

1

k! (2
1
2 τ)k2k

(δ − 1
2 )k

(2δ − 1)k
E

(
V k/2 exp

(−2
1
2 τV 1/2))

= e−τ 2E

(
exp

(−2
1
2 τV 1/2)

1F1(δ − 1

2
; 2δ − 1; 2 3

2 τV 1/2)

)
.
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Using

e−z
1F1(δ − 1

2
; 2δ − 1; 2z) = Iδ−1(z)�(δ)(z/2)−(δ−1),

for z ∈ R, see e.g. Erdélyi et al. (1953a, p. 265, formula (10)), and

Iδ−1(z)�(δ)(z/2)−(δ−1) =
∞∑

k=0

(z/2)2k

k!�(k + δ)

we obtain

∞∑

k=0

dpc(k|δ, τ ) = �(δ)e−τ 2
∞∑

k=0

(τ 2/2)k

k!�(k + δ)
E(V k),

which in view of E(V k) = �(k+δ)
�(δ)

2k gives
∑∞

k=0 dpc(k|τ, δ) = 1.

5.4 Proof of Theorem 5

Using (12) with S ∼ χ2
d+1 and writing

exp
(
2

1
2 ρS

1
2 ηtx

)
= exp

(
2

1
2 ρS

1
2 (1 + ηtx)

)
exp

(
−2

1
2 ρS

1
2

)

we see that

f AGd (x |η, ρ) =
∞∑

n=0

(1 + ηtx)n

(
2

1
2 ρ

)n

n! e−ρ2
E

(
Sn/2 exp(−2

1
2 ρS

1
2 )

)

=
∞∑

n=0

f SBetad (x |ρ, 1, n + 1)

(
2

1
2 ρ

)n

n! 2n
(λ + 1/2)n
(2λ + 1)n

e−ρ2

× E
(
Sn/2 exp(−2

1
2 ρS

1
2 )

)
.

As χ2
d+1 = �(λ + 1, 1

2 ), the asserted discrete mixture representation now follows
with (56). The uniqueness of the representation is obtained as in the proofs of Theo-
rems 2 and 3.

5.5 Proof of Theorem 8

(a)We use Proposition 7.We haveβ(ρ) = ∑∞
n=1 2ρ

n = 2ρ
1−ρ

≤ 1 if and only if ρ ≤ 1
3 .

By (31), the density fWC
1 (·|η, ρ) of the wrapped Cauchy distribution WC1(η, ρ) can

be written as
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590 L. Baringhaus, R. Grübel

fWC
1 (x |η, ρ) = 1 − β(ρ) + 2

∞∑

n=1

(
1 + Tn(η

tx)
)
ρn, x ∈ S1.

The representation now follows easily.

(b) Using (30) we can write the density fWN
1 (·|η, ρ) of the wrapped normal distri-

bution WN1(η, ρ) as

fWN
1 (x |η, ρ) = 1 − β(ρ) + 2

∞∑

n=1

e−n2ρ/2 (
1 + Tn(η

tx)
)
, x ∈ S1.

The function β is easily seen to be continuous and strictly decreasing, with unique
solution ρ0 ≈ 1.570818 of the equation β(ρ) = 1. From Proposition 7 we thus obtain
a discrete mixture expansion for the family {WN1(η, ρ) : η ∈ S1, ρ ≥ ρ0} with
mixing base elements �0

n,η and weights wρ(n) = 2e−n2ρ/2, n ∈ N.

5.6 Proof of Theorem 9

(a) The density f MF
1 (·|η, ρ) of the von Mises–Fisher distribution MF1(η, ρ) can be

written as

f MF
1 (x |η, ρ) = exp(ρηtx)

I0(ρ)
= 1 + 2

∞∑

n=1

In(ρ)

I0(ρ)
Tn(η

tx), x ∈ S1, (57)

see e.g. Abramowitz and Stegun (1964, formula 9.6.34). In fact, the representation (57)
corresponds to theFourier series expansion of the density of the unique randomangle in
[−π, π) associated with X ∼ MF1(η, ρ). To be precise, let for simplicity η = (1, 0)t

and let� ∈ [−π, π) be the unique random angle such that X = (cos�, sin�)t. Then
the density hρ(θ) = exp(ρ cos θ)

2π I0(ρ)
, θ ∈ [−π, π), of � with respect to the Lebesgue

measure on [−π, π) has the absolutely convergent Fourier series expansion

hρ(θ) = 1 + 2
∞∑

n=1

In(ρ)

I0(ρ)
cos(nθ), θ ∈ [−π, π);

see, Kent (1977, formula (1.1a)). In particular, β(ρ) = 2
∑∞

n=1
In(ρ)
I0(ρ)

= eρ/I0(ρ)−1.
We have limρ→0 β(ρ) = 0, limρ→∞ β(ρ) = ∞, see Abramowitz and Stegun (1964,
formula 9.7.1), and

d

dρ
β(ρ) = I0(ρ)−2eρ (I0(ρ) − I1(ρ)) > 0 for all ρ > 0,

see Soni (1965), hence the function β is strictly increasing. Taken together this implies
that the equation β(ρ) = 1 has a unique finite positive root ρ = ρ0 ≈ 0.876842.
Proposition 7 now leads to the discrete mixture representation
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MF1(η, ρ) = (
2 − eρ/I0(ρ)

)
unif(S1) + (

eρ/I0(ρ) − 1
) ∞∑

n=1

2e−ρ In(ρ)

1 − e−ρ I0(ρ)
�0

n,η

= (1 − β(ρ)) unif(S1) + β(ρ)

∞∑

n=1

psk(n|ρ)�0
n,η .

(b) For κ > 0, τ > 0, and −1 ≤ t ≤ 1, we have

eτ t = 2κ�(κ)τ−κ
∞∑

n=0

(κ + n)Iκ+n(τ )Cκ
n (t), (58)

see Magnus et al. (1966, p. 227) or Kent (1977, Section 7). Hence the density
f MF
d (·|η, ρ) of MFd(η, ρ) can be written as

f MF
d (x |η, ρ) = 1 +

∞∑

n=1

(
1 + n

λ

) (2λ)n

n!
Iλ+n(ρ)

Iλ(ρ)
Dλ
n (η

tx), x ∈ Sd . (59)

With t = 1 in (58) we get, after some algebra,

1 =
∞∑

n=1

(
1 + n

κ

) (2κ)n

n!
2κ�(κ + 1)τ−κe−τ Iκ(τ )

1 − 2κ�(κ + 1)τ−κe−τ Iκ(τ )

Iκ+n(τ )

Iκ(τ )
.

This implies that gpsk(·|κ, τ ) is a probability mass function. Further,

βλ(ρ) = ρλeρ

2λ�(λ + 1)Iλ(ρ)
− 1 =

∞∑

n=1

(
1 + n

λ

) Iλ+n(ρ)

Iλ(ρ)
Cλ
n (1).

Arguing as in part (a) we find that the equation βλ(ρ) = 1 has a unique finite positive
root ρ = ρ0(λ). For the family {MFd(η, ρ) : η ∈ Sd , 0 < ρ ≤ ρ0(λ)} this finally
gives the discrete mixture representation

MFd(η, ρ) = (1 − βλ(ρ)) unif(Sd) + βλ(ρ)

∞∑

n=1

gpsk(n|λ, ρ)�λ
n,η.

5.7 Proof of Proposition 12

The statements are a consequence of the basic formulas (25) and (26).

5.8 Proof of Proposition 13

All terms involved are positive, so there are no convergence issues, and the represen-
tation follows from the bilinearity of the mixture operation.
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592 L. Baringhaus, R. Grübel

5.9 Proof of Proposition 14

(a) The distribution of X is determined by the distributions of the vectors (X0, . . . , Xn),
n ∈ N0. We may thus use induction, and (38) provides the necessary argument for the
induction step.

(b) Given a north pole η we obtain a partitioning of Sd into the sets Cη(y) = {x ∈
Sd : ηtx = y} with the same latitude y ∈ [−1, 1]. Isotropy implies that the transition
mechanism interacts with the function that maps the points of Sd to their latitude in
the manner required by Dynkin’s criterion, see Dynkin (1965, Theorem 10.13). As
the action of O(d + 1) on Sd is doubly transitive, for unit vectors η1, η2 ∈ Sd with
the property that ηtη1 = ηtη2 there exists some U ∈ O(d + 1) such that Uη = η and
Uη1 = η2. The isotropy of Q then implies that for all A ∈ B([−1, 1])

Q(η2, {x ∈ Sd : ηtx ∈ A}) = Q(Uη1, {x ∈ Sd : ηtx ∈ A})
= Q(η1, {U tx ∈ Sd : ηtx ∈ A})
= Q(η1, {y ∈ Sd : ηtUy ∈ A})
= Q(η1, {y ∈ Sd : ηty ∈ A}).

(c) This follows easily on using induction and Proposition 13.

5.10 Proof of Theorem 15

The transition probabilities for the spherical Brownian motion in dimension d ≥ 2 are
given in Hartman and Watson (1974),

pt (x, y) = 1 +
∞∑

n=1

(
1 + n

λ

) (2λ)n

n! e−n(n+2λ)t/2 Dλ
n (x

ty), x, y ∈ Sd , t > 0,

see also Karlin and McGregor (1960). Let Pt (·, x) be the distribution on Sd with
density y → pt (x, y), let

βλ(t) :=
∞∑

n=1

(
1 + n

λ

) (2λ)n

n! e−n(n+2λ)t/2 for t > 0,

and let tλ > 0 be the unique positive real number such that βλ(tλ) = 1. Then, with
brd(·|t) as in the theorem, we get the discrete mixture representations

Pt (·, η) = (1 − βλ(t)) unif(Sd) + βλ(t)
∞∑

n=1

brd(n|t)�λ
n,η.
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5.11 Proof of Theorem 16

Suppose that, on the contrary, (Xt )t≥0 is a homogeneous Markov process with the
property that there exists a function κ : (0,∞) → (0,∞) such that for all ξ ∈ Sd it
holds that if P(X0 = ξ) = 1 then

L(Xt ) = MFd (ξ, κ(t)) for all t > 0.

Because of the Markov property we would then have positive parameters ρ, ρ′, ρ′′
such that

MFd(η, ρ) ◦ MFd(·, ρ′) = MFd(η, ρ′′). (60)

To see that this cannot be true, we note that the density of MFd(η, ρ) ◦ MFd(·, ρ′) is
given by

h(x) :=
∫

f MF
d (x |ξ, ρ′) f MF

d (ξ |η, ρ) unif(Sd)(dξ), x ∈ R
d .

We now refer to Kent (1977, Section 7) and the proof of Theorem 9, where it is shown
that the density f MF

d (·|η, ρ) can be written as

f MF
d (x |η, ρ) =

∞∑

n=0

1

γ λ
n

Iλ+n(ρ)

Iλ(ρ)
Dλ
n (η

tx) for all x ∈ Sd .

Expressing f MF
d (·|ξ, ρ′) correspondingly, and using (25) and (26), we obtain

h(x) =
∞∑

n=0

1

γ λ
n

Iλ+n(ρ)

Iλ(ρ)

Iλ+n(ρ
′)

Iλ(ρ′)
Dλ
n (η

tx) for all x ∈ Sd .

Hence by (60) we would have

Iλ+n(ρ)

Iλ(ρ)

Iλ+n(ρ
′)

Iλ(ρ′)
= Iλ+n(ρ

′′)
Iλ(ρ′′)

for all n ∈ N0. (61)

From (10) it is easily seen that for each τ > 0 the asymptotic relation

Iλ+n(τ ) ∼ 2−(λ+n)�(λ + n + 1)−1τλ+n as n → ∞

holds. Thus,

log Iλ+n(τ ) = −(λ + n) log 2 − log�(λ + n + 1) + (λ + n) log τ

+ o(1) as n → ∞.
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By Stirling’s formula,

log�(λ + n + 1) = (λ + n + 1/2) log n − n + 1

2
log (2π) + o(1) as n → ∞.

From this we deduce that

lim
n→∞

log Iλ+n(τ )
Iλ(τ )

n log n
= −1,

which is in contradiction to (61).
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