Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/308846 
Autor:innen: 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Journal of Marketing Analytics [ISSN:] 2050-3326 [Volume:] 11 [Issue:] 4 [Publisher:] Palgrave Macmillan [Place:] London [Year:] 2022 [Pages:] 747-760
Verlag: 
Palgrave Macmillan, London
Zusammenfassung: 
Customer segmentation and key account management are important use cases for clustering algorithms. Here, a data set of a Portuguese wholesaler for food and household supplies is used as an exemplary application. To increase the quality of the analysis, a two-stage approach is proposed. First, key accounts are filtered by a density-based outlier detection. Second, a Gaussian Mixture Model (GMM) is applied to cluster smaller customers. This two-stage approach is aligned with the business implications of key accounts as outstanding and very differently behaving customers as well as with the core idea of an ABC analysis. Also, the exclusion of key accounts corresponds to the definition of outliers as the results of a different underlying mechanism. Using this two-stage approach shows better clustering results compared to using a one-stage approach applying only a GMM. Therefore, it is concluded that density-based detection of key accounts followed by a clustering using a GMM is beneficial for customer segmentation within B2B applications.
Schlagwörter: 
Clustering algorithms
Anomaly detection
Customer segmentation
Marketing management
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.