Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/307069 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Finance and Stochastics [ISSN:] 1432-1122 [Volume:] 28 [Issue:] 1 [Publisher:] Springer [Place:] Berlin, Heidelberg [Year:] 2023 [Pages:] 215-257
Verlag: 
Springer, Berlin, Heidelberg
Zusammenfassung: 
Using rough path theory, we provide a pathwise foundation for stochastic Itô integration which covers most commonly applied trading strategies and mathematical models of financial markets, including those under Knightian uncertainty. To this end, we introduce the so-called property (RIE) for càdlàg paths, which is shown to imply the existence of a càdlàg rough path and of quadratic variation in the sense of Föllmer. We prove that the corresponding rough integrals exist as limits of left-point Riemann sums along a suitable sequence of partitions. This allows one to treat integrands of non-gradient type and gives access to the powerful stability estimates of rough path theory. Additionally, we verify that (path-dependent) functionally generated trading strategies and Cover's universal portfolio are admissible integrands, and that property (RIE) is satisfied by both (Young) semimartingales and typical price paths.
Schlagwörter: 
Föllmer integration
Model uncertainty
Semimartingale
Pathwise integration
Rough path
Functionally generated portfolios
Universal portfolio
JEL: 
C50
G10
G11
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.