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Abstract
Using rough path theory, we provide a pathwise foundation for stochastic Itô integra-
tion which covers most commonly applied trading strategies and mathematical mod-
els of financial markets, including those under Knightian uncertainty. To this end, we
introduce the so-called property (RIE) for càdlàg paths, which is shown to imply the
existence of a càdlàg rough path and of quadratic variation in the sense of Föllmer.
We prove that the corresponding rough integrals exist as limits of left-point Riemann
sums along a suitable sequence of partitions. This allows one to treat integrands of
non-gradient type and gives access to the powerful stability estimates of rough path
theory. Additionally, we verify that (path-dependent) functionally generated trading
strategies and Cover’s universal portfolio are admissible integrands, and that property
(RIE) is satisfied by both (Young) semimartingales and typical price paths.
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1 Introduction

A fundamental pillar of mathematical finance is the theory of stochastic integration
initiated by K. Itô in the 1940s. Itô’s stochastic integration not only allows a well-
posedness theory for most probabilistic models of financial markets, but also comes
with invaluable properties, such as having an integration by parts formula and chain
rule, and that of being a continuous operator (with respect to suitable spaces of ran-
dom variables) which is essential for virtually all applications. However, despite the
elegance and success of Itô integration, it also admits some significant drawbacks
from both theoretical and practical perspectives.

The construction of the Itô integral requires one to fix a probability measure a pri-
ori and is usually based on a limiting procedure of approximating Riemann sums in
probability. While in mathematical finance, the Itô integral usually represents the cap-
ital gains process from continuous-time trading in a financial market, it lacks a robust
pathwise meaning. That is, the stochastic Itô integral does not have a well-defined
value on a given “state of the world”, e.g. a realised price trajectory of a liquidly
traded asset on a stock exchange. This presents a gap between probabilistic mod-
els and their financial interpretation. Addressing the pathwise meaning of stochastic
integration has led to a stream of literature beginning with the classical works of
Bichteler [7] and Willinger and Taqqu [53]; see also Karandikar [30] and Nutz [41].

The requirement of fixing a probability measure to have access to Itô integra-
tion becomes an even more severe obstacle when one wants to develop mathematical
finance under model risk—also known as Knightian uncertainty. Starting from the
seminal works of Avellaneda et al. [5] and Lyons [38], there has been an enormous
and ongoing effort to treat the challenges posed by model risk in mathematical fi-
nance, that is, the risk stemming from the possible misspecification of an adopted
stochastic model, typically represented by a single fixed probability measure. The
majority of the existing robust treatments of financial modelling replace the single
probability measure by a family of (potentially singular) probability measures, or
even take so-called model-free approaches where no probabilistic structure of the
underlying price trajectories is assumed; see for example Hobson [27] for classical
lecture notes on robust finance. In particular, the latter model-free approaches often
require a purely deterministic integration theory sophisticated enough to handle the
irregular sample paths of standard continuous-time financial models and commonly
employed functionally generated trading strategies.

In the seminal paper [19], Föllmer provided the first deterministic analogue to
stochastic Itô integration which had the desired properties required by financial ap-
plications. Indeed, assuming that a càdlàg path S : [0, T ] → R

d possesses a suitable
notion of quadratic variation along a sequence (Pn)n∈N of partitions of the interval
[0, T ], Föllmer proved that the limit

∫ t

0
Df (Su) dSu := lim

n→∞
∑

[u,v]∈Pn

Df (Su)(Sv∧t − Su∧t ), t ∈ [0, T ],

where Df denotes the gradient of f , exists for all twice continuously differentiable
functions f : Rd → R. The resulting pathwise integral

∫ t

0 Df (Su) dSu is often called
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the Föllmer integral and has proved to be a valuable tool in various applications in
model-free finance; for some recent examples, we refer to Föllmer and Schied [21],
Davis et al. [14], Schied et al. [46] and Cuchiero et al. [13]. In fact, even clas-
sical Riemann–Stieltjes integration has been successfully used as a substitute for
Itô integration in model-free finance; see e.g. Dolinsky and Soner [16] or Hou and
Obłój [28].

By now arguably the most general pathwise (stochastic) integration theory is pro-
vided by the theory of rough paths, as introduced by Lyons [39], and its recent ex-
tension to càdlàg rough paths by Friz and Shekhar [25], Friz and Zhang [26] and
Chevyrev and Friz [9]. Rough integration can be viewed as a generalisation of Young
integration which is able to handle paths of lower regularity. While rough integration
allows one to treat the sample paths of numerous stochastic processes as integrators
and offers powerful pathwise stability estimates, it comes with a pitfall from a fi-
nancial perspective: the rough integral is defined as a limit of so-called compensated
Riemann sums and thus apparently does not correspond to the canonical financial in-
terpretation as the capital gains process generated by continuous-time trading. Even
worse, choosing a rough path without care might lead to an anticipating integral,
corresponding e.g. to Stratonovich integration, thus introducing undesired arbitrage
when used as a capital process.

To overcome these issues, we introduce the so-called property (RIE) for a càdlàg
path S : [0, T ] → R

d and a sequence (Pn)n∈N of partitions of the interval [0, T ].
This property is very much in the same spirit as Föllmer’s assumption of quadratic
variation along a sequence of partitions. Indeed, we show that property (RIE) im-
plies the existence of quadratic variation in the sense of Föllmer, and even the exis-
tence of a càdlàg rough path S above S, which loosely speaking corresponds to an
“Itô” rough path in a probabilistic setting. Assuming property (RIE), we prove that
the corresponding rough integrals exist as limits of left-point Riemann sums along
the sequence (Pn)n∈N of partitions. This result restores the canonical financial in-
terpretation for rough integration and links it to Föllmer integration for càdlàg paths.
Property (RIE) was previously introduced by Perkowski and Prömel [42] for continu-
ous paths, though we emphasise that the present more general càdlàg setting requires
quite different techniques compared to the continuous setting of [42].

Given the aforementioned results, a càdlàg path which satisfies property (RIE)
permits the path-by-path existence of rough integrals with their desired financial in-
terpretation, and moreover maintains access to their powerful stability results which
ensure that the integral is a continuous operator. This appears to be a significant
advantage compared to the classical notions of pathwise stochastic integration in
Bichteler [7], Willinger and Taqqu [53], Karandikar [30], Nutz [41] which do not
come with such stability estimates. In particular, the pathwise stability results of
rough path theory allow one to prove a model-free version of the so-called funda-
mental theorem of derivative trading—see Armstrong et al. [4]—and may be of inter-
est when investigating discretisation errors of continuous-time trading in model-free
finance; see Riga [44]. Furthermore, in contrast to Föllmer integration, rough integra-
tion allows one to consider general functionally generated integrands (g(St )), where
g is a general (sufficiently smooth) function g : Rd → R

d and not necessarily the gra-
dient of another vector field f : Rd → R. For instance, model-free portfolio theory
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constitutes a research direction in which it is beneficial to consider non-gradient trad-
ing strategies; see Allan et al. [1]. Even more generally, rough integration allows one
to treat path-dependent functionally generated options in the sense of Dupire [17],
and pathwise versions of Cover’s universal portfolio, as discussed in Sect. 3.

Of course, it remains to verify that property (RIE) is a reasonable modelling as-
sumption in mathematical finance, in the sense that it is fulfilled almost surely by
sample paths of the commonly used probabilistic models of financial markets. Since
it seems natural that continuous-time trading takes place when the underlying price
process fluctuates, we employ sequences of partitions based on such a “space discreti-
sation”. For such sequences of partitions, we show that the sample paths of càdlàg
semimartingales almost surely satisfy property (RIE). This result is then extended to
so-called Young semimartingales, which are stochastic possesses given by the sum
of a càdlàg local martingale and an adapted càdlàg process of finite q-variation for
some q < 2. Finally, we prove that property (RIE) is satisfied by typical price paths in
the sense of Vovk [49], which correspond to a model-free version of “no unbounded
profit with bounded risk”.

The paper is structured as follows. In Sect. 2, we introduce property (RIE) and ver-
ify the properties of the associated rough integration as described above. In Sect. 3,
we exhibit functionally generated trading strategies and generalisations thereof which
provide valid integrands for rough integration. In Sect. 4, we prove that (Young)
semimartingales and typical price paths satisfy property (RIE).

2 Rough integration under property (RIE)

In this section, we develop pathwise integration under property (RIE). We set up the
essential ingredients from rough path theory in Sect. 2.2 and show in Sect. 2.3 that
paths satisfying (RIE) serve as suitable integrators in mathematical finance. Finally,
in Sect. 2.4, we connect property (RIE) with the existence of quadratic variation in
the sense of Föllmer.

2.1 Basic notation

Let (Rd , | · |) denote the standard Euclidean space and D([0, T ];Rd) the space of
all càdlàg (i.e., right-continuous with left limits) functions [0, T ] → R

d . A partition
P = P([s, t]) of the interval [s, t] is a finite subset of [s, t] which includes the end-
points s and t , i.e., P = {s = t0 < t1 < · · · < tN = t} for some N ∈ N. We also iden-
tify such a partition with the induced collection of intervals between the successive
points of P , i.e., with a slight abuse of notation, P = {[ti , ti+1] : i = 0, 1, . . . , N−1}.
The mesh size of a partition P is given by |P| := max{ti+1 − ti : i = 0, . . . , N − 1},
and for a partition P of the interval [s, t] and a subinterval [u, v] ⊆ [s, t], we write
P([u, v]) := (P ∪ {u, v}) ∩ [u, v] = {r ∈ P ∪ {u, v} : u ≤ r ≤ v} for the restriction
of the partition P to the interval [u, v]. A sequence (Pn)n∈N of partitions is called
nested if Pn ⊆ Pn+1 for all n ∈ N.

Setting �[0,T ] := {(s, t) ∈ [0, T ]2 : s ≤ t}, a control function is a function
w : �[0,T ] → [0,∞) which is superadditive, i.e., w(s, u) + w(u, t) ≤ w(s, t) for
0 ≤ s ≤ u ≤ t ≤ T .
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Throughout this section, we fix a finite time interval [0, T ] and the dimension
d ∈ N. We also adopt the convention that given a path A defined on [0, T ], we write
As,t := At − As for the increment of A over the interval [s, t]. Note, however, that
whenever A is a two-parameter function defined on �[0,T ], the notation As,t simply
denotes the value of A evaluated at the pair of times (s, t) ∈ �[0,T ].

If A denotes either a path [0, T ] → E or a two-parameter function �[0,T ] → E

for some normed vector space E, then for any p ∈ [1,∞), the p-variation of A over
the interval [s, t] is defined by

‖A‖p,[s,t] :=
(

sup
P([s,t])

∑
[u,v]∈P([s,t])

|Au,v|p
) 1

p

,

where the supremum is taken over all partitions P([s, t]) of the interval
[s, t] ⊆ [0, T ]. If ‖A‖p,[0,T ] < ∞, then A is said to have finite p-variation.

We write Dp = Dp([0, T ]; E) for the space of all càdlàg paths A : [0, T ] → E

of finite p-variation, and similarly D
p

2 = D
p

2 (�[0,T ]; E) for the space of two-
parameter functions A : �[0,T ] → E of finite p-variation which are such that the
maps s �→ As,t for fixed t , and t �→ As,t for fixed s, are both càdlàg. Note that a
function A having finite p-variation is equivalent to the existence of a control func-
tion w such that |As,t |p ≤ w(s, t) for all (s, t) ∈ �[0,T ]. For instance, one may take
w(s, t) = ‖A‖p

p,[s,t].

2.2 Càdlàg rough path theory and property (RIE)

While rough path theory has by now been well studied in the case of continuous
paths, as exhibited in a number of books, notably Friz and Hairer [24], its extension
to càdlàg paths appeared only recently, starting with Friz and Shekhar [25]. In this
section we mainly rely on results regarding forward integration with respect to càdlàg
rough paths as presented in Friz and Zhang [26].

In the following, we fix p ∈ (2, 3) and q ≥ p such that

2

p
+ 1

q
> 1,

and define r > 1 by the relation

1

r
= 1

p
+ 1

q
.

This means in particular that 1 < p/2 ≤ r < p ≤ q < ∞.
Throughout the paper, we use the symbol � to denote inequality up to a

multiplicative constant which depends only on the numbers p, q and r chosen above.
We begin by recalling the definition of a càdlàg rough path as well as the corre-

sponding notion of controlled paths. In the following, we write A ⊗ B for the tensor
product of two vectors A,B ∈ R

d , i.e., the d ×d-matrix with (i, j)-component given
by [A ⊗ B]ij = AiBj for 1 ≤ i, j ≤ d .
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Definition 2.1 We say that a triplet X = (X,Z,X) is a (càdlàg) rough path (over Rd )
if X ∈ Dp([0, T ];Rd), Z ∈ Dp([0, T ];Rd), X ∈ D

p/2
2 (�[0,T ];Rd×d) and if Chen’s

relation

Xs,t = Xs,u + Xu,t + Zs,u ⊗ Xu,t (2.1)

holds for all times 0 ≤ s ≤ u ≤ t ≤ T . We denote the space of càdlàg rough paths
by Vp. Note that p is fixed throughout.

The reader is encouraged to check that given càdlàg paths X and Z of bounded
variation, setting Xs,t = ∫ t

s
Zs,u ⊗ dXu = ∫ t

s
Zu ⊗ dXu − Zs ⊗ Xs,t for all

(s, t) ∈ �[0,T ], with the integral defined as a limit of left-point Riemann sums, gives
a rough path. Although the integral

∫ t

s
Zs,u ⊗dXu is not in general well defined when

X and Z are not of bounded variation, given a rough path (X,Z,X), we may think
of X as postulating a “candidate” for the value of such integrals.

Remark 2.2 The definition of rough paths introduced above looks slightly different
from the standard definition in which one takes X = Z. Our definition is slightly
more general, but the corresponding theory works in exactly the same way and turns
out to be more convenient in the context of property (RIE) as we shall see later.

More precisely, the matrix Xs,t will later represent for us the (a priori ill-defined)
‘integral’

∫ t

s
Ss,u ⊗ dSu which will be defined as the limit as n → ∞ of the Rie-

mann sums (
∫ t

s
Sn

s,u ⊗dSu)n∈N appearing in property (RIE) below. In the continuous-
path setting of Perkowski and Prömel [42], a linear interpolation is used to provide a
continuous approximation of Sn, leading to a Stratonovich-type integral in the limit,
which is subsequently converted back into an Itô-type integral. Thanks to the recently
developed theory of càdlàg rough paths, we can use here a more direct argument
which avoids this detour. This means working directly with the integral

∫ t

s
Sn

s,u⊗dSu,
which corresponds to taking X = S and Z = Sn in Definition 2.1, thus requiring
X �= Z.

For two rough paths X = (X,Z,X) and X̃ = (X̃, Z̃, X̃), we use the notation

‖X‖p,[s,t] := ‖X‖p,[s,t] + ‖Z‖p,[s,t] + ‖X‖ p
2 ,[s,t]

and define the pseudometric

‖X; X̃‖p,[s,t] := ‖X − X̃‖p,[s,t] + ‖Z − Z̃‖p,[s,t] + ‖X − X̃‖ p
2 ,[s,t],

for [s, t] ⊆ [0, T ].
In the following, we write L(Rd ;Rd) for the space of linear maps Rd → R

d .

Definition 2.3 Let Z ∈ Dp([0, T ];Rd). A pair (F, F ′) is called a controlled path
(with respect to Z) if we have F ∈ Dp([0, T ];Rd), F ′ ∈ Dq([0, T ];L(Rd ;Rd)) and
RF ∈ Dr

2(�[0,T ];Rd), where the remainder RF is defined implicitly by the relation

Fs,t = F ′
sZs,t + RF

s,t , (s, t) ∈ �[0,T ].
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We refer to F ′ as the Gubinelli derivative of F (with respect to Z) and denote the
space of such controlled paths by Vq,r

Z .

Given a path Z ∈ Dp([0, T ];Rd), the space Vq,r
Z of controlled paths becomes

a Banach space when equipped with the norm (F, F ′) �→ |F0| + ‖F,F ′‖Vq,r
Z ,[0,T ],

where

‖F,F ′‖Vq,r
Z ,[0,T ] := |F ′

0| + ‖F ′‖q,[0,T ] + ‖RF ‖r,[0,T ].

With the concepts of rough paths and controlled paths at hand, we are ready to
introduce rough integration. The following result is a straightforward extension of
Allan et al. [1, Lemma 2.6] and its proof follows almost verbatim.

Proposition 2.4 Let X = (X,Z,X) ∈ Vp be a càdlàg rough path. Let (F, F ′) ∈ Vq,r
Z

and (G,G′) ∈ Vq,r
X be controlled paths with respect to Z and X, respectively, with

remainders RF and RG. Then for each t ∈ [0, T ], the limit

∫ t

0
Fu dGu := lim

|P |→0

∑
[u,v]∈P

(FuGu,v + F ′
uG

′
uXu,v) (2.2)

exists along every sequence of partitions P of the interval [0, t] with mesh size |P|
tending to zero, and the limit does not depend on the choice of sequence of partitions.
We call this limit the rough integral of (F, F ′) against (G,G′) (relative to the rough
path X). It moreover comes with the estimate

∣∣∣∣
∫ t

s

Fu dGu − FsGs,t − F ′
sG

′
sXs,t

∣∣∣∣
≤ C

(‖F ′‖∞(‖G′‖q
q,[s,t] + ‖Z‖p

p,[s,t])
1
r ‖X‖p,[s,t] + ‖F‖p,[s,t]‖RG‖r,[s,t]

+ ‖RF ‖r,[s,t]‖G′‖∞‖X‖p,[s,t] + ‖F ′G′‖q,[s,t]‖X‖ p
2 ,[s,t]

)
(2.3)

for all (s, t) ∈ �[0,T ], where the constant C depends only on p, q and r .

We interpret the product of vectors FuGu,v appearing in (2.2) as the Euclidean
inner product, and the rough integral itself is real-valued. However, we remark that
in general the path F may take values in a space of linear maps, and rough integrals
may be defined to take values in a space of vectors, or even an infinite-dimensional
Banach space.

Remark 2.5 In the case when G = X (so that G′ is the identity map and RG = 0), the
integral defined in Proposition 2.4 reduces to the more classical notion of the rough
integral of the controlled path (F, F ′) against the rough path X, given by

∫ t

0
Fu dXu = lim

|P |→0

∑
[u,v]∈P

FuXu,v + F ′
uXu,v.
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Remark 2.6 Combining the estimate in (2.3) with the relation Gs,t = G′
sXs,t + RG

s,t ,
it follows that the rough integral

∫ ·
0 Fu dGu is itself a controlled path with respect to

X with Gubinelli derivative FG′, so that (
∫ ·

0 Fu dGu, FG′) ∈ Vq,r
X .

Notice that the construction of the rough integral in (2.2) is based on so-called
compensated Riemann sums

∑
[u,v]∈P (FuGu,v +F ′

uG
′
uXu,v) instead of classical left-

point Riemann sums
∑

[u,v]∈P FuGu,v . While the classical Riemann sums come with
a natural interpretation as capital gains processes in the context of mathematical fi-
nance, the financial interpretation of compensated Riemann sums is by no means
obvious. However, we show later in Theorem 2.15 that the integral can be given a
natural formulation as a limit of suitable left-point Riemann sums. Moreover, an ad-
vantage of rough integration is that it provides rather powerful stability estimates, for
instance as presented in the next result.

Proposition 2.7 Let X = (X,Z,X), X̃ = (X̃, Z̃, X̃) ∈ Vp be càdlàg rough paths

and (F, F ′) ∈ Vq,r
Z , (F̃ , F̃ ′) ∈ Vq,r

Z̃
controlled paths with remainders RF and RF̃ ,

respectively. Then:
(i) We have the estimate

∥∥∥∥
∫ ·

0
Fu dXu −

∫ ·

0
F̃u dX̃u

∥∥∥∥
p;[0,T ]

≤ C
(
(|F̃0| + ‖F̃ , F̃ ′‖Vq,r

Z̃
,[0,T ])(1 + ‖X‖p;[0,T ] + ‖Z̃‖p;[0,T ])‖X; X̃‖p;[0,T ]

+ (|F0 − F̃0| + |F ′
0 − F̃ ′

0| + ‖F ′ − F̃ ′‖q;[0,T ] + ‖RF − RF̃ ‖r;[0,T ])

× (1 + ‖Z‖p;[0,T ])‖X‖p;[0,T ]
)
,

where the constant C depends only on p, q and r .
(ii) Let (G,G′) ∈ Vq,r

X and (G̃, G̃′) ∈ Vq,r

X̃
also be controlled paths with

remainders RG and RG̃, respectively. Let M > 0 be a constant such that

‖X‖p,[0,T ], |F0|, ‖F,F ′‖Vq,r
Z ,[0,T ], ‖G,G′‖Vq,r

X ,[0,T ] ≤ M,

‖X̃‖p,[0,T ], |F̃0|, ‖F̃ , F̃ ′‖Vq,r

Z̃
,[0,T ], ‖G̃, G̃′‖Vq,r

X̃
,[0,T ] ≤ M.

We then have the estimate
∥∥∥∥

∫ ·

0
Fu dGu −

∫ ·

0
F̃u dG̃u

∥∥∥∥
p,[0,T ]

≤ C
(|F0 − F̃0| + |F ′

0 − F̃ ′
0| + ‖F ′ − F̃ ′‖q,[0,T ] + ‖RF − RF̃ ‖r,[0,T ]

+ |G′
0 − G̃′

0| + ‖G′ − G̃′‖q,[0,T ] + ‖RG − RG̃‖r,[0,T ] + ‖X; X̃‖p,[0,T ]
)
,

where the new constant C depends on p, q, r and M .
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Proof We present here only the proof of (ii) since the proof of (i) follows almost
verbatim. Here, the multiplicative constant implied by the symbol � is allowed to
depend on the numbers p, q and r as usual, and additionally on the constant M .
Following the proof of Friz and Zhang [26, Lemma 3.4], one deduces in our more
general setting the estimates

‖F − F̃‖p,[0,T ] � |F ′
0 − F̃ ′

0| + ‖F ′ − F̃ ′‖q,[0,T ] + ‖RF − RF̃ ‖r,[0,T ]

+ ‖Z − Z̃‖p,[0,T ] (2.4)

and

‖R
∫ ·

0 Fu dGu − R
∫ ·

0 F̃u dG̃u‖r,[0,T ]

� |F0 − F̃0| + ‖F − F̃‖p,[0,T ] + |F ′
0 − F̃ ′

0| + ‖F ′ − F̃ ′‖q,[0,T ]

+ ‖RF − RF̃ ‖r,[0,T ] + |G′
0 − G̃′

0| + ‖G′ − G̃′‖q,[0,T ] + ‖RG − RG̃‖r,[0,T ]

+ ‖X; X̃‖p,[0,T ]. (2.5)

Recalling Remark 2.6, we find by using the controlled path structure of the rough
integrals that

∥∥∥∥
∫ ·

0
Fu dGu −

∫ ·

0
F̃u dG̃u

∥∥∥∥
p,[0,T ]

� |F0 − F̃0| + ‖F − F̃‖p,[0,T ] + |G′
0 − G̃′

0|

+ ‖G′ − G̃′‖q,[0,T ] + ‖X − X̃‖p,[0,T ]

+ ‖R
∫ ·

0 Fu dGu − R
∫ ·

0 F̃u dG̃u‖r,[0,T ]. (2.6)

The result then follows upon substituting (2.4) and (2.5) into (2.6). �

In the spirit of Föllmer’s [19] assumption of quadratic variation along a sequence
of partitions, we introduce the following property.

Property 2.8 (RIE) Let p ∈ (2, 3) and let Pn = {0 = tn0 < tn1 < · · · < tnNn
= T },

n ∈ N, be a sequence of nested partitions of the interval [0, T ] such that |Pn| → 0 as
n → ∞. For S ∈ D([0, T ];Rd), we define Sn : [0, T ] → R

d by

Sn
t = ST 1{T }(t) +

Nn−1∑
k=0

Stnk
1[tnk ,tnk+1)

(t), t ∈ [0, T ],

for each n ∈ N. We assume that

• the sequence (Sn)n∈N of paths converges uniformly to S as n → ∞;
• the Riemann sums

∫ t

0 Sn
u ⊗dSu := ∑Nn−1

k=0 Stnk
⊗Stnk ∧t,tnk+1∧t converge uniformly

as n → ∞ to a limit, which we denote by
∫ t

0 Su ⊗ dSu, t ∈ [0, T ];
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• there exists a control function w such that

sup
(s,t)∈�[0,T ]

|Ss,t |p
w(s, t)

+ sup
n∈N

sup
0≤k<�≤Nn

| ∫ tn�
tnk

Sn
u ⊗ dSu − Stnk

⊗ Stnk ,tn�
| p

2

w(tnk , tn� )
≤ 1. (2.7)

In (2.7) and hereafter, we adopt the convention that 0
0 := 0.

Definition 2.9 A path S ∈ D([0, T ];Rd) is said to satisfy (RIE) with respect to p and
(Pn)n∈N if p, (Pn)n∈N and S together satisfy property (RIE).

The name “RIE” is an abbreviation for “Riemann” as we assume the convergence
of the Riemann sums

∫
Sn

u ⊗ dSu instead of the discrete quadratic variations as in
[19]. Indeed, property (RIE) is a stronger assumption than the existence of quadratic
variation in the sense of Föllmer, and it is even enough to allow us to lift S in a
canonical way to a rough path (see Lemma 2.13 below), giving us access to the pow-
erful stability results of rough path theory such as those in Proposition 2.7. Moreover,
property (RIE) can be verified for most typical stochastic processes in mathematical
finance, as we shall see in Sect. 4.

Remark 2.10 We highlight that rather than simply being a property of a path, prop-
erty (RIE) is actually a property of a path together with a given sequence (Pn)n∈N
of partitions. Indeed, such a path S will in general not satisfy (RIE) with respect to
a different sequence of partitions, and even if it does, the limit of Riemann sums∫ t

0 Su ⊗ dSu specified in property (RIE) may depend on the choice of sequence of
partitions. However, in practice, there is often a natural choice for the sequence of
partitions; see Remark 4.2. For clarity, hereafter, whenever we claim that a path sat-
isfies property (RIE), we always make explicit the partition with respect to which the
path satisfies (RIE) in the sense of Definition 2.9.

Remark 2.11 In Proposition 2.14 below, it is actually shown that it is sufficient in
property (RIE) to assume that the sequence (Sn)n∈N converges only pointwise to S,
since the uniformity of this convergence then immediately follows.

Next we verify that property (RIE) ensures the existence of a càdlàg rough path.
For this purpose, we consider a suitable approximating sequence for the so-called
‘area process’, which is represented by X in Definition 2.1.

Lemma 2.12 Suppose S ∈ D([0, T ];Rd) satisfies property (RIE) with
respect to p and (Pn)n∈N (as in Definition 2.9). If for each n ∈ N, we define
An : �[0,T ] → R

d×d by

An
s,t :=

∫ t

s

Sn
s,u ⊗ dSu =

∫ t

s

Sn
u ⊗ dSu − Sn

s ⊗ Ss,t , (s, t) ∈ �[0,T ], (2.8)

where
∫ t

s
Sn

s,u ⊗ dSu is defined as in property (RIE), then there exists a constant C

depending only on p such that

‖An‖ p
2 ,[0,T ] ≤ Cw(0, T )

2
p for every n ∈ N. (2.9)
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Proof Let n ∈ N and (s, t) ∈ �[0,T ]. If there exists a k such that tnk ≤ s < t ≤ tnk+1,
then we simply have An

s,t = Stnk
⊗ Ss,t − Stnk

⊗ Ss,t = 0. Otherwise, let k0 be the
smallest k such that tnk ∈ (s, t) and k1 the largest such k. It is easy to see that the
triplet (S, Sn,An) satisfies Chen’s relation (2.1), from which it follows that

An
s,t = An

s,tnk0
+ An

tnk0
,tnk1

+ An
tnk1

,t
+ Sn

s,tnk0
⊗ Stnk0

,tnk1
+ Sn

s,tnk1
⊗ Stnk1

,t .

As we have already observed, we have An
s,tnk0

= An
tnk1

,t
= 0. By (2.7), we have

|An
tnk0

,tnk1
| p

2 ≤ w(tnk0
, tnk1

) ≤ w(tnk0−1, t).

We estimate the remaining terms as

|Sn
s,tnk0

⊗ Stnk0
,tnk1

| p
2 + |Sn

s,tnk1
⊗ Stnk1

,t |
p
2

� |Sn
s,tnk0

|p + |Stnk0
,tnk1

|p + |Sn
s,tnk1

|p + |Stnk1
,t |p

= |Stnk0−1,t
n
k0

|p + |Stnk0
,tnk1

|p + |Stnk0−1,t
n
k1

|p + |Stnk1
,t |p

≤ w(tnk0−1, t
n
k0

) + w(tnk0
, tnk1

) + w(tnk0−1, t
n
k1

) + w(tnk1
, t)

≤ 2w(tnk0−1, t)

so that putting this all together yields the existence of a constant C̃ > 0 such that
|An

s,t |
p
2 ≤ C̃w(tnk0−1, t). Taking an arbitrary partition P of the interval [0, T ], it fol-

lows that
∑

[s,t]∈P |An
s,t |

p
2 ≤ 2C̃w(0, T ). We thus conclude that (2.9) holds with

C = (2C̃)
2
p . �

Lemma 2.13 Suppose that S ∈ D([0, T ];Rd) satisfies property (RIE) with respect to
p and (Pn)n∈N. With the natural notation

∫ t

s
Su ⊗dSu := ∫ t

0 Su ⊗dSu −∫ s

0 Su ⊗dSu,
we define A : �[0,T ] → R

d×d by

As,t =
∫ t

s

Su ⊗ dSu − Ss ⊗ Ss,t , (s, t) ∈ �[0,T ].

Then the triplet S = (S, S,A) is a càdlàg rough path.

Proof It is straightforward to verify Chen’s relation (2.1), i.e., that

As,t = As,u + Au,t + Ss,u ⊗ Su,t , (s, t) ∈ �[0,T ].

By property (RIE), we know that limn→∞ An
s,t = As,t , where the convergence is

uniform in (s, t), and thus A is itself càdlàg as a uniform limit of càdlàg functions.
By the lower semi-continuity of the p

2 -variation norm and Lemma 2.12, we have

‖A‖ p
2 ,[0,T ] ≤ lim inf

n→∞ ‖An‖ p
2 ,[0,T ] ≤ Cw(0, T )

2
p < ∞.

It follows that (S, S,A) is a càdlàg rough path. �
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2.3 The rough integral as a limit of Riemann sums

While the rough integral in (2.2) is a powerful tool to study various differential equa-
tions, it lacks the natural interpretation as the capital gains process in the context of
mathematical finance. The aim of this subsection is to restore this interpretation by
showing that the rough integral can be obtained as the limit of left-point Riemann
sums provided that the integrator satisfies property (RIE). As preparation, we need
the following approximation result.

Proposition 2.14 Let Pn = {0 = tn0 < tn1 < · · · < tnNn
= T }, n ∈ N, be a sequence of

nested partitions with vanishing mesh size, so that Pn ⊆ Pn+1 for all n and |Pn| → 0
as n → ∞ (as in the setting of property (RIE)). Let F : [0, T ] → R

d be a càdlàg
path and define

Fn
t = FT 1{T }(t) +

Nn−1∑
k=0

Ftnk
1[tnk ,tnk+1)

(t), t ∈ [0, T ]. (2.10)

Let

JF := {t ∈ (0, T ] : Ft−,t �= 0} (2.11)

be the set of jump times of F . The following are equivalent:
(i) JF ⊆ ⋃

n∈N Pn.
(ii) The sequence (F n)n∈N converges pointwise to F .
(iii) The sequence (F n)n∈N converges uniformly to F .

Proof We first show that (i) and (ii) are equivalent. To this end, suppose that we have
JF ⊆ ⋃

n≥1 Pn and let t ∈ (0, T ]. If t ∈ JF , then there exists m ≥ 1 such that t ∈ Pn

for all n ≥ m. Then we have Fn
t = Ft for all n ≥ m. If t /∈ JF , then Ft− = Ft , and

since |Pn| → 0, it follows that Fn
t → Ft− = Ft as n → ∞.

Conversely, if there exists t ∈ JF with t /∈ ⋃
n≥1 Pn, then Fn

t → Ft− �= Ft so
that Fn

t � Ft . This establishes the equivalence of (i) and (ii).
Since (iii) clearly implies (ii), it only remains to show that (ii) implies (iii).

By Fraňková [22, Theorem 3.3], it is enough to show that the family of paths
{Fn : n ≥ 1} is equiregulated in the sense of [22, Definition 3.1].

Step 1. Let t ∈ (0, T ] and ε > 0. Since the left limit Ft− exists, there exists δ > 0
with t − δ > 0 such that

|Fs,t−| <
ε

2
for all s ∈ (t − δ, t).

Let

m = min{n ≥ 1 : ∃ k such that tnk ∈ (t − δ, t)}.
Since |Pn| → 0 as n → ∞, we know that m < ∞. Moreover, since the sequence of
partitions is nested, we immediately have that for all n ≥ m, there exists a k such that
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tnk ∈ (t − δ, t). We define

u = min{tmk ∈ Pm : tmk ∈ (t − δ, t)} = min
(
Pm ∩ (t − δ, t)

)

and let s ∈ [u, t) and n ≥ 1.
If n < m, then there does not exist a k such that tnk ∈ (t − δ, t), which implies that

Fn is constant on the interval (t − δ, t) and hence Fn
s = Fn

t−.
Suppose instead that n ≥ m. Let i = max{k : tnk ≤ s} and j = max{k : tnk < t}.

By the definition of u, we see that tni ∈ [u, t) and tnj ∈ [u, t). Then

|Fn
s − Fn

t−| = |Ftni
− Ftnj

| ≤ |Ftni ,t−| + |Ftnj ,t−| <
ε

2
+ ε

2
= ε.

Thus we have |Fn
s − Fn

t−| < ε for all s ∈ [u, t) and all n ≥ 1.
Step 2. Let t ∈ (JF ∪ {0}) \ {T } and ε > 0. Since F is right-continuous, there

exists a δ > 0 with t + δ < T such that

|Ft,s | < ε for all s ∈ [t, t + δ).

By part (i), we know that t ∈ ⋃
n≥1 Pn. Let

m = min{n ≥ 1 : ∃ k such that tnk = t}.
Since t ∈ ⋃

n≥1 Pn, it is clear that m < ∞. We define

u = min{tmk ∈ Pm : tmk > t} = min
(
Pm ∩ (t, T ]).

We then let v ∈ (t, u ∧ (t + δ)), s ∈ (t, v], and n ≥ 1.
If n < m, then since v < u, there does not exist a k such that tnk ∈ [t, v]. Hence

Fn is constant on the interval [t, v] so that in particular Fn
s = Fn

t .
Suppose instead that n ≥ m. By the definition of m, there exists a j with tnj = t .

Let i = max{k : tnk ≤ s}. In particular, we then have t = tnj ≤ tni ≤ s ≤ v < t + δ

and hence

|Fn
s − Fn

t | = |Ftni
− Ftnj

| = |Ft,tni
| < ε.

Thus we have |Fn
s − Fn

t | < ε for all s ∈ (t, v] and all n ≥ 1.
Step 3. Let t ∈ (0, T ) \ JF and ε > 0. Since F is continuous at time t , there exists

a δ > 0 with 0 < t − δ and t + δ < T such that

|Fs,t | <
ε

2
for all s ∈ (t − δ, t + δ).

Let

m = min{n ≥ 1 : ∃ k such that tnk ∈ (t − δ, t]}.
Since |Pn| → 0 as n → ∞, we know that m < ∞. We define

u = min{tmk ∈ Pm : tmk > t} = min
(
Pm ∩ (t, T ]).

We then let v ∈ (t, u ∧ (t + δ)), s ∈ (t, v] and n ≥ 1.
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If n < m, then since v < u, there does not exist a k such that tnk ∈ (t, v]. Hence
Fn is constant on the interval [t, v] so that in particular Fn

s = Fn
t .

Suppose instead that n ≥ m. Let i = max{k : tnk ≤ s} and j = max{k : tnk ≤ t}.
Since by the definition of m, there exists at least one k such that tnk ∈ (t − δ, t], and
since t < s ≤ v < t + δ, it follows that tni ∈ (t − δ, t + δ) and tnj ∈ (t − δ, t]. Then

|Fn
s − Fn

t | = |Ftni
− Ftnj

| ≤ |Ftni ,t | + |Ftnj ,t | <
ε

2
+ ε

2
= ε.

Thus we have |Fn
s −Fn

t | < ε for all s ∈ (t, v] and all n ≥ 1. It follows that the family
of paths {Fn : n ≥ 1} is indeed equiregulated. �

The next theorem is the main result of this section, stating that the rough inte-
gral can be approximated by left-point Riemann sums along a suitable sequence of
partitions, in the spirit of Föllmer’s pathwise integration.

Theorem 2.15 Let q ≥ p be such that 2
p

+ 1
q

> 1 and r > 1 such that 1
r

= 1
p

+ 1
q

.

Suppose that S ∈ D([0, T ];Rd) satisfies property (RIE) with respect to p and
(Pn)n∈N. Let (F, F ′) ∈ Vq,r

S and (G,G′) ∈ Vq,r
S be controlled paths with respect

to S, and assume that JF ⊆ ⋃
n∈N Pn, where JF is the set of jump times of F as in

(2.11). Then the rough integral of (F, F ′) against (G,G′) relative to the rough path
S = (S, S,A) as defined in (2.2) is given by

∫ t

0
Fu dGu = lim

n→∞

Nn−1∑
k=0

Ftnk
Gtnk ∧t,tnk+1∧t ,

where the convergence is uniform in t ∈ [0, T ].

Proof We recall from Lemma 2.13 that S = (S, S,A) is a rough path so that by
Proposition 2.4, the rough integral of (F, F ′) against (G,G′) (relative to S) exists.
It is also clear that Sn := (S, Sn,An) is a rough path, where An was defined in
(2.8). Moreover, by property (RIE), we immediately have that Sn and An converge
uniformly to S and A, respectively, as n → ∞.

For each n ≥ 1, let Fn be the path defined in (2.10). We consider the pair (F n, F ′)
as a controlled path with respect to Sn, defining the remainder term Rn by the usual
relation

Fn
s,t = F ′

sS
n
s,t + Rn

s,t , (s, t) ∈ �[0,T ].

Since Sn converges uniformly to S and, by Proposition 2.14, Fn converges uni-
formly to F , it follows that Rn also converges uniformly to the remainder term R

corresponding to the S-controlled path (F, F ′).
We observe that ‖Sn‖p,[0,T ] ≤ ‖S‖p,[0,T ] and ‖Fn‖p,[0,T ] ≤ ‖F‖p,[0,T ], and we

have from Lemma 2.12 that ‖An‖ p
2 ,[0,T ] ≤ Cw(0, T )

2
p for every n ≥ 1. It remains

to show that Rn is bounded in r-variation, uniformly in n.
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Let n ≥ 1 and (s, t) ∈ �[0,T ]. If there exists a k such that tnk ≤ s < t < tnk+1, then

Rn
s,t = Fn

s,t − F ′
sS

n
s,t = Ftnk ,tnk

− F ′
sStnk ,tnk

= 0.

If there exists a k such that tnk ≤ s < t = tnk+1, then

|Rn
s,t |r = |Fn

s,t − F ′
sS

n
s,t |r

= |Ftnk ,tnk+1
− F ′

sStnk ,tnk+1
|r

� |Ftnk ,tnk+1
− F ′

tnk
Stnk ,tnk+1

|r + |F ′
tnk ,sStnk ,tnk+1

|r

� |Rtnk ,tnk+1
|r + |F ′

tnk ,s |q + |Stnk ,tnk+1
|p,

where in the last line we used Young’s inequality, recalling that 1
r

= 1
p

+ 1
q

.
Otherwise, let k0 be the smallest k with tnk ∈ [s, t] and k1 the largest such k. After

a short calculation, we find that

Rn
s,t = Rn

s,tnk0
+ Rn

tnk0
,tnk1

+ Rn
tnk1

,t
+ F ′

s,tnk0
Stnk0

,tnk1
+ F ′

s,tnk1
Sn

tnk1
,t
.

We observe that Sn
tnk1

,t
= 0 and Rn

tnk0
,tnk1

= Rtnk0
,tnk1

. We can deal with the terms Rn
s,tnk0

and Rn
tnk1

,t
using the above, and we bound |F ′

s,tnk0
Stnk0

,tnk1
|r � |F ′

s,tnk0
|q + |Stnk0

,tnk1
|p.

Putting this all together, we have that

|Rn
s,t |r ≤ C

(|Rtnk0−1,t
n
k0

|r +|F ′
tnk0−1,s

|q+|Stnk0−1,t
n
k0

|p+|Rtnk0
,tnk1

|r +|F ′
s,tnk0

|q+|Stnk0
,tnk1

|p)
,

where the constant C depends only on p, q and r . Taking an arbitrary partition P of
the interval [0, T ], we deduce that

∑
[s,t]∈P

|Rn
s,t |r ≤ 2C(‖R‖r

r,[0,T ] + ‖F ′‖q

q,[0,T ] + ‖S‖p

p,[0,T ]).

Thus ‖Rn‖r,[0,T ] is bounded uniformly in n ≥ 1.
Let p′ > p, q ′ > q and r ′ > r such that p′ ∈ (2, 3), q ′ ≥ p′, 2

p′ + 1
q ′ > 1

and 1
r ′ = 1

p′ + 1
q ′ . Since the sequence (Sn)n≥1 has uniformly bounded p-variation

and Sn converges uniformly to S as n → ∞, it follows by interpolation that Sn

converges to S with respect to the p′-variation norm, i.e., ‖Sn − S‖p′,[0,T ] → 0 as
n → ∞. It follows similarly that ‖An − A‖ p′

2 ,[0,T ] → 0 and ‖Rn − R‖r ′,[0,T ] → 0,

and hence also that ‖Sn; S‖p′,[0,T ] → 0 as n → ∞. It thus follows from part (ii) of
Proposition 2.7 that

∫ t

0
Fn

u dGu −→
∫ t

0
Fu dGu as n → ∞, (2.12)

where the convergence is uniform in t ∈ [0, T ]. Note that in (2.12), the rough integral∫ t

0 Fn
u dGu is defined relative to the rough path Sn = (S, Sn,An), whilst the limiting

rough integral
∫ t

0 Fu dGu is defined relative to S = (S, S,A).
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We recall from Proposition 2.4 that the integral of (F n, F ′) against (G,G′) relative
to Sn = (S, Sn,An) is given by the limit

∫ t

0
Fn

u dGu = lim
|P |→0

∑
[u,v]∈P

(F n
u Gu,v + F ′

uG
′
uA

n
u,v),

where the limit is taken over any sequence of partitions of the interval [0, t] with
vanishing mesh size. Take any refinement P̃ of the partition (Pn ∪{t})∩[0, t] (where
as usual Pn is the partition given in property (RIE)) and let [u, v] ∈ P̃ . By the choice
of the partition P̃ , there exists a k such that tnk ≤ u < v ≤ tnk+1 which, recalling

(2.8), implies that An
u,v = 0. Since the mesh size of P̃ may be arbitrarily small, it

follows that

lim
|P̃ |→0

∑
[u,v]∈P̃

F ′
uG

′
uA

n
u,v = 0.

To conclude, we then simply recall (2.12) and note that

∫ t

0
Fn

u dGu = lim
|P̃ |→0

∑
[u,v]∈P̃

Fn
u Gu,v =

Nn−1∑
k=0

Ftnk
Gtnk ∧t,tnk+1∧t .

�

We can actually generalise the result of Theorem 2.15 to a slightly larger class of
integrands.

Corollary 2.16 Recall the assumptions of Theorem 2.15 and let γ ∈ Dr([0, T ];Rd).
Then (H,H ′) := (F + γ, F ′) is a controlled path with respect to S, and the rough
integral of (H,H ′) against (G,G′) is given by

∫ t

0
Hu dGu = lim

n→∞

Nn−1∑
k=0

Htnk
Gtnk ∧t,tnk+1∧t

for every t ∈ [0, T ].
The point here is that the path γ may have jump times which do not belong to the

set
⋃

n∈N Pn.

Proof of Corollary 2.16 Since γ has finite r-variation, we immediately have that γ is
a controlled path with Gubinelli derivative simply given by γ ′ = 0. By linearity, it is
then clear that (H,H ′) = (F, F ′) + (γ, 0) is indeed a controlled path with respect
to S. Since γ ′ = 0, we have from Proposition 2.4 that

∫ t

0
γu dGu = lim

|P |→0

∑
[u,v]∈P

γuGu,v = lim
n→∞

Nn−1∑
k=0

γtnk
Gtnk ∧t,tnk+1∧t .

By linearity, we have
∫ t

0 Hu dGu = ∫ t

0 Fu dGu + ∫ t

0 γu dGu, and the result then
follows from Theorem 2.15. �
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2.4 Link to Föllmer integration

In his seminal paper, Föllmer [19] introduced a notion of pathwise integration based
on the concept of quadratic variation and derived a corresponding pathwise Itô for-
mula, which have both proved to be useful tools in robust approaches to mathematical
finance.

In the following, we write B[0, T ] for the Borel σ -algebra on [0, T ].

Definition 2.17 Let S ∈ D([0, T ];R) and Pn = {0 = tn0 < tn1 < · · · < tnNn
= T },

n ≥ 1, be a sequence of partitions with vanishing mesh size. We say that S

has quadratic variation along (Pn)n∈N in the sense of Föllmer if the sequence of
measures (μn)n∈N on ([0, T ],B[0, T ]) defined by

μn :=
Nn−1∑
k=0

|Stnk ,tnk+1
|2δtnk

converges weakly to a measure μ such that the map

t �→ [S]ct := μ([0, t]) −
∑

0<s≤t

|Ss−,s |2

is continuous and increasing. We then call the function [S] given by [S]t = μ([0, t])
the quadratic variation of S along (Pn)n∈N. We say that a path S ∈ D([0, T ];Rd)

has quadratic variation along (Pn)n∈N in the sense of Föllmer if the condition above
holds for Si and Si + Sj for every (i, j), and in this case, we write

[Si, Sj ] := 1

2
([Si + Sj ] − [Si] − [Sj ]). (2.13)

Assuming that a path S ∈ D([0, T ];Rd) has quadratic variation along (Pn)n∈N
and f ∈ C2(Rd ;R), Föllmer showed that the limit

∫ T

0
Df (Su) dSu := lim

n→∞
∑

[s,t]∈Pn

Df (Ss)Ss,t

exists and that the resulting integral
∫ T

0 Df (Su) dSu satisfies a pathwise Itô formula;
see [19, Théorème]. This result can also be explained via the language of rough path
theory; see Friz and Hairer [24, Chap. 5.3]. Let us remark that the Föllmer integral∫ T

0 Df (Su) dSu is only well defined for gradients Df and not for general functions,
as its existence is given by the corresponding pathwise Itô formula.

In the following, we relate property (RIE) to the existence of quadratic variation
in the sense of Föllmer. To this end, for each i = 1, . . . , d , we introduce

S
n,i
t = Si

T 1{T }(t) +
Nn−1∑
k=0

Si
tnk

1[tnk ,tnk+1)
(t)
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and the discrete quadratic variation [Si, Sj ]n by

[Si, Sj ]nt =
Nn−1∑
k=0

Si
tnk ∧t,tnk+1∧t

S
j

tnk ∧t,tnk+1∧t
, t ∈ [0, T ].

Proposition 2.18 Let Pn = {0 = tn0 < tn1 < · · · < tnNn
= T }, n ∈ N, be a sequence

of nested partitions with vanishing mesh size and S ∈ D([0, T ];Rd). The following
conditions are equivalent:

(i) For every pair (i, j), the Riemann sums
∫ t

0 S
n,i
u dS

j
u + ∫ t

0 S
n,j
u dSi

u converge

uniformly to a limit, which we denote by
∫ t

0 Si
u dS

j
u + ∫ t

0 S
j
u dSi

u.
(ii) For every pair (i, j), the discrete quadratic variation [Si, Sj ]n converges

uniformly to a càdlàg path, which we denote by [Si, Sj ]P .
(iii) The path S has quadratic variation along (Pn)n∈N in the sense of Föllmer.

Moreover, if these conditions hold, then the path [Si, Sj ]P has finite total variation
and for every (i, j), we have [Si, Sj ] = [Si, Sj ]P and the equality

Si
t S

j
t = Si

0S
j

0 +
∫ t

0
Si

u dS
j
u +

∫ t

0
S

j
u dSi

u + [Si, Sj ]Pt (2.14)

for every t ∈ [0, T ].

Proof We have

Si
t S

j
t − Si

0S
j

0 =
Nn−1∑
k=0

(Si
tnk+1∧t

S
j

tnk+1∧t
− Si

tnk ∧t
S

j

tnk ∧t
)

=
Nn−1∑
k=0

(Si
tnk ∧t

S
j

tnk ∧t,tnk+1∧t
+ S

j

tnk ∧t
Si

tnk ∧t,tnk+1∧t
)

+
Nn−1∑
k=0

Si
tnk ∧t,tnk+1∧t

S
j

tnk ∧t,tnk+1∧t

=
∫ t

0
Sn,i

u dS
j
u +

∫ t

0
S

n,j
u dSi

u + [Si, Sj ]nt ,

from which it follows that conditions (i) and (ii) are equivalent, and that (2.14) then
also holds. In this case, we also have that

[Si, Sj ]Pt = 1

4
([Si + Sj , Si + Sj ]Pt − [Si − Sj , Si − Sj ]Pt ),

so that as the difference of two non-decreasing functions, [Si, Sj ]P has finite total
variation.

For one-dimensional paths S, the equivalence of conditions (ii) and (iii) follows
from Vovk [52, Propositions 3 and 4]. The extension of this to d-dimensional paths S
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and the equality [Si, Sj ] = [Si, Sj ]P then follow from the polarisation identity

[Si, Sj ]nt = 1

2
([Si + Sj , Si + Sj ]nt − [Si, Si]nt − [Sj , Sj ]nt )

and the definition of [Si, Sj ] in (2.13). �

Remark 2.19 From a semimartingale perspective, in the integration by parts formula
(2.14), one might expect to see left limits in the integrands. Since our integrals are de-
fined as limits of left-point Riemann sums, taking such left limits is not necessary and
would actually not change the value of the integrals; see Remark 3.3. Nevertheless,
our rough integrals are also consistent with Itô integrals; see Proposition 4.8.

Remark 2.20 As an immediate consequence of Proposition 2.18, we have that if a
path S satisfies (RIE) along (Pn)n∈N, then it has quadratic variation along (Pn)n∈N
in the sense of Föllmer, thus allowing one to apply all the known results regarding
Föllmer integration.

In particular, if a vector field f : Rd → R is of class C3, then by Theorem 2.15,
the Föllmer integral

∫ ·
0 Df (Su) dSu coincides with the rough integral

∫ ·
0 Df (Su) dSu.

We thus obtain the rough Itô formula

f (St ) − f (S0)

=
∫ t

0
Df (Su) dSu + 1

2

∫ t

0
D2f (Su) d[S]u

+
∑

0<u≤t

(
f (Su) − f (Su−) − Df (Su−)�Su − 1

2
D2f (Su−)(�Su ⊗ �Su)

)
,

which holds for every t ∈ [0, T ], where [S] = ([Si, Sj ])1≤i,j≤d denotes the quadratic
variation matrix and �Su := Su−,u.

We note that the formula above is precisely the Itô formula for rough paths derived
in Friz and Zhang [26]. Of course, this formula remains valid when f is only assumed
to be of class C2, in which case the first integral is interpreted in the sense of Föllmer.
Taking f ∈ C3 is only necessary to ensure that the integrand Df (S) is a controlled
path with respect to S, so that this integral may be interpreted in the rough sense.

3 Functionally generated trading strategies and their
generalisations

Given property (RIE), we can introduce a model-free framework for continuous-time
financial markets with a possibly infinite time horizon. In this section, we verify that
most relevant trading strategies from a practical perspective, such as delta-hedging
strategies and functionally generated strategies, are admissible integrands for price
paths satisfying property (RIE). Furthermore, the underlying rough integration allows
us to deduce stability estimates for admissible strategies.
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3.1 Price paths and admissible strategies

For a path S : [0,∞) → R
d , we denote by S|[0,T ] the restriction of S to the interval

[0, T ].
Definition 3.1 For a fixed p ∈ (2, 3), we say that a path S ∈ D([0,∞);Rd) is a
price path if there exists a nested sequence of locally finite partitions (Pn)n∈N of the
interval [0,∞) with vanishing mesh size on compacts such that for all T > 0, the
restriction S|[0,T ] satisfies (RIE) with respect to p and (Pn([0, T ]))n∈N. We denote
the family of all such price paths by �p.

Note that the sequence (Pn)n∈N of partitions may depend on the choice of price
path S ∈ �p, consistent with the stochastic framework where this sequence is
naturally defined in terms of (probabilistic) stopping times.

Having fixed the model-free structure of the underlying price paths, we can
introduce the class of admissible strategies and the corresponding capital process.

Definition 3.2 Let p ∈ (2, 3) and let S ∈ �p be a price path. We say that a càdlàg
path ϕ : [0,∞) → R

d is an admissible strategy (with respect to S) if

• there exist q ≥ p and r > 1 with 2/p + 1/q > 1 and 1/r = 1/p + 1/q such
that for every T > 0, there exists a path ϕ′ : [0, T ] → L(Rd;Rd) such that the pair
(ϕ, ϕ′) ∈ Vq,r

S is a controlled path with respect to S in the sense of Definition 2.3,
• and Jϕ ⊆ ⋃

n∈N Pn, where Jϕ is the set of jump times of ϕ in (0,∞) and
(Pn)n∈N is the sequence of partitions associated with the price path S ∈ �p.

We denote the space of all admissible strategies (with respect to S) by AS .
We define the capital process associated with ϕ and S as the R-valued path V ϕ(S)

given by

V
ϕ
t (S) := lim

n→∞

Nn−1∑
k=0

d∑
i=1

ϕi
tnk

(Si
tnk+1∧t

− Si
tnk ∧t

), t ∈ [0,∞), (3.1)

where Pn = {0 = tn0 < tn1 < · · · < tnNn
= T }, n ∈ N, is the sequence of partitions

specified in property (RIE).

Remark 3.3 One might think that left-continuity of integrands would be a natural as-
sumption to capture the previsible nature of trading strategies in stochastic finance.
However, in the present setting, this assumption is not necessary as the correspond-
ing capital process V ϕ(S), which, as we shall see below, may be expressed as a
rough integral, does not change when replacing ϕ by its left-continuous modifica-
tion; see e.g. Friz and Shekhar [25, Theorem 31]. The reason for this is essentially
the left-point Riemann sum construction of the integral. Indeed, suppose that S has
a jump at a time t > 0. The contribution to the capital process V ϕ(S) at time t

is then given by lims→t,s<t ϕsSs,t , which is invariant to the choice of ϕ or its left-
continuous modification. Furthermore, we shall see that V ϕ(S) coincides with the
classical stochastic Itô integral whenever both the rough and stochastic integrals are
defined; see Sect. 4.4 below.
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The condition Jϕ ⊆ ⋃
n∈N Pn means that one is allowed to use trading strategies

whose jump points are included in the underlying sequence (Pn)n∈N of partitions. On
the one hand, many frequently used trading strategies such as delta-hedging satisfy
this condition, and further examples are discussed later in this section. On the other
hand, the sequence (Pn)n∈N of partitions can be fixed a priori to allow a desired
class of trading strategies, e.g. buy-and-hold strategies along the sequence of dyadic
partitions.

Proposition 3.4 Let p ∈ (2, 3), let S ∈ �p be a price path and ϕ ∈ AS an admissible
strategy (in the sense of Definition 3.2). Then the capital process V ϕ(S) as defined in
(3.1) exists as a locally uniform limit and is actually given by

V
ϕ
t (S) =

∫ t

0
ϕs dSs , t ∈ [0,∞), (3.2)

that is, as the rough integral of the controlled path (ϕ, ϕ′) ∈ Vq,r
S against the rough

path S defined in Lemma 2.13. Moreover, given another price path S̃ ∈ �p and an
admissible strategy ϕ̃ ∈ A

S̃
with respect to S̃, we have for every T > 0 that

|V ϕ
T (S) − V

ϕ̃
T (S̃)|

≤ C
(
(|ϕ̃0| + ‖ϕ̃, ϕ̃′‖Vq,r

S̃

)

× (1 + ‖S‖p,[0,T ] + ‖S̃‖p,[0,T ])‖S; S̃‖p,[0,T ]

+ (|ϕ0 − ϕ̃0| + |ϕ′
0 − ϕ̃′

0| + ‖ϕ′ − ϕ̃′‖q,[0,T ] + ‖Rϕ − Rϕ̃‖r,[0,T ])

× (1 + ‖S‖p,[0,T ])‖S‖p,[0,T ]
)
,

where the constant C depends on p, q and r .

Proof Let T > 0, and let (Pn)n∈N be a sequence of nested partitions such that
p, (Pn)n∈N and S satisfy property (RIE) on the interval [0, T ]. Recall from prop-
erty (RIE) the existence of the limit

∫ t

0 Su⊗dSu for every t ∈ [0, T ]. By Lemma 2.13,
defining the function A : �[0,T ] → R

d×d by

As,t :=
∫ t

s

Su ⊗ dSu − Ss ⊗ Ss,t ,

we have that the triplet S = (S, S,A) is a càdlàg rough path (in the sense of Defi-
nition 2.1). Hence the rough integral in (3.2) is well defined by Proposition 2.4 (see
also Remark 2.5) and satisfies (3.1) as a locally uniform limit by Theorem 2.15.

For the stability estimate, we simply note that

|V ϕ
T (S) − V

ϕ̃
T (S̃)| =

∣∣∣∣
∫ T

0
ϕs dSs −

∫ T

0
ϕ̃s dS̃s

∣∣∣∣ ≤
∥∥∥∥

∫ ·

0
ϕs dSs −

∫ ·

0
ϕ̃s dS̃s

∥∥∥∥
p,[0,T ]

and apply part (i) of Proposition 2.7. �
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Remark 3.5 Recall from Remark 2.5 that the rough integral in (3.2) is defined by
the limit

∫ t

0 ϕs dSs = lim|π |→0
∑

[u,v]∈π (ϕuSu,v + ϕ′
uAu,v), where the limit is taken

over any sequence of partitions of the interval [0, t] with vanishing mesh size. Here,
ϕu and Su,v both take values in R

d , and we interpret their multiplication as the Eu-
clidean inner product. The derivative ϕ′

u takes values in L(Rd;Rd), which we can
also identify with L(Rd×d;R). Since Au,v ∈ R

d×d , the product ϕ′
uAu,v also takes

values in R.

In the following, we show that the most relevant trading strategies from a practical
viewpoint belong to the class of admissible strategies in the sense of Definition 3.2.

3.2 Functionally generated trading strategies

Having fixed the set �p of underlying price paths, we start by introducing function-
ally generated portfolios. For this purpose, for some dA ∈ N, we fix a càdlàg path
A : [0,∞) → R

dA of locally bounded variation and assume that the jump times of
A belong to the union of the partitions (Pn)n∈N appearing in property (RIE); that
is, we assume that JA ⊆ ⋃

n∈N Pn, where JA := {t ∈ (0,∞) : At−,t �= 0}. The
path A is supposed to model additional information pertaining to the market which a
trader would like to include in their trading decisions. For instance, the components
of the path A = (A1, . . . , AdA) could include time t �→ t , the running maximum
t �→ maxu∈[0,t] Si

u or the integral t �→ ∫ t

0 Si
u du for some (or all) i = 1, . . . , d . A

more detailed discussion on practical choices of A can be found in Schied et al. [46].
For � = d + dA, we denote by C2

b(R�;Rd) the space of twice continuously dif-
ferentiable functions f : R� → R

d such that f and its derivatives up to order 2 are
uniformly bounded, that is,

C2
b(R�;Rd) := {f ∈ C2(R�;Rd) : ‖f ‖C2

b
< ∞}

with

‖f ‖C2
b

:= ‖f ‖∞ + ‖Df ‖∞ + ‖D2f ‖∞.

For S ∈ �p, we introduce the set G2
S of all generalised functionally generated

trading strategies ϕf , which are all paths of the form

ϕ
f
t = (f 1

t , . . . , f d
t ) := f (St , At ), t ∈ [0,∞), (3.3)

for some f ∈ C2
b(R�;Rd). For ϕf ∈ G2

S , the corresponding capital process is
given by

V
f
t (S) = lim

n→∞

Nn−1∑
k=0

d∑
i=1

f i
tnk

(Si
tnk+1∧t

− Si
tnk ∧t

), t ∈ [0,∞). (3.4)

Proposition 3.6 Let p ∈ (2, 3) and S ∈ �p, and let ϕf , ϕf̃ ∈ G2
S . Then ϕf is an

admissible strategy, i.e., ϕf ∈ AS , and the capital process (V
f
t (S))t∈[0,∞) given in
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(3.4) is well defined as a locally uniform limit in t ∈ [0,∞). Moreover, for every
T ∈ [0,∞), we have the stability estimate

|V f
T (S) − V

f̃
T (S)| ≤ C‖f − f̃ ‖C2

b
(1 + ‖S‖2

p,[0,T ] + ‖A‖1,[0,T ])

× (1 + ‖S‖p,[0,T ])‖S‖p,[0,T ], (3.5)

where the constant C depends only on p, and the triplet S = (S, S,A) is the càdlàg
rough path defined in Lemma 2.13.

Proof (Admissibility) Let ϕ = ϕf ∈ G2
S be a functionally generated strategy of

the form (3.3) for some f ∈ C2
b(R�;Rd). Fix a T ∈ [0,∞). We claim that

(ϕ, ϕ′) ∈ Vp,
p
2

S is a controlled path with respect to S in the sense of Definition 2.3
(with q = p and r = p/2), where

ϕ′
t := DSf (St , At ), t ∈ [0, T ],

and DSf denotes the derivative of f with respect to its first d components. To see
this, we first note that

|ϕ′
s,t | = |DSf (St , At ) − DSf (Ss, As)| ≤ ‖f ‖C2

b
(|Ss,t | + |As,t |)

so that

‖ϕ′‖p,[0,T ] � ‖f ‖C2
b
(‖S‖p,[0,T ] + ‖A‖1,[0,T ]) < ∞, (3.6)

and hence ϕ′ ∈ Dp([0, T ];L(Rd;Rd)). We moreover have that

R
ϕ
s,t := ϕs,t − ϕ′

sSs,t

= f (St , At ) − f (Ss, As) − DSf (Ss, As)Ss,t

= f (St , As) − f (Ss, As) − DSf (Ss, As)Ss,t + f (St , At ) − f (St , As)

=
∫ 1

0

(
DSf (Ss + τSs,t , As) − DSf (Ss, As)

)
Ss,t dτ + f (St , At ) − f (St , As)

so that |Rϕ
s,t | ≤ ‖f ‖C2

b
(|Ss,t |2 + |As,t |). It follows that

‖Rϕ‖ p
2 ,[0,T ] � ‖f ‖C2

b
(‖S‖2

p,[0,T ] + ‖A‖1,[0,T ]) < ∞ (3.7)

so that Rϕ ∈ Dp/2(�[0,T ];Rd), and thus the conditions of Definition 2.3 are satisfied.
Thus by Proposition 2.4 (and Remark 2.5), we have the existence for each t ∈ [0, T ]
of the (R-valued) rough integral

∫ t

0
ϕs dSs = lim

|P |→0

∑
[u,v]∈P

(ϕuSu,v + ϕ′
uAu,v).
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For a given càdlàg path F : [0, T ] → R
d (or RdA), let JF = {t ∈ (0, T ] : Ft−,t �= 0}

denote the jump times of F . It follows from property (RIE) and Proposition 2.14 that
JS ⊆ ⋃

n∈N Pn. Since we also assumed that JA ⊆ ⋃
n∈N Pn, it then follows from

(3.3) that Jϕ ⊆ ⋃
n∈N Pn. Thus by Theorem 2.15, we have that

∫ t

0
ϕs dSs = lim

n→∞

Nn−1∑
k=0

ϕtnk
(Stnk+1∧t − Stnk ∧t )

= lim
n→∞

Nn−1∑
k=0

d∑
i=1

f i
tnk

(Si
tnk+1∧t

− Si
tnk ∧t

) = V
f
t (S),

and that this limit is uniform in t ∈ [0, T ].
(Stability estimate) Let ϕ and ϕ̃ be the strategies generated by f and f̃ , respec-

tively, as defined in (3.3). By part (i) of Proposition 2.7, we have the estimate

|V f
T (S) − V

f̃
T (S)|

=
∣∣∣∣
∫ T

0
ϕs dSs −

∫ T

0
ϕ̃s dSs

∣∣∣∣ ≤
∥∥∥∥

∫ ·

0
ϕs dSs −

∫ ·

0
ϕ̃s dSs

∥∥∥∥
p,[0,T ]

� (|ϕ0 − ϕ̃0| + |ϕ′
0 − ϕ̃′

0| + ‖ϕ′ − ϕ̃′‖p,[0,T ] + ‖Rϕ − Rϕ̃‖ p
2 ,[0,T ])

× (1 + ‖S‖p,[0,T ])‖S‖p,[0,T ]. (3.8)

As above, here

ϕ′
t = DSf (St , At ) and R

ϕ
s,t = ϕs,t − ϕ′

sSs,t ,

with ϕ̃′ and Rϕ̃ defined similarly. We now aim to estimate each term on the right-hand
side of (3.8).

We have

|ϕ0 − ϕ̃0| = |f (S0, A0) − f̃ (S0, A0)| ≤ ‖f − f̃ ‖∞ ≤ ‖f − f̃ ‖C2
b
, (3.9)

and similarly

|ϕ′
0−ϕ̃′

0| = |DSf (S0, A0)−DSf̃ (S0, A0)| ≤ ‖DSf −DSf̃ ‖∞ ≤ ‖f −f̃ ‖C2
b
. (3.10)
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Next, for [s, t] ⊆ [0, T ], we compute

(ϕ′ − ϕ̃′)s,t = DSf (St , At ) − DSf (Ss, As) − DSf̃ (St , At ) + DSf̃ (Ss, As)

= DSf (St , As) − DSf (Ss, As) − DSf̃ (St , As) + DSf̃ (Ss, As)

+ DSf (St , At ) − DSf (St , As) − DSf̃ (St , At ) + DSf̃ (St , As)

=
∫ 1

0

(
D2

SSf (Ss + τSs,t , As) − D2
SSf̃ (Ss + τSs,t , As)

)
Ss,t dτ

+
∫ 1

0

(
D2

SAf (St , As + τAs,t ) − D2
SAf̃ (St , As + τAs,t )

)
As,t dτ,

so that

|(ϕ′ − ϕ̃′)s,t | ≤ ‖D2
SSf − D2

SSf̃ ‖∞|Ss,t | + ‖D2
SAf − D2

SAf̃ ‖∞|As,t |
≤ ‖f − f̃ ‖C2

b
(|Ss,t | + |As,t |)

and thus

‖ϕ′ − ϕ̃′‖p,[0,T ] � ‖f − f̃ ‖C2
b
(‖S‖p,[0,T ] + ‖A‖1,[0,T ]). (3.11)

Finally, we have

(Rϕ − Rϕ̃)s,t

= f (St , At ) − f (Ss, As) − DSf (Ss, As)Ss,t − f̃ (St , At )

+ f̃ (Ss, As) + DSf̃ (Ss, As)Ss,t

= f (St , As) − f (Ss, As) − DSf (Ss, As)Ss,t − f̃ (St , As)

+ f̃ (Ss, As) + DSf̃ (Ss, As)Ss,t

+ f (St , At ) − f (St , As) − f̃ (St , At ) + f̃ (St , As)

=
∫ 1

0

∫ 1

0

(
D2

SSf (Ss + τ1τ2Ss,t , As) − D2
SSf̃ (Ss + τ1τ2Ss,t , As)

)
S⊗2

s,t τ1 dτ2 dτ1

+
∫ 1

0

(
DAf (St , As + τAs,t ) − DAf̃ (St , As + τAs,t )

)
As,t dτ,

so that

|(Rϕ − Rϕ̃)s,t | ≤ ‖D2
SSf − D2

SSf̃ ‖∞|Ss,t |2 + ‖DAf − DAf̃ ‖∞|As,t |
≤ ‖f − f̃ ‖C2

b
(|Ss,t |2 + |As,t |)

and hence

‖Rϕ − Rϕ̃‖ p
2 ,[0,T ] � ‖f − f̃ ‖C2

b
(‖S‖2

p,[0,T ] + ‖A‖1,[0,T ]). (3.12)

Substituting (3.9)–(3.12) into (3.8) gives the estimate in (3.5). �
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3.3 Path-dependent functionally generated trading strategies

The functionally generated trading strategies considered in Sect. 3.2 could depend on
the past prices only through a process of locally finite variation. In some contexts, it is
beneficial to work with trading strategies possessing a more general path-dependent
structure; see e.g. Schied et al. [45, 46] for more detailed discussions in this direction.
A common way to treat path-dependent and non-anticipating trading strategies is
the calculus initiated by Dupire [17] and Cont and Fournié [11]. For the sake of
brevity, we recall here only the essential definitions and refer to Ananova [3, Sect. 3.1]
and [11] for full details.

A functional F : [0, T ] × D([0, T ];Rd) → R
d is called non-anticipative if

F(t, S) = F(t, S·∧t ) for all S ∈ D([0, T ];Rd).

As usual, the non-anticipative functionals are defined on the space of stopped paths,
defined as the equivalence class in [0, T ] × D([0, T ];Rd) with respect to the equiv-
alence relation

(t, S) ∼ (t ′, S′) ⇐⇒ t = t ′ and S·∧t = S′
·∧t ′ .

The resulting space �d
T is equipped with the distance

d∞
(
(t, S), (t ′, S′)

) := |t − t ′| + sup
u∈[0,T ]

|Su∧t − S′
u∧t ′ |,

and (�d
T , d∞) is then a complete metric space. We introduce the following spaces:

– C
0,0
� (�d

T ) is the space of left-continuous functionals F : �d
T → R

d , i.e., for all
(t, S) ∈ �d

T and ε > 0, there exists ν > 0 such that for all (t ′, S′) ∈ �d
T ,

t ′ < t and d∞
(
(t, S), (t ′, S′)

)
< ν =⇒ |F(t, S) − F(t ′, S′)| < ε.

– B(�d
T ) is the space of boundedness-preserving functionals F : �d

T → R
d , i.e.,

for every compact subset K ⊆ R
d and for every t0 ∈ [0, T ], there exists C > 0 such

that for all t ∈ [0, t0] and (t, S) ∈ �d
T ,

S([0, t]) ⊆ K =⇒ |F(t, S)| < C.

– Lip(�d
T , d∞) is the space of Lipschitz-continuous functionals F : �d

T → R
d ,

i.e., there exists C > 0 such that for all (t, S), (t ′, S′) ∈ �d
T ,

|F(t, S) − F(t ′, S′)| ≤ Cd∞
(
(t, S), (t ′, S′)

)
.

We define C1,1
b (�d

T ) as the set of non-anticipative functionals F : �d
T → R which

are
– horizontally differentiable, i.e., for all (t, S) ∈ �d

T ,

DF(t, S) = lim
h↓0

F(t + h, S·∧t ) − F(t, S·∧t )

h

exists, and DF is continuous at fixed times;
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– vertically differentiable, i.e., for all (t, S) ∈ �d
T , we have existence of the

vertical derivative ∇xF (t, S) = (∂iF (t, S))i=1,...,d with

∂iF (t, S) = lim
h→0

F(t, S·∧t + hei1[t,T ]) − F(t, S·∧t )

h
,

where (ei)i=1,...,d is the canonical basis of Rd , and ∇xF ∈ C
0,0
� (�d

T );
– such that DF,∇xF ∈ B(�d

T ).

Corollary 3.7 If F ∈ C
1,1
b (�d

T ) with F and ∇xF in Lip(�d
T , d∞), and if S ∈ �p, then

the path-dependent functionally generated trading strategy F( · , S) is an admissible
strategy in the sense of Definition 3.2.

Proof That (F ( · , S),∇xF ( · , S)) is a controlled path with respect to S immedi-
ately follows from Ananova [2, Lemma 5.12]; see also Ananova [3, Lemma 3.7].
The admissibility condition regarding the jump times of F( · , S) is ensured by the
Lipschitz-continuity of F . �

Remark 3.8 The standard examples of sufficiently regular path-dependent functionals
are functionals which depend on the running maximum or on a notion of the average
of the underlying path; see e.g. Ananova [3, Example 4.4]. Further examples include

(i) F(t, S·∧t ) := ∫ t

0 ψ(s, S·∧s−) d[S]s ,
(ii) F(t, S·∧t ) := ∫ t

0 ∇xf (s, S·∧s) dSs ,

(iii) F(t, S·∧t ) := ∑d
i=1(

∫ t

0 (Si
t − Si

s)fi(S
i
s) dSi

s − ∫ t

0 fi(S
i
s) d[Si]s)

for a twice differentiable function f = (f1, . . . , fd) : Rd → R
d and a left-

continuous and locally bounded function ψ : �d
T → R

d×d ; see Chiu and Cont [10,
Example 4.18].

3.4 Cover’s universal portfolio

While functionally generated trading strategies are most prominent in the literature
regarding hedging and control problems in mathematical finance, various other trad-
ing strategies with desirable properties have been considered. One example coming
from portfolio theory is Cover’s [12] universal portfolio. The basic idea is to invest
not according to one specific trading strategy, but according to a mixture of all ad-
missible strategies. Following Cuchiero et al. [13], we introduce here a model-free
analogue of Cover’s universal portfolio.

Let Z be a Borel-measurable subset of C2
b(Rd;Rd) and suppose that ν is a prob-

ability measure on Z . A model-free version of Cover’s universal portfolio ϕν is then
given by

ϕν
t :=

∫
Z

ϕ
f
t dν(f ), t ∈ [0,∞), (3.13)

where ϕf = f (S) is the portfolio generated by f for some fixed S ∈ �p.
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Lemma 3.9 Let S ∈ �p and let ν be a probability measure on Z as above. If

∫
Z

‖f ‖C2
b

dν(f ) < ∞,

then Cover’s universal portfolio ϕν as defined in (3.13) is an admissible strategy in
the sense of Definition 3.2.

Proof Let T > 0. We know from Proposition 3.6 that for each f ∈ Z , the corre-
sponding functionally generated portfolio ϕ = ϕf is an admissible strategy. Let ϕ′
and Rϕ denote the corresponding Gubinelli derivative and remainder term. It follows
from the inequalities in (3.6) and (3.7) that

|ϕ0| + ‖ϕ, ϕ′‖Vp,p/2
S

= |ϕ0| + |ϕ′
0| + ‖ϕ′‖p,[0,T ] + ‖Rϕ‖ p

2 ,[0,T ]

� ‖f ‖C2
b
(1 + ‖S‖2

p,[0,T ]),

and hence that
∫
Z

(|ϕ0| + ‖ϕ, ϕ′‖Vp,p/2
S

) dν � (1 + ‖S‖2
p,[0,T ])

∫
Z

‖f ‖C2
b

dν < ∞. (3.14)

Recall that the map (ϕ, ϕ′) �→ |ϕ0| + ‖ϕ, ϕ′‖Vp,p/2
S

is a norm on the Banach space

Vp,
p
2

S of controlled paths. Note also that the subset of controlled paths (ϕ, ϕ′) ∈ Vp,
p
2

S

satisfying Jϕ ⊆ ⋃
n∈N Pn is a closed linear subspace of Vp,

p
2

S and thus itself a
Banach space. It follows from the integrability condition in (3.14) that the integral
in (3.13) exists as a well-defined Bochner integral, and defines a controlled path

(ϕν, (ϕν)′) ∈ Vp,
p
2

S satisfying Jϕν ⊆ ⋃
n∈N Pn. �

3.5 Functionally generated portfolios from stochastic portfolio theory

In this section, we briefly discuss admissible strategies appearing in stochastic port-
folio theory as initiated by Fernholz [18]; see also e.g. Strong [48] and Karatzas and
Ruf [33]. Following the model-free framework for stochastic portfolio theory as in-
troduced in Schied et al. [46] and Cuchiero et al. [13], we consider a d-dimensional
càdlàg path S = (S1, . . . , Sd) such that Si

t > 0 for all t ≥ 0 and i = 1, . . . , d . The
total capitalisation � is defined by �t := S1

t + · · · + Sd
t , and the relative market

weight process μ is given by

μi
t := Si

t

�t

= Si
t

S1
t + · · · + Sd

t

, i = 1, . . . , d,

which takes values in the open simplex

�d+ :=
{
x ∈ R

d :
d∑

i=1

xi = 1, xi > 0 for all i

}
.
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We impose that the market weight process μ = (μ1, . . . , μd) satisfies prop-
erty (RIE) with respect to some p ∈ (2, 3) and a given sequence (Pn)n∈N of
nested partitions. More precisely, we assume that μ is a price path in the sense of
Definition 3.1.

Given a controlled path θ ∈ Vq,r
μ , we define its associated value evolution V θ by

V θ
t := ∑d

i=1 θi
t μ

i
t for t ≥ 0. We also denote Qθ

t := V θ
t − V θ

0 − ∫ t

0 θs dμs , where∫ t

0 θs dμs is interpreted as a rough integral as in Remark 2.5. Similarly to classical
mathematical finance (see e.g. Karatzas and Ruf [33, Proposition 2.3]), we can show
that every controlled path θ ∈ Vq,r

μ induces a self-financing trading strategy ϕ, and
that every such strategy ϕ is itself a controlled path in Vq,r

μ .

Proposition 3.10 Given θ ∈ Vq,r
μ and a constant C ∈ R, we introduce

ϕi
t := θi

t − Qθ
t − C, t ≥ 0, i = 1, . . . , d.

Then the resulting path ϕ = (ϕ1, . . . , ϕd) is a controlled path in Vq,r
μ , and ϕ is

self-financing in the sense that

V
ϕ
t − V

ϕ
0 =

∫ t

0
ϕs dμs, t ≥ 0,

where V
ϕ
t = ∑d

i=1 ϕi
t μ

i
t . Moreover, if θ is an admissible strategy in the sense of

Definition 3.2, then so is ϕ.

Proof Since θ ∈ Vq,r
μ is a controlled path, by (the trivial extension to càdlàg paths

of) Allan et al. [1, Lemma A.1], the path V θ = ∑d
i=1 θiμi is also a controlled

path. Recalling Remark 2.6, we also have that the rough integral
∫ ·

0 θ dμ is it-
self a controlled path (with Gubinelli derivative equal to θ ). It is then clear that
Qθ = V θ − V θ

0 − ∫ ·
0 θs dμs is a controlled path, and hence that ϕi = θi − Qθ − C

is as well for every i = 1, . . . , d , so that ϕ ∈ Vq,r
μ . The self-financing property of ϕ

can be verified by following the proof of [33, Proposition 2.3].
We know from Proposition 2.14 and the fact that μ satisfies property (RIE) that

the jump times Jμ of μ satisfy Jμ ⊆ ⋃
n∈N Pn. It is also clear that the jump times

of the integral
∫ ·

0 θ dμ form a subset of Jμ. Thus under the assumption that θ is an
admissible strategy, so that Jθ ⊆ ⋃

n∈N Pn, we also deduce that Jϕ ⊆ ⋃
n∈N Pn so

that ϕ is itself an admissible strategy. �

The following definition introduces notions which can be seen as the rough path
counterparts of the functionally generated strategies induced by regular and Lyapunov
functions from stochastic portfolio theory; see [33, Definitions 3.1 and 3.3].

Definition 3.11 We say that a continuous function G : �d+ → R is regular for the
market weight process μ if

(i) there exists a measurable function DG = (D1G, . . . , DdG) on �d+ such that
the path θ = (θ1, . . . , θd) given by θi = DiG(μ) for i = 1, . . . , d is an admissible
strategy (in the sense of Definition 3.2), and



244 A.L. Allan et al.

(ii) the (càdlàg) path �G given by

�G
t := G(μ0) − G(μt) +

∫ t

0
θs dμs, t ≥ 0,

has locally bounded variation.

We say that a regular function G : �d+ → R is a Lyapunov function for the market
weight process μ if the path �G is also nondecreasing.

Example 3.12 Suppose that G : �d+ → R is a C3 function. It is then straightfor-
ward to see that θ = DG(μ) defines a controlled path, with DG here defined as the
classical gradient of G. It also follows from the Itô formula for rough paths (recall
Remark 2.20) that

�G
t = −1

2

∫ t

0
D2G(μs) d[μ]cs −

∑
s≤t

(
G(μs) − G(μs−) − DG(μs−)�μs

)
, (3.15)

where [μ]c is the continuous part of the quadratic variation of μ and �μs = μs −μs−
denotes the jump of μ at time s.

If we also assume that G is concave, then we infer from (3.15) that �G is non-
decreasing. In this case, G is a Lyapunov function in the sense of Definition 3.11.
Two important examples of such functions are the Gibbs entropy function defined by
H(x) := ∑d

i=1 xi log 1
xi

, and the quadratic function where Q(c)(x) := c − ∑d
i=1 x2

i

for some c ∈ R; see [33, Sect. 5.1].

Remark 3.13 If μ is realised by a semimartingale model, then any continuous con-
cave (but not necessarily C3) function G can be a candidate for a Lyapunov function
in the sense of [33, Definition 3.3]. This is essentially because in stochastic portfolio
theory, one only needs the “supergradients” DG to be measurable, so that DG(μ)

is integrable with respect to the semimartingale μ. In contrast, in our purely path-
wise setup, measurability of DG alone is not enough to ensure that θ = DG(μ) is
controlled by μ; so we require more regularity of the generating function G. This
illustrates a difference between stochastic integration in a probabilistic setting and
rough integration when only a single deterministic path is considered; for more de-
tailed discussions on this theme, we refer to Allan et al. [1]. On the other hand, as
shown in the previous example, many important Lyapunov functions from stochastic
portfolio theory (such as the Gibbs entropy function) are actually smooth; so they
do induce controlled paths (and indeed admissible strategies in the sense of Defini-
tion 3.2) for almost all trajectories of μ, and the stability results established in Sect. 3
remain valid for these functionally generated strategies. It would be interesting to ex-
plore further Lyapunov functions for rough paths, but this is beyond the scope of the
present paper.

Based on the previous observations, we can also extend the following notions from
classical stochastic portfolio theory (e.g. [33]) to our rough path setting. The proof is
straightforward and therefore omitted for brevity.
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Corollary 3.14 Suppose that the market weight process μ = (μ1, . . . , μd) is a price
path in the sense of Definition 3.1, and let θ = (θ1, . . . , θd) be an admissible strategy
for μ in the sense of Definition 3.2. Let G be a regular function for μ in the sense of
Definition 3.11. Then the following paths are also admissible strategies for μ:

(i) the additively generated strategy ϕi
t = θi

t − Qθ
t − C0, i = 1, . . . , d , where we

set Qθ
t = V θ

t − V θ
0 − ∫ t

0 θs dμs and C0 = ∑d
j=1 μi

0DjG(μ0) − G(μ0);

(ii) the portfolio weights associated to ϕ, given by πi
t = μi

tϕ
i
t∑d

j=1 μ
j
t ϕ

j
t

, i = 1, . . . , d;

(iii) the multiplicatively generated strategy �i
t = ηi

t − Q
η
t − C0, where we set

ηi
t = θi

t exp(
∫ t

0
d�G

s

G(μs)
), i = 1, . . . , d , and Q

η
t = V

η
t − V

η
0 − ∫ t

0 ηs dμs , and the
function G is also assumed to be positive and bounded away from zero;

(iv) the portfolio weights associated to �, given by

�i
t = μi

t

(
1 + 1

G(μt)

(
DiG(μt ) −

d∑
j=1

DjG(μt )μ
j
t

))
, i = 1, . . . , d.

4 Semimartingales and typical price paths satisfy property (RIE)

In this section, we show that many stochastic processes commonly used to model the
price evolutions on financial markets satisfy property (RIE) along a suitable sequence
of partitions. In particular, we verify that property (RIE) holds for semimartingales
and for typical price paths in the sense of Vovk [51].

4.1 Semimartingales

Semimartingales, such as geometric Brownian motion and Markov jump-diffusion
processes, serve as the most frequently used stochastic processes to model price evo-
lutions on financial markets. For more details on semimartingales and Itô integration,
we refer to the standard textbook by Protter [43, Chap. II].

Usually the considered class of semimartingales is restricted to those satisfying the
condition “no free lunch with vanishing risk” in classical mathematical finance, see
e.g. Delbaen and Schachermayer [15], or the condition “no unbounded profit with
bounded risk” (NUPBR) in stochastic portfolio theory, see e.g. Karatzas and Kar-
daras [31]. Such a restriction is not required here. Property (RIE) is fulfilled by gen-
eral càdlàg semimartingales with respect to any p ∈ (2, 3) and a suitable (random)
sequence of partitions.

Let us fix a filtered probability space (�,F ,F,P) and assume that the filtration
F = (Ft )t∈[0,∞) satisfies the usual conditions of completeness and right-continuity.
On this, we consider a d-dimensional càdlàg semimartingale X = (Xt )t∈[0,∞).

For each n ∈ N, we introduce stopping times (τn
k )k∈N∪{0} by τn

0 = 0 and

τn
k := inf{t > τn

k−1 : |Xt − Xτn
k−1

| ≥ 2−n}, k ∈ N.

We then define a sequence (Pn
X)n∈N of partitions by

Pn
X := {τm

k : m ≤ n, k ∈ N ∪ {0}}.
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Note that (Pn
X)n∈N is a nested sequence of adapted partitions. However, this sequence

of partitions will not have vanishing mesh size if the path X has an interval of con-
stancy. To amend this, we proceed as follows. For each n ∈ N and k ∈ N ∪ {0}, we
define

σn
k := τn

k+1 ∧ inf{t > τn
k : ∃ δ > 0 such that Xs = Xt for all s ∈ [t, t + δ]},

ςn
k := τn

k+1 ∧ inf{t > σn
k : Xt �= Xσn

k
},

that is, the beginning and end points of the first interval of constancy of X within
the interval [τn

k , τn
k+1]. For each i ∈ N, we then define ρn

k,i := (σ n
k + i2−n) ∧ ςn

k .
Clearly, for each n, k, we have ρn

k,i = ςn
k for all but finitely many i ∈ N (provided

that ςn
k < ∞). Finally, we define

Qn
X := Pn

X ∪ {
σm

k : m ≤ n, k ∈ N ∪ {0}} ∪ {
ρm

k,i : m ≤ n, k ∈ N ∪ {0}, i ∈ N
}
.

The sequence (Qn
X)n∈N of partitions is still nested and moreover has vanishing mesh

size on every compact time interval. Moreover, it is straightforward to see that all the
points τn

k , σn
k and ρn

k,i appearing in the partitions (Qn
X)n∈N are stopping times with

respect to F. In the next proposition, we show that X satisfies property (RIE) with
respect to any p ∈ (2, 3) and the sequence (Qn

X)n∈N of partitions.

Proposition 4.1 Let p ∈ (2, 3), and let X be a d-dimensional càdlàg semimartingale.
Then almost every sample path of X is a price path in the sense of Definition 3.1.

Proof Step 1. Fix a T > 0. Let
∫ ·

0 Xu−⊗dXu denote the Itô integral of X with respect
to itself. For each n ∈ N, we define the discretised process Xn = (Xn

t )t∈[0,T ] by

Xn
t :=

∑
[u,v]∈Qn

X([0,T ])
Xu1[u,v)(t), t ∈ [0, T ], (4.1)

so that in particular
∫ t

0 Xn
u− ⊗ dXu = ∑

[u,v]∈Qn
X([0,T ]) Xu ⊗ Xu∧t,v∧t for t ∈ [0, T ].

By the definition of the partition Qn
X, we have

‖Xn·− − X·−‖∞,[0,T ] ≤ 21−n for all n ≥ 1.

An application of the Burkholder–Davis–Gundy inequality and the Borel–Cantelli
lemma as in the proof of Liu and Prömel [35, Proposition 3.4] then yields the exis-
tence of a measurable set �′ ⊆ � with full measure such that for every ω ∈ �′ and
every ε ∈ (0, 1), there exists a constant C = C(ε, ω) such that

∥∥∥∥
( ∫ ·

0
Xn

u− ⊗dXu −
∫ ·

0
Xu−⊗dXu

)
(ω)

∥∥∥∥∞,[0,T ]
≤ C2−n(1−ε), ∀n ≥ 1. (4.2)

Thus we have Xn(ω) → X(ω) and
∫ ·

0 Xn
u−⊗dXu(ω) → ∫ ·

0 Xu−⊗dXu(ω) uniformly
as n → ∞, for every ω ∈ �′.
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Step 2. We choose q0 ∈ (2, 3) close enough to 2 and ε ∈ (0, 1) small enough
such that

p

2
> max

{
q0

2
, q0 − 1

}
and

p

2
≥ q0 − 1 − ε

1 − ε
. (4.3)

We also fix a control function wX,q0 such that

|Xs,t |q0 ≤ wX,q0(s, t) for all (s, t) ∈ �[0,T ]. (4.4)

This is always possible as X has almost surely finite q-variation for every q > 2 (see
e.g. Lépingle [34, Théorème 1]), and so without loss of generality, we may assume
that X(ω) has finite q0-variation for every ω ∈ �′. Note that by (4.3), we have p > q0
and consequently (by increasing the values of wX,q0 by a multiplicative constant if
necessary) we can also assume that

sup
(s,t)∈�[0,T ]

|Xs,t |p
wX,q0(s, t)

≤ 1. (4.5)

Let 0 ≤ s < t ≤ T be such that s = τn
k0

and t = τn
k0+N for some n ∈ N,

k0 ∈ N ∪ {0} and N ≥ 1. By the superadditivity of the control function wX,q0 , there
must exist an � ∈ {1, 2, . . . , N − 1} such that

wX,q0(τ
n
k0+�−1, τ

n
k0+�+1) ≤ 2

N − 1
wX,q0(s, t).

Thus by (4.4),

|Xτn
k0+�−1

⊗ Xτn
k0+�−1,τ

n
k0+�

+ Xτn
k0+�

⊗ Xτn
k0+�,τ

n
k0+�+1

− Xτn
k0+�−1

⊗ Xτn
k0+�−1,τ

n
k0+�+1

|
= |Xτn

k0+�−1,τ
n
k0+�

⊗ Xτn
k0+�,τ

n
k0+�+1

|
≤ wX,q0(τ

n
k0+�−1, τ

n
k0+�+1)

2/q0

≤
(

2

N − 1
wX,q0(s, t)

)2/q0

.

By successively removing in this manner all the intermediate points from the partition
{s = τn

k0
, τ n

k0+1, . . . , τ
n
k0+N = t}, we obtain the estimate

∣∣∣∣
N−1∑
i=0

Xτn
k0+i

⊗ Xτn
k0+i ,τ

n
k0+i+1

− Xs ⊗ Xs,t

∣∣∣∣ ≤
N∑

j=2

(
2

j − 1
wX,q0(s, t)

)2/q0

� N1−2/q0wX,q0(s, t)
2/q0 .

Since

wX,q0(s, t) ≥
N−1∑
i=0

wX,q0(τ
n
k0+i , τ

n
k0+i+1) ≥

N−1∑
i=0

|Xτn
k0+i ,τ

n
k0+i+1

|q0 ≥ N2−nq0,
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we obtain N ≤ 2nq0wX,q0(s, t). Substituting this into the above, we have
∣∣∣∣
∫ t

s

Xn
u− ⊗ dXu − Xs ⊗ Xs,t

∣∣∣∣ � 2n(q0−2)wX,q0(s, t), (4.6)

where the discretised process Xn is defined relative to the partition {τn
0 , τ n

1 , τ n
2 , . . .}.

If more generally 0 ≤ s < t ≤ T are such that s, t ∈ Pn
X, then s = τ

m1
k1

and
t = τ

m2
k2

for some m1,m2 ≤ n and k1, k2 ∈ N ∪ {0}. In this case, the number of
partition points N above satisfies N ≤ ∑n

m=1 2mq0wX,q0(s, t) � 2nq0wX,q0(s, t),
and we thus still obtain the same bound in (4.6). If we further allow the pair of times
s, t to include the times σm

k for m ≤ n and k ∈ N ∪ {0}, this at most doubles the
total number of partition points N so that we can again obtain the same bound. Since
the points ρm

k,i lie inside the interval [σm
k , ςm

k ] on which X is constant, it is clear for

instance that Xσm
k ,ρm

k,i
= 0 and

∫ ρm
k,i

σm
k

Xn
u− ⊗ dXu = 0 for every i ∈ N, and it follows

that these terms do not contribute anything to the bound above.
Thus the bound in (4.6) actually holds for all 0 ≤ s < t ≤ T with s, t ∈ Qn

X, with
Xn defined relative to the partition Qn

X as in (4.1).

Step 3. We first consider the case that wX,q0(s, t)
2

p(1−ε) ≤ 2−n. Then it follows
from (4.3) and (4.6) that there exists a constant C1 = C1(ω, q0, ε) such that

∣∣∣∣
∫ t

s

Xn
u− ⊗ dXu − Xs ⊗ Xs,t

∣∣∣∣
p
2 ≤ C1wX,q0(s, t). (4.7)

Now we consider the case that wX,q0(s, t)
2

p(1−ε) ≥ 2−n. Let Xs,t := ∫ t

s
Xs,u− ⊗ dXu

be the second level component of the Itô lift of X. By Liu and Prömel [35, Proposi-
tion 3.4], we know that X possesses finite p

2 -variation; that is, there exists a control
function wX,

p
2

such that

sup
(s,t)∈�[0,T ]

|Xs,t | p
2

w
X,

p
2
(s, t)

≤ 1.

Then in view of (4.2), we obtain
∣∣∣∣
∫ t

s

Xn
u− ⊗ dXu − Xs ⊗ Xs,t

∣∣∣∣ ≤ 2

∥∥∥∥
∫ ·

0
Xn

u− ⊗ dXu −
∫ ·

0
Xu− ⊗ dXu

∥∥∥∥∞,[0,T ]
+ |Xs,t |

≤ C2
(
2−n(1−ε) + w

X,
p
2
(s, t)

2
p
)

≤ C2
(
wX,q0(s, t)

2
p + wX,

p
2
(s, t)

2
p
)

for some constant C2 = C2(ε, ω), and hence

∣∣∣∣
∫ t

s

Xn
u− ⊗ dXu − Xs ⊗ Xs,t

∣∣∣∣
p
2 ≤ C3

(
wX,q0(s, t) + w

X,
p
2
(s, t)

)
, (4.8)
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where C3 = (2C2)
p
2 . Letting w̃X,p(s, t) := 2(1+C1 +C3)(wX,q0(s, t)+wX,

p
2
(s, t))

and combining (4.5), (4.7) and (4.8), we conclude that for every ω ∈ �′,

sup
(s,t)∈�[0,T ]

|Xs,t |p
w̃X,p(s, t)

+ sup
n∈N

sup
(s,t)∈�[0,T ]

s,t∈Qn
X

| ∫ t

s
Xn

u− ⊗ dXu − Xs ⊗ Xs,t | p
2

w̃X,p(s, t)
≤ 1,

from which property (RIE) follows. �

Remark 4.2 The result of Proposition 4.1 implies that almost every sample path of
a semimartingale X satisfies (RIE) with respect to a suitable sequence of partitions
(which depends on the choice of sample path), and may therefore be canonically lifted
to a rough path. We also saw in Step 1 of the proof of Proposition 4.1 that the Riemann
sums

∫ ·
0 Xn

u− ⊗ dXu converge almost surely to the Itô integral
∫ ·

0 Xu− ⊗ dXu, from
which it follows that the rough path lift constructed via property (RIE) is nothing but
the standard Itô-rough path lift of X, i.e., the function (s, t) �→ ∫ t

s
Xs,u ⊗ dXu with

the integral defined in the sense of Itô. Thus the rough path lift itself does not actually
depend on the choice of sequence of partitions. For (almost) every sample path, the
sequence of partitions specified in property (RIE) is merely a choice of partitions
along which the value of the Itô integral may be well approximated by left-point
Riemann sums in a pathwise fashion.

This is analogous to Föllmer integration in which the quadratic variation (as op-
posed to the 2-variation) of a semimartingale is well defined as a stochastic process;
but to make sense of the quadratic variation in a pathwise sense requires a suitable
choice of sequence of partitions, which depends on the sample path being considered.
Indeed, given any continuous path, it is possible to find a sequence of partitions along
which the quadratic variation of the path is equal to zero (see Freedman [23, (70)
Proposition]). Similarly, it is natural to allow the sequence of partitions specified in
property (RIE) to depend on the path being considered; but in practice, there typically
exists a natural choice for this sequence which results in the desired rough path.

Remark 4.3 Proposition 4.1 holds true even if the semimartingale X takes values in
an (infinite dimensional) Hilbert space E, as long as the norm on E ⊗ E is admis-
sible in the sense of Lyons et al. [40, Definition 1.25]. In particular, an extension
of Proposition 4.1 to so-called piecewise semimartingales, which were introduced in
Strong [47, Definition 2.2] as generalised semimartingales with an image dimension
evolving randomly in time, appears to be straightforward to implement. As discussed
in Karatzas and Kim [32, Remark 6.2 and Sect. 7], piecewise semimartingales provide
a realistic framework to model so-called open markets, which are financial markets
with an evolving number of traded assets.

4.2 Generalised semimartingales

It is a well observed fact in the empirical literature, see e.g. Lo [36], that price
processes appear regularly in financial markets which are not semimartingales.
Motivated by this fact, many researchers have proposed and investigated finan-
cial models based on fractional Brownian motions; see for instance Jarrow et al.
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[29], Cheridito [8] or Bender [6]. One example of such models are the so-called
mixed Black–Scholes models. In these models, the (one-dimensional) price process
S = (St )t∈[0,∞) is usually given by

St := s0 exp(σWt + ηYt + νt + μt2H ), t ∈ [0,∞), (4.9)

for constants s0, σ, η > 0 and ν, μ ∈ R, where W = (Wt)t∈[0,∞) is a standard
Brownian motion and Y = (Yt )t∈[0,∞) is a fractional Brownian motion with some
Hurst index H ∈ (0, 1). Multi-dimensional versions of the mixed Black–Scholes
model (4.9) can be obtained by standard modifications. Notice that while the price
process S as defined in (4.9) is not a semimartingale if H �= 1/2, the mixed Black–
Scholes model (4.9) is still arbitrage-free when restricting the admissible trading
strategies to classes of trading strategies which, roughly speaking, exclude contin-
uous rebalancing of the positions in the underlying market; cf. [29, 8, 6]. In particu-
lar, the mixed Black–Scholes model (4.9) is free of simple arbitrage opportunities if
H > 1/2, as proved in [6, Sect. 4.1].

In order to demonstrate that property (RIE) is satisfied by various financial models
based on fractional Brownian motion, we consider the following class of generalised
semimartingales. On a filtered probability space (�,F ,F,P) with a complete right-
continuous filtration F = (Ft )t∈[0,∞), let Z be a d-dimensional process admitting the
decomposition

Zt = Xt + Yt , t ∈ [0,∞),

where X is a semimartingale and Y is a càdlàg adapted process with finite q-variation
for some q ∈ [1, 2). Processes Z of this form are sometimes called Young semi-
martingales and belong to the class of càdlàg Dirichlet processes in the sense of
Föllmer [20].

We introduce stopping times (τn
k ) such that for each n ∈ N, τn

0 = 0 and

τn
k := inf{t > τn

k−1 : |Xt − Xτn
k−1

| ≥ 2−n or |Yt − Yτn
k−1

| ≥ 2−n}
for k ∈ N, and set

Pn
Z := {

τm
k : m ≤ n, k ∈ N ∪ {0}}.

As in the previous section, since we insist that the sequence of partitions in prop-
erty (RIE) has vanishing mesh size, we also define

Qn
Z := Pn

Z ∪ {
σm

k : m ≤ n, k ∈ N ∪ {0}} ∪ {
ρm

k,i : m ≤ n, k ∈ N ∪ {0}, i ∈ N
}
,

where the times σm
k and ρm

k,i are defined analogously as in Sect. 4.1.

Proposition 4.4 Let Z = X + Y be a d-dimensional process such that X is a càdlàg
semimartingale and Y a càdlàg process with finite q-variation for some q ∈ [1, 2).
Then for any p ∈ (2, 3) such that 1/p + 1/q > 1, almost every sample path of Z is
a price path in the sense of Definition 3.1.
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Proof Step 1. It is enough to prove that almost all sample paths of Z satisfy property
(RIE) along (Qn

Z([0, T ]))n∈N for any T > 0. To this end, for each n ∈ N, we set

Zn
t :=

∑
[u,v]∈Qn

Z([0,T ])
Zu1[u,v)(t), t ∈ [0, T ],

and define Xn and Yn in the same way with respect to the partition Qn
Z([0, T ]).

Let X = M + A be a decomposition of the semimartingale X such that M is a
locally square-integrable martingale and A is of bounded variation. By then setting
B := A + Y , we can write Z = M + B, where B has finite q-variation. We define
the Itô integral of Z with respect to itself by

∫ t

0
Zu− ⊗ dZu :=

∫ t

0
Zu− ⊗ dMu +

∫ t

0
Zu− ⊗ dBu,

where the first integral on the right-hand side is an Itô integral and the second
is interpreted as a Young integral, which exists because Z has finite p-variation
and we have 1/p + 1/q > 1; see e.g. Friz and Zhang [26]. Then since
‖Zn·− − Z·−‖∞,[0,T ] ≤ 21−n, the Burkholder–Davis–Gundy inequality and the
Borel–Cantelli lemma imply that for almost all ω and for every ε ∈ (0, 1), there
exists a constant C = C(ω, ε) such that for all n ∈ N,

∥∥∥∥
∫ ·

0
Zn

u− ⊗ dMu −
∫ ·

0
Zu− ⊗ dMu

∥∥∥∥∞,[0,T ]
≤ C2−n(1−ε); (4.10)

cf. the proof of Liu and Prömel [35, Proposition 3.4]. By a standard estimate for
Young integrals (e.g. [26, Proposition 2.4]), for every t ∈ [0, T ], we also have (noting
that Zn

0 = Z0 for all n) that

∣∣∣∣
∫ t

0
(Zn

u− − Zu−) ⊗ dBu

∣∣∣∣ ≤ C‖Zn·− − Z·−‖p,[0,t]‖B‖q,[0,T ]

for some constant C = C(p, q). Since ‖Zn·−‖p0,[0,t] ≤ ‖Z‖p0,[0,T ] for every n and
every p0 ∈ (2, p), a routine interpolation argument shows that for each n ∈ N,

‖Zn·− − Z·−‖p,[0,T ] ≤ C‖Zn·− − Z·−‖1− p0
p

∞,[0,T ]‖Z‖
p0
p

p0,[0,T ]

for some constant C = C(p, p0). Hence, since ‖Zn·− − Z·−‖∞,[0,T ] ≤ 21−n for all n,
we have

lim
n→∞

∥∥∥∥
∫ ·

0
Zn

u− ⊗ dBu −
∫ ·

0
Zu− ⊗ dBu

∥∥∥∥∞,[0,T ]
= 0. (4.11)

Combining the bound in (4.10) with (4.11), we conclude that almost surely, the
integral

∫ ·
0 Zn

u− ⊗ dZu converges uniformly to
∫ ·

0 Zu− ⊗ dZu.
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Step 2. For every n ∈ N, we set

Z
n
s,t :=

∫ t

s

Zn
s,u− ⊗ dZu

=
∫ t

s

Xn
s,u− ⊗ dXu +

∫ t

s

Y n
s,u− ⊗ dYu +

∫ t

s

Xn
s,u− ⊗ dYu +

∫ t

s

Y n
s,u− ⊗ dXu

for (s, t) ∈ �[0,T ]. Moreover, we define

X
n
s,t :=

∫ t

s

Xn
s,u− ⊗ dXu, Y

n
s,t :=

∫ t

s

Y n
s,u− ⊗ dYu,

XY
n
s,t :=

∫ t

s

Xn
s,u− ⊗ dYu, YX

n
s,t :=

∫ t

s

Y n
s,u− ⊗ dXu

for (s, t) ∈ �[0,T ]. We seek a control function c such that

sup
n∈N

sup
(s,t)∈�[0,T ]

s,t∈Qn
Z([0,T ])

|Zn
s,t |

p
2

c(s, t)
≤ 1.

Towards this end, we first construct a control function cX such that the above bound
holds for Xn. Since ‖Xn·− −X·−‖∞,[0,T ] ≤ 21−n, we still have the bound in (4.2). We
also choose q0 ∈ (2, 3) and ε ∈ (0, 1) as in (4.3), and let wX,q0 and wY,q be control
functions dominating the q0-variation and q-variation for X and Y , respectively. From
the definition of the stopping times τm

k ∈ Pn
Z and the fact that q < 2 < q0, it is easy

to check that for all s < t with s, t ∈ Pn
Z , the number N of partition points in Pn

Z

between s and t can be bounded by

N ≤
n∑

m=1

(
2mq0wX,q0(s, t) + 2mqwY,q(s, t)

)
� 2nq0wq0,q (s, t),

where wq0,q (s, t) := wX,q0(s, t) + wY,q(s, t). By the same argument as in Step 2
of the proof of Proposition 4.1, we deduce that for all n ∈ N and all s < t with
s, t ∈ Qn

Z ,

∣∣∣∣
∫ t

s

Xn
u− ⊗ dXu − Xs ⊗ Xs,t

∣∣∣∣ � 2n(q0−2)wq0,q(s, t),

which as in Step 3 of the proof of Proposition 4.1 allows us to deduce the existence
of a control function cX such that

sup
n∈N

sup
(s,t)∈�[0,T ]

s,t∈Qn
Z([0,T ])

|Xn
s,t |

p
2

cX(s, t)
≤ 1.

Next we use the local estimates of Young integration to show that there exists a
control cXY such that the above bound holds for XY

n and cXY. Indeed, by [26,
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Proposition 2.4], we have for all s < t in [0, T ] that

∣∣∣∣
∫ t

s

Xn
s,u− ⊗ dYu

∣∣∣∣
p/2

≤ Cp,q‖Y‖p/2
q,[s,t]|‖Xn‖p/2

p,[s,t]

≤ Cp,q‖Y‖p/2
q,[s,t]‖X‖p/2

p,[s,t]

≤ Cp,qwY,q(s, t)p/2qwX,p(s, t)1/2

for some constant Cp,q depending only on p and q. Since p ∈ (2, 3) and q ∈ [1, 2),
we have p/2q > 1/2 and thus p/2q + 1/2 > 1, which implies that the function
(s, t) �→ wY,q(s, t)p/2qwX,p(s, t)1/2 is superadditive and hence itself a control func-
tion. Thus the control function cXY := Cp,qwY,q(s, t)p/2qwX,p(s, t)1/2 gives the
desired bound. Similarly, we can find control functions cYX and cY for YXn and Y

n,
respectively. Hence our claim follows by noting that

|Zn| ≤ |Xn| + |Yn| + |XYn| + |YXn|.
We thus deduce that the sample paths of Z almost surely satisfy property (RIE) along
(Qn

Z([0, T ]))n∈N. �

4.3 Typical price paths

The notion of “typical price paths” was introduced by Vovk, who introduced a model-
free hedging-based approach to mathematical finance allowing to investigate the sam-
ple path properties of such “typical price paths” based on arbitrage considerations;
see for instance Vovk [49, 51] or Perkowski and Prömel [42]. Let us briefly recall the
basic setting and definitions of Vovk’s approach.

We denote by �+ := D([0,∞);Rd+) the space of all nonnegative càdlàg functions
ω : [0,∞) → R

d+. For each t ∈ [0,∞), F◦
t is defined as the smallest σ -algebra

on �+ that makes all functions ω �→ ω(s), s ∈ [0, t], measurable, and Ft is defined
to be the universal completion of F◦

t . Stopping times τ : �+ → [0,∞) ∪ {∞} with
respect to the filtration (Ft )t∈[0,∞) and the corresponding σ -algebras Fτ are defined
as usual. The coordinate process on �+ is denoted by S, i.e., St (ω) := ω(t) for
t ∈ [0,∞).

A process H : �+ × [0,∞) → R
d is a simple (trading) strategy if there exist a

sequence of stopping times 0 = σ0 < σ1 < σ2 < · · · such that for every ω ∈ �+,
there exists an N(ω) ∈ N such that σn(ω) = σn+1(ω) for all n ≥ N(ω), and a
sequence of Fσn-measurable bounded functions hn : �+ → R

d such that we have
Ht(ω) = ∑∞

n=0 hn(ω)1(σn(ω),σn+1(ω)](t) for t ∈ [0,∞). For a simple strategy H , the
corresponding integral process

(H · S)t (ω) :=
∞∑

n=0

hn(ω)Sσn∧t,σn+1∧t (ω)

is well defined for all (t, ω) ∈ [0,∞) × �+. For λ > 0, we write Hλ for the set of
all simple strategies H such that (H · S)t (ω) ≥ −λ for all (t, ω) ∈ [0,∞) × �+.



254 A.L. Allan et al.

Definition 4.5 Vovk’s outer measure P of a set A ⊆ �+ is defined as the minimal
super-hedging price for 1A, that is,

P(A) := inf
{
λ > 0 : ∃ (Hn)n∈N ⊆ Hλ such that

lim inf
n→∞

(
λ + (Hn · S)T (ω)

) ≥ 1A(ω),∀ω ∈ �+
}
.

A set A ⊆ �+ is called a nullset if P(A) = 0. A property (P) holds for typical price
paths if the set A where (P) is violated is a nullset.

Remark 4.6 Loosely speaking, the outer measure P corresponds to the (model-free)
notion of “no unbounded profit with bounded risk”; see Perkowski and Prömel [42,
Sect. 2.2] for a more detailed discussion in this direction. Furthermore, the outer
measure P dominates all local martingale measures on the space �+; see Łochowski
et al. [37, Lemma 2.3 and Proposition 2.5]. As a consequence, all results proved for
typical price paths hold simultaneously under all martingale measures (or in other
words quasi-surely with respect to all martingale measures).

Let us recall that typical price paths are of finite p-variation for every p > 2 (see
Vovk [50, Theorem 1]), and that Vovk’s model-free framework allows setting up a
model-free Itô integration; see e.g. Łochowski et al. [37].

Lemma 4.7 Typical price paths are price paths in the sense of Definition 3.1, with
any p ∈ (2, 3).

The proof of Lemma 4.7 works verbatim as that of Proposition 4.1, keeping in
mind Liu and Prömel [35, Proposition 3.10] and [37, Corollary 4.9], and is therefore
omitted for brevity.

4.4 Consistency of rough and stochastic integration

In a probabilistic framework when the underlying process is a semimartingale, one
can employ either rough or stochastic Itô integration. In this subsection, we briefly
demonstrate that under property (RIE), these two integrals actually coincide almost
surely whenever both are defined.

Let us again fix a filtered probability space (�,F ,F,P) and assume that the
filtration F = (Ft )t∈[0,∞) satisfies the usual conditions.

Proposition 4.8 Let X be a d-dimensional càdlàg semimartingale and Y an adapted
càdlàg process such that for almost every ω ∈ �, the path Y(ω) ∈ AX(ω) is an
admissible strategy (in the sense of Definition 3.2). Then the rough and Itô integrals
of Y against X coincide almost surely. That is,

∫ t

0
Ys(ω) dXs(ω) =

( ∫ t

0
Ys− dXs

)
(ω) for all t ∈ [0,∞)

holds for almost every ω ∈ �, where X(ω) is the canonical rough path lift of X(ω)

as defined in Lemma 2.13.
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Proof Fix T > 0. By Proposition 4.1, we know that for any p ∈ (2, 3), almost every
sample path of X is a price path and satisfies property (RIE) along a nested sequence
of adapted partitions Pn

X = {0 = tn0 < tn1 < · · · < tnNn
= T }, n ∈ N, of the interval

[0, T ] with vanishing mesh size. Since Y(ω) ∈ AX(ω), there exists a càdlàg process
Y ′ such that (Y (ω), Y ′(ω)) ∈ Vq,r

X(ω) is a controlled path on [0, T ] for almost every
ω ∈ � and some suitable numbers q, r .

By Protter [43, Theorem II.21], we have that

Nn−1∑
k=0

Ytnk
Xtnk ∧t,tnk+1∧t −→

∫ t

0
Ys− dXs as n → ∞, (4.12)

where the convergence holds uniformly (in t ∈ [0, T ]) in probability. By taking a sub-
sequence if necessary, we can then assume that the (uniform) convergence in (4.12)
holds almost surely. On the other hand, by Theorem 2.15, we know that for almost
every ω ∈ �,

Nn−1∑
k=0

Ytnk
(ω)Xtnk ∧t,tnk+1∧t (ω) −→

∫ t

0
Ys(ω) dXs(ω) as n → ∞ (4.13)

uniformly for t ∈ [0, T ]. Combining (4.12) and (4.13), we deduce that almost surely,∫ t

0 Ys dXs = ∫ t

0 Ys− dXs for all t ∈ [0, T ]. Since T > 0 was arbitrary, the result
follows. �
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