Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/306536 
Erscheinungsjahr: 
2024
Schriftenreihe/Nr.: 
Center for Mathematical Economics Working Papers No. 696
Verlag: 
Bielefeld University, Center for Mathematical Economics (IMW), Bielefeld
Zusammenfassung: 
This paper is concerned with a comparison principle for viscosity solutions to Hamilton-Jacobi (HJ), -Bellman (HJB), and -Isaacs (HJI) equations for general classes of partial integro-differential operators. Our approach innovates in three ways: (1) We reinterpret the classical doubling-of-variables method in the context of second-order equations by casting the Ishii-Crandall Lemma into a test function framework. This adaptation allows us to effectively handle non-local integral operators, such as those associated with Lévy processes. (2) We translate the key estimate on the difference of Hamiltonians in terms of an adaptation of the probabilistic notion of couplings, providing a unified approach that applies to differential, difference, and integral operators. (3) We strengthen the sup-norm contractivity resulting from the comparison principle to one that encodes continuity in the strict topology. We apply our theory to a variety of examples, in particular, to second-order differential operators and, more generally, generators of spatially inhomogeneous Lévy processes.
Schlagwörter: 
Comparison principle
viscosity solution
Hamilton-Jacobi-Bellman-Isaacs equation
coupling of operators
Lyapunov function
Jensen perturbation
mixed topology
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Working Paper

Datei(en):
Datei
Größe
835.11 kB





Publikationen in EconStor sind urheberrechtlich geschützt.