Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/301887 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Statistics in Transition new series (SiTns) [ISSN:] 2450-0291 [Volume:] 23 [Issue:] 4 [Year:] 2022 [Pages:] 21-36
Verlag: 
Sciendo, Warsaw
Zusammenfassung: 
There are many models in the current statistical literature for making inferences based on samples selected from a finite population. Parametric models may be problematic because statistical inference is sensitive to parametric assumptions. The Dirichlet process (DP) prior is very flexible and determines the complexity of the model. It is indexed by two hyper- parameters: the baseline distribution and concentration parameter. We address two distinct problems in the article. Firstly, we review the current sampling methods for the concentration parameter, which use the continuous baseline distribution. We compare three different meth- ods: the adaptive rejection method, the mixture of Gammas method and the grid method. We also propose a new method based on the ratio of uniforms. Secondly, in practice, some sur- vey responses are known to be discrete. If a continuous distribution is adopted as the baseline distribution, the model is misspecified and standard inference may be invalid. We propose a discrete baseline approach to the DP prior and sample the unobserved responses from the finite population both using a Polya urn scheme and a Multinomial distribution. We applied our discrete baseline approach to a Phytophthora data se
Schlagwörter: 
concentration parameter
discrete baseline
empirical study
grid method
non-parametric Bayesian statistics
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-sa Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.