Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/296384 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Theoretical Economics [ISSN:] 1555-7561 [Volume:] 17 [Issue:] 3 [Year:] 2022 [Pages:] 1225-1267
Verlag: 
The Econometric Society, New Haven, CT
Zusammenfassung: 
We define the distance between two information structures as the largest possible difference in value across all zero-sum games. We provide a tractable characterization of distance and use it to discuss the relation between the value of information in games versus single-agent problems, the value of additional information, informational substitutes, complements, or joint information. The convergence to a countable information structure under value-based distance is equivalent to the weak convergence of belief hierarchies, implying, among other things, that for zero-sum games, approximate knowledge is equivalent to common knowledge. At the same time, the space of information structures under the value-based distance is large: there exists a sequence of information structures where players acquire increasingly more information, and \varepsilon>0 such that any two elements of the sequence have distance of at least \varepsilon. This result answers by the negative the second (and last unsolved) of the three problems posed by J.F. Mertens in his paper “Repeated Games”, ICM 1986.
Schlagwörter: 
universal type space
Value of information
JEL: 
C7
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
450.41 kB





Publikationen in EconStor sind urheberrechtlich geschützt.