Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/296357 
Erscheinungsjahr: 
2024
Quellenangabe: 
[Journal:] Quantitative Economics [ISSN:] 1759-7331 [Volume:] 15 [Issue:] 1 [Year:] 2024 [Pages:] 175-211
Verlag: 
The Econometric Society, New Haven, CT
Zusammenfassung: 
We experimentally study how people form predictive models of simple data generating processes (DGPs), by showing subjects data sets and asking them to predict future outputs. We find that subjects: (i) often fail to predict in this task, indicating a failure to form a model, (ii) often cannot explicitly describe the model they have formed even when successful, and (iii) tend to be attracted to the same, simple models when multiple models fit the data. Examining a number of formal complexity metrics, we find that all three patterns are well organized by metrics suggested by Lipman (1995) and Gabaix (2014) that describe the information processing required to deploy models in prediction.
Schlagwörter: 
Complexity
mental models
inference
bounded rationality
behavioral economics
economics experiments
JEL: 
C0
C91
D91
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
540.1 kB





Publikationen in EconStor sind urheberrechtlich geschützt.