Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/288307 
Erscheinungsjahr: 
2020
Quellenangabe: 
[Journal:] Journal of Global Optimization [ISSN:] 1573-2916 [Volume:] 77 [Issue:] 1 [Publisher:] Springer US [Place:] New York, NY [Year:] 2020 [Pages:] 75-96
Verlag: 
Springer US, New York, NY
Zusammenfassung: 
This paper presents a new two-phase method for solving convex mixed-integer nonlinear programming (MINLP) problems, called Decomposition-based Outer Approximation Algorithm (DECOA). In the first phase, a sequence of linear integer relaxed sub-problems (LP phase) is solved in order to rapidly generate a good linear relaxation of the original MINLP problem. In the second phase, the algorithm solves a sequence of mixed integer linear programming sub-problems (MIP phase). In both phases the outer approximation is improved iteratively by adding new supporting hyperplanes by solving many easier sub-problems in parallel. DECOA is implemented as a part of Decogo (Decomposition-based Global Optimizer), a parallel decomposition-based MINLP solver implemented in Python and Pyomo. Preliminary numerical results based on 70 convex MINLP instances up to 2700 variables show that due to the generated cuts in the LP phase, on average only 2–3 MIP problems have to be solved in the MIP phase.
Schlagwörter: 
Global optimization
Decomposition method
Convex MINLP
Outer approximation
DECOA
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.