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Abstract
This paper presents a new two-phase method for solving convex mixed-integer nonlinear
programming (MINLP) problems, called Decomposition-based Outer Approximation Algo-
rithm (DECOA). In the first phase, a sequence of linear integer relaxed sub-problems (LP
phase) is solved in order to rapidly generate a good linear relaxation of the original MINLP
problem. In the second phase, the algorithm solves a sequence of mixed integer linear pro-
gramming sub-problems (MIP phase). In both phases the outer approximation is improved
iteratively by adding new supporting hyperplanes by solving many easier sub-problems in
parallel. DECOA is implemented as a part of Decogo (Decomposition-based Global Opti-
mizer), a parallel decomposition-based MINLP solver implemented in Python and Pyomo.
Preliminary numerical results based on 70 convex MINLP instances up to 2700 variables
show that due to the generated cuts in the LP phase, on average only 2–3 MIP problems have
to be solved in the MIP phase.

Keywords Global optimization · Decomposition method · Convex MINLP · Outer
approximation · DECOA

1 Introduction

Many optimization problems arising in engineering and science contain both combinatorial
and nonlinear relations. Such optimization problems are modeled bymixed-integer nonlinear
programming (MINLP), which combines capabilities of mixed-integer linear programming
(MILP) and nonlinear programming (NLP). The ability to accurately model real-world prob-
lems has madeMINLP an active research area with a large number of industrial applications.
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A large collection of real-world MINLP problems can be found in MINLPLib [33]. In this
paper, we consider a subclass of MINLP problems where the feasible set is defined by inte-
grality restrictions and convex nonlinear functions.

1.1 Known solutionmethods

1.1.1 Convex MINLP-methods

There are several well-known methods for solving convex MINLP problems, e.g., gener-
alized Benders decomposition [15], outer approximation (OA) [10], branch-and-bound [7],
extended cutting plane (ECP) [36] and extended supporting hyperplane (ESH) [20].

Most of the currentMINLP deterministic solvers are based on the branch-and-bound (BB)
algorithm [4,6], in particular branch-and-cut, like ANTIGONE [26], BARON [31], Couenne
[1], Lindo API [23] and SCIP [32]. Other methods based on BB are branch-cut-and-price [9],
branch-decompose-and-cut [30] and branch-and-refine [22]. Although these methods have
found a lot of applications, they can be computationally very demanding, due to a rapidly
growing global search tree, which may prevent the method to find an optimal solution in a
reasonable time.

In contrast to BB, successive approximation methods solve an optimization problemwith-
out using a single global search tree. The outer approximation (OA) method [10,12], the
extended cutting plane (ECP) algorithm [36] and extended supporting hyperplane (ESH)
algorithm [20] solve convex MINLPs by successive linearization of nonlinear constraints. A
comparison of several solvers for convex MINLP [19] reveals that the SHOT (ESH-based)
solver [20] and the AOA (OA-based) solver [18] have the best performance. Improvement
of polyhedral outer approximations using extended formulations significantly reduces the
number of OA iterations [25]. Generalized Benders Decomposition (GBD) [13,15] solves a
convex MINLP by iteratively solving NLP and MIP sub-problems. The adaptive MIP OA-
method is based on the refinement of MIP relaxations by projecting infeasible points onto a
feasible set, see [5,8].

1.1.2 Decomposition methods

Decomposition is a generalmethod that can be applied to convex optimization, aswell as non-
convex optimization. The idea of decomposition is based on dividing an original problem into
smaller and easier sub-problems. Mainly the approach of these methods consists in solving
small sub-problems and then feeding the result to a global master problem. In this case,
the sub-problems can be solved simultaneously, which makes decomposition methods very
attractive in terms of computational demand. Decomposition can be applied along a number
of dimensions, like time-windows, resources or system components. Most decomposition
methods are based on solving aLagrangian relaxation of the decomposed problem [11,14,21],
e.g. Column Generation (CG) [24]. Rapid Branching is an efficient CG-based heuristic for
solving large-scale transport planning problems [3,28].

1.2 The new solution approach

This paper describes a decomposition-based successive outer approximation algorithm
(DECOA) for convex MINLP problems. Like the OA method, the ESH algorithm, the ECP
algorithm, and the adaptive MIP algorithm, DECOA constructs MIP outer approximations
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by linearization of nonlinear functions. The key difference to these well-known approaches
is that DECOA uses a decomposition-based cut generation, i.e. supporting hyperplanes are
constructed only by solving small sub-problems in parallel.

DECOAuses projection as a basic type of cut generation, i.e. infeasible points are projected
onto the feasible set by solving small sub-problems. The algorithm also uses a line search
procedure (like ESH) in order to generate additional supporting hyperplanes. A detailed
description of DECOA is given in Sect. 3. Note that in Algorithm 3 of [29], a variant of
DECOA has been presented, which, in contrast to DECOA, solves non-convex MINLPs by
adapting break-points without using projection steps.

DECOA is implemented as a part of the MINLP solver Decogo (Decomposition-based
Global Optimizer). Preliminary results of the implementation are presented.

1.3 Outline of the paper

This paper is structured as follows. In Sect. 2, the definition of block-separable MINLP and
the notation are given. Section 3 presents the new decomposition-based outer approximation
(DECOA) algorithm.Aproof of convergence is given inSect. 4. In Sect. 5, the implementation
of DECOA is briefly described. Preliminary results of DECOA on convex MINLPs of the
MINLPLib are presented in Sect. 6. We summarize findings and discuss possible next steps
in Sect. 7.

2 Block-separable reformulation of MINLP

DECOA solves convex block-separable (or quasi-separable) MINLP problems of the form

min cT x s. t. x ∈ P, xk ∈ Xk, k ∈ K (1)

with

P := {x ∈ [x, x] : aTj x ≤ b j , j ∈ J }
Xk := Gk ∩ Pk ∩ Yk, (2)

where

Gk := {y ∈ R
nk : gkj (y) ≤ 0, j ∈ [mk]},

Pk := {y ∈ [xk, xk] : aTk j y ≤ bkj , j ∈ Jk},
Yk := {yk ∈ R

nk : yki ∈ Z, i ∈ Ik}. (3)

The vector of variables x ∈ R
n is partitioned into |K | blocks such that n = ∑

k∈K nk , where
nk is the dimension of the k-th block, and xk ∈ R

nk denotes the variables of the k-th block.
The vectors x, x ∈ R

n determine the lower and upper bounds on the variables.
The linear constraints defining the feasible set P are called global. The constraints defining

the feasible set Xk are called local. The set Xk consists of the set Gk of mk local nonlinear
constraints, set Pk of |Jk | local linear constraints and set Yk of integrality constraints. In this
paper, it is assumed that all the local nonlinear constraint functions gkj : Rnk → R, j ∈ [mk]
are bounded, continuously differentiable and convex within the set [xk, xk]. Global linear
constraints P are defined by a j ∈ R

n, b j ∈ R, j ∈ J and local linear constraints Pk are
defined by akj ∈ R

nk , bkj ∈ R, j ∈ Jk . The set Yk defines the set of integer values of
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variables xki , i ∈ Ik , where Ik is an index set. The linear objective function is defined by
cT x := ∑

k∈K
cTk xk , ck ∈ R

nk .

Furthermore, we define sets

G :=
∏

k∈K
Gk, Y :=

∏

k∈K
Yk, X :=

∏

k∈K
Xk . (4)

The block-sizes nk can have an influence on the performance of a decomposition algorithm.
It is possible to reformulate a general sparse MINLP defined by factorable functions gkj as a
block-separable optimization problem with a given maximum block-size nk by adding new
variables and copy-constraints [27,31,32]. It has been shown that a MINLP can be reformu-
lated as a separable program,where the size of all blocks is one.However, a reformulationmay
not preserve the convexity of constraints. A natural block-separable reformulation preserv-
ing the convexity of constraints is given by connected components of the Hessian adjacency
graph, see (23).

3 DECOA

DECOA iteratively solves and improves an outer approximation (OA) problem, where the
convex nonlinear set G is approximated by finitely many hyperplanes. In each iteration, the
outer approximation is refined by generating new supporting hyperplanes. Due to the block-
separability of the problem (1), the sample points for supporting hyperplanes are obtained
by solving low-dimensional sub-problems. DECOA consists of two parts: LP phase and
MIP phase. In the LP phase, the algorithm initializes the outer approximation of set G by
solving a linear programming outer approximation (LP-OA) master problem. In the MIP
phase, the algorithm refines the outer approximation of set G by solving a mixed-integer
programming outer approximation (MIP-OA) master problem. In the end, the final MIP-OA
master problem is a reformulation of problem (1). In the following subsections we describe
the master problems and sub-problems and outline the basic version of DECOA. In the end,
we describe the full DECOA algorithm with all improvements.

3.1 OAmaster problem

DECOA obtains solution estimate x̂ by solving an OA master problem defined by

min cT x,

s.t. x ∈ P, xk ∈ X̂k, k ∈ K ,
(5)

where X̂k ⊇ Xk is a polyhedral outer approximation of set Xk . Note that X̂ := ∏
k∈K X̂k .

The polyhedral outer approximation Ĝk ⊇ Gk of convex nonlinear set Gk is defined by

Ĝk = {x ∈ R
nk : ǧk j (x) ≤ 0, j ∈ [mk]}, (6)

where

ǧk j (x) := max {∇gkj (ŷ)
T (x − ŷ) : ŷ ∈ Tk ⊂ R

nk }. (7)

Tk is a set of sample points and ǧk j (x) denotes a piecewise linear underestimator of function
gkj . Supporting hyperplanes are defined by a linearization at sample point ŷ ∈ Tk . Note that
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the linearizations are computed only for active nonlinear constraints at point ŷ ∈ Tk , i.e.
gk j (ŷ) = 0. Furthermore, we define Ĝ := ∏

k∈K Ĝk .
Note that OA (5) can be infeasible, if the givenMINLPmodel (1) is infeasible, e.g. because

of data or model errors. Since most MIP solvers, like SCIP, are able to detect the infeasibility
of a model, a feasibility flag can be returned after solving (5), which can be used to stop
DECOA, if the MINLP model (1) is infeasible.

3.2 Basic DECOA

In this subsection we describe the basic version of DECOA. The refinement procedure is
performed only by solving projection sub-problems. Iteratively, the algorithm computes a
solution estimate x̂ by solving MIP-OA master problem (5) defined by

X̂k := Yk ∩ Pk ∩ Ĝk, k ∈ K . (8)

After solving the MIP-OA master problem, projection sub-problem (9) is solved for each
k ∈ K

ŷk = argmin‖xk − x̂k‖2,
s.t. xk ∈ Gk ∩ Pk,

(9)

where x̂k is the k-th part of the solution x̂ of MIP-OA problem (8). The solution ŷk is used for
updating the outer approximation Ĝ by generating new supporting hyperplanes as defined
in (7).

Algorithm 1 Basic DECOA
1: for k ∈ K do Ĝk ← R

nk

2: repeat
3: x̂ ← solveMipOA(P, X̂ )
4: for k ∈ K do Ĝk ← addProjectCuts(x̂k , Pk ,Gk )
5: until stopping criterion

Algorithm 1 describes the basic version of DECOA. Iteratively it solves MIP-OA mas-
ter problem (8) by calling procedure solveMipOA. Then the algorithm calls procedure
addProjectCuts for the refinement of set Ĝ. It performs a projection from point x̂ onto
the feasible set by solving sub-problems (9) and adds linearization cuts at solution points ŷk .
The algorithm iteratively performs these steps until a stopping criterion is fulfilled.

Theorem 1 proves that Algorithm 1 converges to the global optimum of problem (1). How-
ever, starting solving the MIP-OA (8) from scratch would be computationally demanding.
In order to speed up the convergence, we design an algorithm which reduces the number
of times a MIP-OA master problem has to be solved. The improved DECOA algorithm is
presented in the two following subsections.

3.3 The LP phase

In order to generate rapidly an initial outer approximation Ĝ and to reduce the number
of iterations in the MIP phase, DECOA iteratively solves the LP-OA master problem and
improves it by solving small sub-problems. LP-OA master problem (5) is defined by
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X̂k := Pk ∩ Ĝk, k ∈ K . (10)

To further improve the quality of set Ĝ, the following line search sub-problem can be
solved for each k ∈ K

(α̂k, ŷk) = argmaxα,

s.t. x = αx̂k + (1 − α)x̆k,

x ∈ Gk ∩ Pk,

α ∈ [0, 1],
(11)

where x̂k is the k-th part of the solution x̂ of LP-OAmaster problem (10) and x̆k is an interior
point of setGk∩Pk . The obtained solution point ŷ is an additional support point for improving
outer approximation Ĝ.

For solving line search sub-problems (11), one has to obtain an interior point x̆ . We
consider the following NLP problem

x̆ = argmins,

s.t. x ∈ P,

xk ∈ Pk,

gkj (xk) ≤ s, j ∈ [mk], k ∈ K , s ∈ R.

(12)

Note that problem (12) is convex, since the functions gkj (xk) − s ≤ 0 are convex. Given
that the original problem (1) has a solution, then problem (12) also has a solution, i.e.
x̆ ∈ P ∩ ∏

k∈K Gk ∩ Pk . It is important that point x̆ is contained within the interior of
set P ∩∏

k∈K Gk ∩ Pk . If point x̆ lies on the boundary of set P ∩ ∏

k∈K
Gk ∩ Pk , the solution of

problem (11) will always be the same, i.e. supporting hyperplanes will always be the same.
In practice, the interior point x̆ can be obtained by solving integer-relaxed NLP problem (1),
where the objective function is a constant (zero), using an interior point-based NLP solver,
such as IPOPT [34].

Algorithm 2 LP phase of DECOA
1: function OaStart
2: for k ∈ K do Ĝk ← R

nk

3: repeat
4: x̂ ← solveLpOA(P, X̂ )
5: for k ∈ K do Ĝk ← addProjectCuts(x̂k , Pk ,Gk )
6: until no improvement
7: x̆ ← solveNLPZeroObj(x̂, P, X )
8: repeat
9: for k ∈ K do Ĝk ← addProjectCuts(x̂k , Pk ,Gk )
10: for k ∈ K do Ĝk ← addLineSearchCuts(x̂k , x̆k , Pk ,Gk )
11: x̂ ← solveLpOA(P, X̂ )
12: until no improvement
13: (x̃, Ĝ) ← addUnfixedNlpCuts(x̂, P, X )
14: return (x̂, x̆, Ĝ)

Algorithm 2 describes the LP phase of the DECOA algorithm for a rapid initialization of
the polyhedral outer approximation. At the beginning, it solves the LP-OA master problem
defined in (10) by calling procedure solveLpOA, and the projection sub-problems (9), and
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then adds linearization cuts at solution point ŷ. This loop, which is described in lines 3-5,
is performed until there is no improvement, i.e. cT (x̂ p − x̂ p+1) < ε, where ε is a desired
tolerance.

Then, in order to conduct the line search, the algorithm finds the interior point
x̆ by calling the procedure solveNLPZeroObj. This procedure solves an NLP prob-
lem, obtained by relaxing the integrality constraints of problem (1), where the objective
function is a constant (zero). Then the algorithm performs a similar loop as before,
described in lines 7–10, with the procedure addLineSearchCuts(x̂, x̆). This procedure
solves the line search sub-problems (11) between the LP-OA solution point x̂ and the
interior point x̆ , and adds linearization cuts at solution point ŷ of the line search sub-
problems. Finally, the algorithm calls the procedure addUnfixedNlpCutswhich computes
a solution x̃ of integer-relaxed NLP problem (1) and adds linearization cuts at solution
point x̃ .

3.4 MIP phase

Once agood initial outer approximationhas beenobtained through theLPphase, the algorithm
considers the integer constraints Yk by defining the MIP-OA master problem (8). After the
first solution estimate x̂ has been obtained by solving MIP-OA master problem (8), DECOA
computes a solution candidate x̃ by solving NLP master problem with fixed integer variables
defined by

min cT x,

s.t. x ∈ P ∩ X ,

xki = x̂ki , i ∈ Ik, k ∈ K ,

(13)

where x̂ is the solution of MIP-OA master problem (8) and Ik is the set of integer variables
in k-th block. Notice that if the outer approximation X̂ is still not close to set X , (13) does
not necessarily yield a feasible solution.

Algorithm 3 Decomposition-based outer approximation algorithm
1: function OaSolve
2: v ← ∞
3: x∗ ← ∅
4: (x̂, x̆, Ĝ) ← OaStart(P, X )
5: x̂ ← solveMipOA(P, X̂ )
6: repeat
7: (x̃, Ĝ) ← addFixedNlpCuts(x̂, P, X )
8: if x̃ ∈ X and cT x̃ < v then
9: x∗ ← x̃
10: v ← cT x̃
11: if v − cT x̂ < ε then
12: return (x̂, x∗, Ĝ)

13: for k ∈ K do Ĝk ←fixAndRefine(x̃k , P, X̂k )
14: for k ∈ K do Ĝk ←addProjectCuts(x̂k , Pk ,Gk )
15: for k ∈ K do Ĝk ←addLineSearchCuts(x̂k , x̆k , Pk ,Gk )
16: x̂ ←solveMipOa(P, X̂ )
17: until v − cT x̂ < ε

18: return (x̂, x∗, Ĝ)
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If solution point x̃ of problem (13) improves the best solution candidate, i.e. x̃ ∈ X and
improves the upper bound of objective function value, then point x̃ is a new solution candidate
of problem (1), which is denoted by x∗. Moreover, if the objective function value cT x∗ is
less than the current upper bound v, we set v to cT x∗.

In order to further refine outer approximation Ĝ by exploiting the block-separability
property of problem (1), we consider partly-fixed OA problems which are defined similar
to MIP-OA problem (8), but the variables are fixed for all blocks except for one, i.e. for all
k ∈ K :

min cT x,

s.t. x ∈ P ∩ X̂ ,

xmi = x̃mi , i ∈ nm,m ∈ K \ {k},
(14)

where x̃ is a solution point of NLP problem (13).
The solution points of problem (14) can be used for the refinement of outer approxima-

tion Ĝ as a base for solving projection sub-problem (9). Note that the solution of problem
(14) provides us information about the fixation of integer variables in problem (13). If the
fixations in problem (13) are feasible, then problem (14) has a feasible solution, otherwise
problem (14) does not have a feasible solution, because global constraints P are not satis-
fied.

Algorithm 3 describes DECOA which computes solution estimate x̂ by solving MIP-OA
master problem (8) and solution candidate x∗ by solving the NLP master problem with
fixed integers (13). At the beginning, upper bound v of the optimal value of problem (1) and
solution candidate x∗ are set to∞ and to∅, respectively. Since the goal is to reduce the number
of MIP-solver runs, the algorithm calls procedure OaStart, described in Algorithm 2 for
initializing a good outer approximation. The procedure solveMipOA computes a solution
estimate x̂ by solving MIP-OA master problem (8).

When the first solution estimate x̂ has been obtained, DECOA starts the main loop
described in lines 5–18. At the beginning of the loop, procedure addFixedNlpCuts is
called, which solves the NLP master problem with fixed integers (13). This procedure uses
solution estimate x̂ for integer variables fixations and returns solution point x̃ , which might
not be feasible. If the point x̃ is feasible and the objective function value cT x̃ is lower than
the current upper bound v, the solution candidate x∗ and the upper bound v are updated
accordingly. Moreover, if the objective function gap between solution estimate x̂ and solu-
tion candidate x∗ is small enough, i.e. v − cT x̂ < ε, the algorithm stops. These steps are
described in lines 8-12.

If the objective function gap between solution estimate x̂ and solution candidate x∗ is
not closed, DECOA improves the outer approximation Ĝ by generating new supporting
hyperplanes. For refinement of set Ĝ, DECOA calls fixAndRefine which solves partly-
fixed OA problem (14). The detailed description of this procedure is given in Algorithm 4.
Like in Algorithm 2, in order to obtain sample points for new supporting hyperplanes,
line search sub-problems (11) and projection sub-problems (9) are solved. The projection
and line search sub-problems are solved using the solution point x̂ of MIP-OA mas-
ter problem (8). After refinement of set Ĝ, DECOA calls solveMipOa for computing a
new solution estimate x̂ by solving the problem (8). If the gap between the points x̂ and
point x∗ is closed, DECOA terminates and returns solution estimate x̂ , solution candidate
x∗ and polyhedral outer approximation Ĝ, which is a reformulation of original problem
(1).
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Algorithm 4 Cut generation per block
1: function FixAndRefine(x̃k , P, Xk )
2: repeat
3: x̂k ← solveFixMipOA(x̃k , P, X̂k )
4: Ĝk ←addProjectCuts(x̂k , Pk ,Gk )
5: until integer variables of x̂ are not changed
6: return (x̂, Ĝ)

Algorithm 4 describes the function FixAndRefinewhich is used for refinement of set Ĝ.
For each block k ∈ K , the function calls procedure solveFixMipOA which solves partly-
fixed OA master problem (14). Then the obtained solution point x̂ is used for solving the
projection sub-problems and adding linearization cuts by calling procedure addProject-
Cuts. This procedure repeats until the integer variables of solution point x̂ are not changed.

4 Proof of convergence

In this section, it is proven that basic DECOA as depicted in Algorithm 1 either converges
to a global optimum of (1) in a finite number of iterations or generates a sequence which
converges to a global optimum. In order to prove the convergence, it is assumed that all MIP-
OA master problems (5), (8) and the projection sub-problem (9) are solved to optimality. We
also prove the convergence of improved DECOA as outlined in Algorithm 3.

Due to the convexity, function ǧk j (x) defined in (7) is an affine underestimator of function
gkj and, therefore, set X̂ p consisting of the corresponding hyperplanes at iteration p is an
outer approximation of set X . Since basic DECOA adds new supporting hyperplanes in each
iteration, it creates a sequence of sets X̂ p with the following property

X̂0 ⊃ ... ⊃ X̂ p−1 ⊃ X̂ p ⊃ X (15)

Lemma 1 If DECOA described in Algorithm 1 stops after p < ∞ iterations and the last
solution x̂ p of OA master problem (5) fulfills all constraints of (1), the solution is also an
optimal solution of the original problem (1).

Proof We adapt the proof of [20]. Since DECOA stops at iteration p, x̂ p is an optimal
solution of (5) and x̂ p has the optimal objective function value of (1) within X̂ p ∩ P . From
property (15) it is clear that X̂ p also includes the feasible set X . Since x̂ p also satisfies the
nonlinear and integrality constraints, it is also in the feasible set, i.e., x̂ p ∈ P ∩ X . Because
x̂ p minimizes the objective function within X̂ p ∩ P , which includes the entire feasible set,
and x̂ p ∈ P ∩ X , it is also an optimal solution of (1). ��

InTheorem1weprove thatAlgorithm1generates a sequence of solution points converging
to a global optimum. In order to prove this, we present intermediate results in Lemmas 2–5.

Lemma 2 If current solution x̂ p /∈ G, Algorithm 1 excludes it from set X̂ p+1, i.e. x̂ p /∈ X̂ p+1.

Proof Given that x̂ p /∈ G, ∃(k, j) such that gkj (x̂
p
k ) > 0. This means that for the solution

ŷk of (9) ŷk �= x̂ p
k . Note that ŷk, x̂

p
k ∈ Pk . For this proof, we set G̃k := Gk ∩ Pk = {y ∈

R
nk : g̃k j (y) ≤ 0, j ∈ [m̃k], m̃k = |mk | + |Jk |} and, in (9), replace Gk ∩ Pk by G̃k . Note

that the linearization cuts of Pk are not added, since they are the same as linear constraints
Pk . Hence, only linearization cuts of nonlinear constraints Gk are added.
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Let Ak be the set of indices of active constraints at ŷk of G̃k , i.e. g̃k j (ŷk) = 0, j ∈ Ak .
According to the KKT conditions of projection sub-problem (9), ∃μ j ≥ 0, j ∈ Ak , such that

x̂ p
k − ŷk =

∑

j∈Ak

μ j∇ g̃k j (ŷk) (16)

where μ correspond to constraints G̃k . Multiplying (16) by x̂ p
k − ŷk we obtain

⎛

⎝
∑

j∈Ak

μ j∇ g̃k j (ŷk)

⎞

⎠

T

(x̂ p
k − ŷk) = ||x̂ p

k − ŷk ||2 > 0. (17)

Given thatμ j ≥ 0, j ∈ Ak , there exists at least one j ∈ Ak for which∇ g̃k j (ŷk)T (x̂ p
k − ŷk) >

0. As Algorithm 1 adds the cut ∇ g̃k j (ŷk)T (xk − ŷk) ≤ 0 to X̂ p+1 we have that x̂ p
k /∈ X̂ p+1.

��
In Lemma 3 we show that if Algorithm 1 does not stop in a finite number of iterations, the

sequence of solution points contains at least one convergent subsequence {x̂ pi }∞i=1, where

{p1, p2, . . . } ⊆ {1, 2, . . . } and {x̂ pi }∞i=1 ⊆ {x̂ p}∞p=1.

Since subsequence {x̂ pi }∞i=1 is convergent, there exists a limit limi→∞ x̂ pi = z. In Lemmas 4
and 5 , we show that z is not only within the feasible set of (1) but also an optimal solution
of (1).

Lemma 3 If Algorithm 1 does not stop in a finite number of iterations, it generates a conver-
gent subsequence {x̂ pi }∞i=1.

Proof Weadapt the proof of [20]. Since the algorithmhas not terminated, none of the solutions
of OA master problem (5) are in the feasible set, i.e., x̂ p /∈ P ∩ X for all p = 1, 2, . . . in
the solution sequence. Therefore, all the points in the sequence {x̂ p}∞p=1 will be distinct due
to Lemma 2. Since {x̂ p}∞p=1 contains an infinite number of different points, and all are in
the compact set P , according to the Bolzano–Weierstrass Theorem, the sequence contains a
convergent subsequence. ��
Lemma 4 The limit z of any convergent subsequence {x̂ pi }∞i=1 generated in Algorithm 1
belongs to the feasible set of (1).

Proof Let x̂
p j
k and x̂

p j+1
k be the points from sequence {x̂ pi

k }∞i=1 and ŷ p j is the sample point

obtained by solving projection sub-problem (9) with point x̂
p j
k . Consider the following equal-

ity

||x̂ p j
k − x̂

p j+1
k ||2 = ||(x̂ p j

k − ŷ
p j
k ) − (x̂

p j+1
k − ŷ

p j
k )||2

= ||x̂ p j
k − ŷ

p j
k ||2 + ||x̂ p j+1

k − ŷ
p j
k ||2

− 2(x̂
p j
k − ŷ

p j
k )T (x̂

p j+1
k − ŷ

p j
k ).

(18)

Consider the set G̃k of the proof of Lemma 2 containing the set of all constraints. Let Ak

be the set of indices of active constraints G̃k at ŷ
p j
k , i.e. g̃ki (ŷ

p j
k ) = 0, i ∈ Ak . Note that

only linearization cuts of Gk are added. Since Algorithm 1 adds for each active nonlinear
constraint i ∈ Ak the cut

∇ g̃ki (ŷ
p j
k )T (xk − ŷ

p j
k ) ≤ 0, (19)
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we have
∇ g̃ki (ŷ

p j
k )T (x̂

p j+1
k − ŷ

p j
k ) ≤ 0. (20)

Using the KKT multipliers in (16) yields
∑

i∈Ak

μi∇ g̃ki (ŷ
p j
k )T (x̂

p j+1
k − ŷ

p j
k ) = (x̂

p j
k − ŷ

p j
k )T (x̂

p j+1
k − ŷ

p j
k ) ≤ 0. (21)

Since ||x̂ p j+1
k − ŷ

p j
k ||2 ≥ 0 and (x̂

p j
k − ŷ

p j
k )T (x̂

p j+1
k − ŷ

p j
k ) ≤ 0, (18) implies

||x̂ p j
k − x̂

p j+1
k ||2 ≥ ||x̂ p j

k − ŷ
p j
k ||2. (22)

By Lemma 3 sequence {x̂ pi
k }∞i=1 is convergent, i.e. lim j→∞ x̂

p j
k = zk , we have that

lim j→∞ ||x̂ p j
k − x̂

p j+1
k || = 0. This means that lim j→∞ ||ŷ p j

k − x̂
p j
k || = 0. Then we have that

lim j→∞ ||zk− ŷ
p j
k ||2 = 0. This implies lim j→∞ ŷ

p j
k = zk . Since the sequence {ŷ p j }∞j=1 ∈ G

and the sequence {x̂ p j }∞j=1 ∈ P ∩ Y , and these sequences have common limit point z, then
point z is feasible, i.e. z ∈ P ∩ X . ��
Lemma 5 The limit point of a convergent subsequence is a global minimum point of (1).

Proof We adapt the proof of [20]. Because each set X̂ p is an outer approximation of the
feasible set X , cT x̂ pi gives a lower bound on the optimal value of the objective function.
Due to property (15), sequence {cT x̂ pi }∞i=1 is nondecreasing and since the objective function
is continuous, we get limi→∞ cT x̂ pi = cT z. According to Lemma 4, limit point z is within
the feasible set P ∩ X and, because it is a minimizer of the objective function within a set
including the entire feasible set, it is also an optimal solution to (1). ��
Since Lemmas 4 and 5 apply to all convergent subsequences generated by solving OAmaster
problems (5), any limit point of such sequence will be a global optimum. We summarize the
convergence results in the next theorem.

Theorem 1 Algorithm 1 either finds a global optimum of (1) in a finite number of iterations
or generates a sequence {x̂ pi }∞i=1 converging to a global optimum.

Proof Suppose the algorithm stops in a finite number of iterations. Then the last solution
of OA master problem (5) satisfies all constraints and according to Lemma 1 it is a global
optimumof (1). In case the algorithmdoes not stop in a finite number of iterations, it generates
a sequence converging to a global optimum of (1) according to Lemmas 3 and 5. ��
In Theorem 2 we prove that improved DECOA described in Algorithm 3 also converges to
a global optimum of (1).

Theorem 2 DECOA described in Algorithm 3 either finds a global optimum of (1) in a finite
number of iterations or generates a sequence {x̂ pi }∞i=1 converging to a global optimum.

Proof The core idea of improved DECOA, described in Algorithm 3, is the same as in basic
DECOA described in Algorithm 1. In the Algorithm 3 we introduce enhancements such as
LP-OA master problem, and line search sub-problems for speeding up the convergence of
Algorithm 1. Hence improved Algorithm 3 refines outer approximation X̂ faster, because in
each iteration the additional methods make the outer approximation X̂ smaller. Moreover, all
conditions assumed in the proof of Theorem 1 remain valid. Therefore, the proof is similar
to the proof of Theorem 1. ��
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5 Implementation of DECOA

Algorithm 3 was implemented with Pyomo [17], an algebraic modelling language in Python,
as part of the parallel MINLP-solver Decogo [29]. The implementation of Decogo is not
finished, in particular parallel solving of sub-problems has not been implemented yet. The
solver utilizes SCIP 5.0 [16] for solvingMIP problems and IPOPT 3.12.8 [35] for solving LP
and NLP problems. Note that it is possible to use other suitable solvers which can interface
with Pyomo.

Very often problems are not given in a block-separable form. Therefore, a block structure
identification of the original problem and its automatic reformulation into a block-separable
form have been implemented. The block structure identification is based on the idea of
connected components of a Hessian adjacency graph.

Consider a MINLP problem defined by n variables and by |M | functions hm,m ∈ M .
Consider a Hessian adjacency graph G = (V , E) defined by the following vertex and edge
sets

V = {1, . . . , n},

E = {(i, j) ∈ V × V : ∂2hm
∂xi∂x j

�= 0, m ∈ M}. (23)

In order to subdivide the set of variables into |K | blocks, we compute the connected compo-
nents Vk, k ∈ K , of G with

⋃
k∈K Vk = V . We obtain the list of variables Vk ⊂ V , k ∈ K ,

such that n = ∑
k∈K nk, where nk = |Vk |.

In the implementation, we don’t compute the Hessian of functions hm . Instead, we iterate
over the (nonlinear) expressions of functions hm . If two variables xi and x j are contained in
the same nonlinear expression, we insert the edge (i, j) to the edge set E of G.

Using the blocks Vk, k ∈ K , which correspond to the connected components of graph G,
we reformulate the original problem into a the block-separable MINLP problem described
in (1). We perform this procedure by adding new variables and constraints such that the
objective function and the global constraints are linear. Note that the reformulated problem
remains convex.

As mentioned in Sect. 3, we add the supporting hyperplanes for each active constraints at
point ŷ ∈ Tk according to the formula

gkj (ŷ) + ∇gkj (ŷ)
T (x − ŷ) ≤ 0, ŷ ∈ Tk . (24)

Theoretically, we have gkj (ŷ) = 0. In practice, the value gkj (ŷ) is often very small, but,
because of the numerical accuracy, it might not be identical to zero. To guarantee that the
linearization cuts are valid, in practice we consider the non-zero value of gk j (ŷ) in (24).

DECOA described in Algorithm 3 terminates based on the relative gap, i.e.

|v − cT x̂ |
10−12 + |v| < ε, (25)

where ε is a desired tolerance. In addition to it, the loops in the LP phase, described in
Algorithm 2, are terminated if there is no improvement of the objective function value, i.e.
cT (x̂ p+1 − x̂ p) < δ, where δ is a desired tolerance.
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6 Numerical results

DECOA described in Algorithm 3 has been tested on convex MINLP problems from
MINLPLib [33]. Some instances don’t have a reasonable block structure, i.e. the number
of blocks might be equal to the number of variables or the instance might have only one
block. In order to avoid this issue and to show the potential of decomposition, we filtered all
convex instances from MINLPLib using the following criterion:

1 < |K | < N , (26)

where |K | is the number of blocks and N the total number of variables. In the MINLPlib the
number of blocks is given by identifier #Blocks in Hessian of Lagrangian, which is available
for each problem. The number of selected instances is 70 and the number of variables varies
from 11 to 2720 with an average value 613. In Table 1 we provide more detailed statistics on
this set of instances.

As termination criteria, the relative gap tolerance was set to 0.0001 and the LP phase
improvement tolerance was set to 0.01. The master problem and sub-problems were solved
to optimality. All computational experiments were performed using a computer with Intel
Core i7-7820HQ 2.9 GHz CPU and 16 GB RAM.

6.1 Effect of line search and fix-and-refine

In order to understand the impact of the line search and the fix-and-refine procedure, described
in Algorithm 4, we run four variants of Algorithm 3:

i Only projection, i.e. line search and fix-and-refine were not performed;
ii Projection with fix-and-refine, i.e. line search was not performed;
iii Projection with line search, i.e. fix-and-refine was not performed;
iv Projection with line search and with fix-and-refine.

For each run, we computed the average number of MIP-solver runs and the average time
spent on solving LP-OA master problems (10), for MIP-OA master problems (8), and for all
sub-problems. Note that the sub-problem solution time includes the time spent on solving
projection (9), line search (11) and partly-fixed OA (14) sub-problems. Note that, the NLP
time is not presented. Since DECOA can be well parallelized, i.e. all sub-problems can be
solved in parallel, we computed an estimated parallelized sub-problem time. The estimated
parallelized sub-problem time is computed by taking the maximum time needed to solve the
sub-problems in each parallel step. This value might be too low, since it assumes that the
number of cores is equal to the number of blocks and it does not take the time needed for
communication overhead into account. Nevertheless, this number gives a good estimate of
possible time improvement.

Figure 1 shows that formost instances, the number ofMIP runs remains the same regardless
of the problem size. Moreover, for big problems, the algorithm needs not more than 2 MIP
runs in order to close the gap, and this property is valid for all variants of the algorithm. The
same behavior can also be observed in Fig. 2. It shows that most of the problems were solved
with no more than 3 MIP runs regardless of the algorithm variant. This plot shows that the
lowest average value of MIP runs can be obtained by running the algorithm with the fixed-
and-refine procedure. Moreover, the fix-and-refine procedure helps to solve some problems
with fewer MIP runs. However, running the algorithm with fix-and-refine is computationally
demanding. This issue is illustrated in Fig. 3, which shows that the sub-problem time for the
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Fig. 1 Number of MIP runs is independent of the problem size

Fig. 2 The distribution of the number of MIP runs for four variants of Algorithm 3

algorithm with fix-and-refine is the highest. Moreover, this chart shows that, for each variant,
the algorithm spends most of its time on solving sub-problems. In order to see the potential
of parallelization, we computed the estimated parallelized sub-problem time. The computed
estimate gives results lower than the LP time or MIP time.

From Fig. 3 one can notice that the average time spent on solving LP-OAmaster problems
and MIP-OA master problems is approximately equal. Due to this observation and the fact
that the LP problems are easier to solve thanMIP problems, the LP-OAmaster problemswere
solved on average more times than MIP-OA master problems. Solving more LP-OA master
problems at the beginning helps to initialize a good outer approximation and, therefore, to
reduce the number ofMIP runs. Similar gains in reduction ofMIP runs have been achieved in
[25]. In contrary to DECOA, in [25] has been proposed to improve the quality of polyhedral
OA with extended formulations, which are based on convexity detection of the constraints.

6.2 Comparison to other MINLP solvers

In this subsection we compare the DECOA algorithm with two MINLP solvers which do not
make use of the decomposition structure of the problems. For this purpose,we have chosen the
branch-and-bound-based SCIP solver 5.0.1 [16] and Pyomo-based toolbox MindtPy 0.1.0
[2]. All settings for SCIP were set to default. In order to compare DECOA with OA, for
MindtPy we set OA as a solution strategy with SCIP 5.0.1. and Ipopt 3.12.8 as a MIP solver
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Fig. 3 The average time spent on solving master problems and sub-problems. MIP time corresponds to the
time spent on solving MIP-OA master problems, LP time corresponds to the time spent on solving LP-OA
master problems, and sub-problem time corresponds to the time spent on solving projection, line-search and
partly-fixed OA sub-problems. Note that the NLP time is not presented. The parallelized sub-problem time is
the maximum time needed to solve all sub-problems in parallel

and NLP solver, respectively. Moreover, the iteration limit for MindtPy was set to 100. All
other settings for MindtPy were set to default.

For the comparisons with both solvers, we use the variant of Algorithm 3 without line-
search and fix-and-refine. It is the least computationally demanding variant of Algorithm 3,
as has been shown in Fig. 3. The test instances were selected from MINLPLib [33] using
condition (26).

Table 1 presents the results for DECOA and SCIP for each instance individually. For each
instance, it presents also its statistic, i.e. problem size N and average blocksize Nk after
reformulation. For each instance, we measured the total solution time T of the DECOA run.
Note that the total time T does not include time spent on automatic reformulation, described
in Sect. 5. TMI P denotes the time spent on solving MIP problems and NMI P denotes the
number of MIP runs. TLP and TNLP denote the time spent on solving LP and NLP problems
respectively. Tsub denotes the time spent on solving sub-problems, i.e. the time spent on
solving projection sub-problems (9). TSC I P denotes the time spent on solving the original
problem with SCIP.

In Table 1 we compare the solution time of SCIP and DECOA for each instance indi-
vidually. However, comparing solution time of both solvers can’t be realistic, since they are
implemented using different programming languages, i.e. DECOA using Python and SCIP
using C. It is known that Python is slower than C. One of the reasons for that, Python is
interpreted language and C-compiled.

Table 1 shows that currently for 9 % of the test set, DECOA shows a shorter solution time
than SCIP. Moreover, for 6 % of the test set, the solution time is very similar to SCIP, i.e.
SCIP time is within 80 % of DECOA time. Moreover, for almost all problems, TMI P is very
small, and Tsub is relatively large. Hence, since all sub-problems can be solved in parallel,
there is a clear indication that running time for DECOA can be significantly reduced, see
Fig. 3.

From Table 1 one can conclude that TLP is also high. Its average fraction of the total time
T is 18%. It is followed by TMI P and TNLP , which have average fractions of the total time
12% and 7% respectively. As has been discussed before, even though the LP problems are
easier to solve than MIP problems, the number of solved LP problems in the LP phase is
higher than the number of solved MIP problems.

123



90 Journal of Global Optimization (2020) 77:75–96

Table 1 Performance comparison per instance for variant ofAlgorithm3without line-search andfix-and-refine
with the SCIP solver

Instance name N Nk T (s) TMI P (s) NMI P TLP (s) TNLP (s) Tsub (s) TSC I P (s)

1 batch 46 4.8 6.2 0.4 2 0.8 0.1 4.5 2.2

2 batch0812 100 5.7 11.7 0.5 2 2.2 0.4 7.9 1.8

3 batchdes 19 4.0 1.4 0.1 2 0.2 0.1 0.9 0.6

4 batchs101006m 278 10.2 31.9 3.4 2 8.6 0.8 17.4 19.5

5 batchs121208m 406 12.2 44.6 14.4 3 9.7 1.9 16.0 44.5

6 batchs151208m 445 12.4 63.5 22.8 3 16.8 2.3 18.6 56.6

7 batchs201210m 558 13.7 86.2 15.7 2 34.6 2.6 28.6 45.2

8 clay0203h 90 12.9 9.7 3.6 11 0.1 2.2 3.0 10.7

9 clay0204h 164 18.2 3.0 1.6 1 0.1 0.6 0.6 30.6

10 clay0205h 260 23.6 65.1 59.8 5 0.2 2.0 2.4 117.2

11 clay0303h 99 9.9 14.5 3.2 17 0.1 3.9 6.3 27.1

12 clay0304h 176 13.5 29.5 12.9 17 0.1 6.5 8.5 24.0

13 clay0305h 275 17.2 114.1 103.5 7 0.2 4.9 4.6 173.5

14 enpro48pb 153 11.9 9.4 1.9 2 1.7 0.2 5.1 6.5

15 enpro56pb 127 10.7 8.9 2.0 2 1.8 0.3 4.4 5.8

16 fac1 22 8.0 1.8 0.1 2 0.4 0.1 1.0 0.1

17 fac3 66 17.2 5.2 0.2 2 1.4 0.2 2.8 2.4

18 pollut 42 3.0 9.8 0.1 1 1.3 0.1 7.2 0.2

19 ravempb 112 7.5 8.2 1.7 2 1.1 0.3 4.6 8.0

20 rsyn0805h 308 77.0 4.4 0.1 1 1.4 0.7 1.9 1.2

21 rsyn0805m02h 700 100.0 13.6 0.9 1 4.4 1.0 6.0 3.7

22 rsyn0805m03h 1050 105.0 23.0 1.3 2 6.9 1.6 10.5 3.8

23 rsyn0805m04h 1400 107.7 40.6 0.5 1 17.1 3.5 14.9 6.8

24 rsyn0810h 343 49.0 4.7 0.1 1 1.3 1.0 1.8 1.4

25 rsyn0810m02h 790 60.8 22.5 2.8 2 5.6 1.5 9.6 5.9

26 rsyn0810m03h 1185 62.4 34.7 2.2 2 9.0 2.0 15.3 13.7

27 rsyn0810m04h 1580 63.2 49.5 0.8 1 17.8 4.0 18.1 6.4

28 rsyn0815h 387 35.2 7.7 0.2 1 2.0 1.1 3.2 1.9

29 rsyn0815m02h 898 42.8 28.7 1.7 2 6.3 2.4 12.8 3.9

30 rsyn0815m03h 1347 43.5 50.4 3.3 2 11.0 4.0 20.4 13.0

31 rsyn0815m04h 1796 43.8 67.4 1.9 2 16.0 4.5 27.0 4.6

32 rsyn0820h 417 29.8 11.3 0.4 2 3.0 0.6 5.4 4.4

33 rsyn0820m02h 978 36.2 32.2 1.8 2 5.9 2.6 14.9 6.5

34 rsyn0820m03h 1467 36.7 48.8 2.6 2 9.7 3.1 20.5 10.1

35 rsyn0820m04h 1956 36.9 83.8 2.2 2 19.9 6.4 31.7 12.9

36 rsyn0830h 494 24.7 16.9 0.7 2 3.5 1.1 8.0 8.7

37 rsyn0830m02h 1172 30.1 43.5 2.9 2 7.8 2.1 19.0 20.9

38 rsyn0830m03h 1758 30.3 74.8 3.0 2 14.9 3.1 30.1 16.8

39 rsyn0830m04h 2344 30.4 116.6 4.0 2 25.2 4.2 42.6 45.6

40 rsyn0840h 568 21.0 18.2 0.3 1 3.9 1.0 8.6 4.2
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Table 1 continued

Instance name N Nk T (s) TMI P (s) NMI P TLP (s) TNLP (s) Tsub (s) TSC I P (s)

41 rsyn0840m02h 1360 25.7 51.3 1.6 2 8.5 2.1 22.2 9.4

42 rsyn0840m03h 2040 25.8 101.8 2.8 2 17.5 4.3 38.7 17.6

43 rsyn0840m04h 2720 25.9 160.3 4.5 2 29.6 5.5 54.8 46.3

44 syn05h 42 10.5 1.5 0.0 1 0.3 0.2 0.8 0.4

45 syn05m02h 104 14.9 3.5 0.1 1 0.7 0.2 1.9 0.6

46 syn05m03h 156 15.6 6.0 0.1 1 1.4 0.3 3.2 0.9

47 syn05m04h 208 16.0 7.7 0.1 1 1.6 0.4 4.4 0.9

48 syn10h 77 11.0 1.6 0.1 1 0.3 0.3 0.7 0.3

49 syn10m02h 194 14.9 6.8 0.1 1 1.4 0.4 3.8 1.4

50 syn10m03h 291 15.3 10.2 0.1 1 1.8 0.5 5.7 2.3

51 syn10m04h 388 15.5 14.0 0.2 1 2.6 0.7 7.4 2.3

52 syn15h 121 11.0 4.8 0.1 1 0.9 0.4 2.7 0.6

53 syn15m02h 302 14.4 11.0 0.1 1 1.7 0.5 6.1 1.4

54 syn15m03h 453 14.6 17.7 0.2 1 2.6 1.3 9.1 2.2

55 syn15m04h 604 14.7 23.5 0.2 1 3.4 0.8 12.2 3.0

56 syn20h 151 10.8 6.6 0.1 1 1.2 0.5 3.7 1.7

57 syn20m02h 382 14.1 12.9 0.2 1 1.9 0.6 7.1 3.5

58 syn20m03h 573 14.3 20.3 0.2 1 2.8 0.8 10.5 4.4

59 syn20m04h 764 14.4 32.3 0.2 1 4.5 1.1 15.8 4.0

60 syn30h 228 11.4 11.6 0.3 2 1.5 0.8 6.8 3.3

61 syn30m02h 576 14.8 27.4 0.6 2 3.8 0.7 14.7 6.7

62 syn30m03h 864 14.9 51.2 1.4 3 6.0 3.4 24.3 7.2

63 syn30m04h 1152 15.0 68.0 1.3 2 8.3 2.0 30.4 14.0

64 syn40h 302 11.2 16.2 0.5 2 2.0 1.0 9.0 3.2

65 syn40m02h 764 14.4 37.6 0.9 2 5.0 0.9 18.4 2.0

66 syn40m04h 1528 14.6 103.4 2.4 2 11.7 8.0 38.8 19.3

67 synthes2 11 4.0 1.6 0.2 3 0.3 0.1 1.0 2.0

68 synthes3 17 4.3 2.5 0.2 3 0.3 0.2 1.6 0.7

69 tls2 37 13.7 2.7 1.1 5 0.2 0.4 0.9 0.3

70 tls4 105 24.2 25.7 22.2 8 0.2 0.8 1.5 19.6

Table 2 presents the results for DECOA and OA for each instance individually. Both
for DECOA and for OA, the number of MIP runs NMI P and total time T are presented.
Additionally for OA, the solver status after finishing the solution process is provided.

Table 2 shows the OA method failed to converge for 20% of the instances due to either
iteration limit or solver exception. For some instances, MindtPy failed to close the gap due to
infeasibility of NLP sub-problem, i.e. infeasible combination of values for integer variables.
The results in Table 2 present that for almost all instances, the number of MIP runs NMI P

for DECOA is less than the number of MIP runs NMI P for OA. However, the solution time
T for DECOA is either bigger or smaller than the solution time T for OA depending on the
number of MIP runs. If the number of MIP runs NMI P for OA is big, i.e. NMI P > 10, then
for almost all instances, the solution time T for DECOA is smaller than the solution time T
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Table 2 Performance comparison per instance for variant ofAlgorithm3without line-search andfix-and-refine
with MindtPy using OA strategy

Instance name DECOA OA

NMI P T(s) NMI P T (s) Status

1 batch 2 6.2 3 1.5 Converged

2 batch0812 2 11.7 – – Iterations limit

3 batchdes 2 1.4 2 0.3 Converged

4 batchs101006m 2 31.9 11 44.4 Converged

5 batchs121208m 3 44.6 5 37.9 Converged

6 batchs151208m 3 63.5 – – Iterations limit

7 batchs201210m 2 86.2 9 176.1 Converged

8 clay0203h 11 9.7 – – Iterations limit

9 clay0204h 1 3.0 17 45.5 Converged

10 clay0205h 5 65.1 – – Exception

11 clay0303h 17 14.5 5 6.2 Converged

12 clay0304h 17 29.5 – – Iterations limit

13 clay0305h 7 114.1 – – Exception

14 enpro48pb 2 9.4 3 4.4 Converged

15 enpro56pb 2 8.9 2 3.7 Converged

16 fac1 2 1.8 – – Exception

17 fac3 2 5.2 7 1.8 Converged

18 pollut 1 9.8 – – Exception

19 ravempb 2 8.2 – – Exception

20 rsyn0805h 1 4.4 2 1.2 Converged

21 rsyn0805m02h 1 13.6 6 12.2 Converged

22 rsyn0805m03h 2 23.0 12 23.5 Converged

23 rsyn0805m04h 1 40.6 – – Iterations limit

24 rsyn0810h 1 4.7 1 1.1 Converged

25 rsyn0810m02h 2 22.5 43 103.7 Converged

26 rsyn0810m03h 2 34.7 4 18.7 Converged

27 rsyn0810m04h 1 49.5 20 65.1 Converged

28 rsyn0815h 1 7.7 2 1.7 Converged

29 rsyn0815m02h 2 28.7 8 14.4 Converged

30 rsyn0815m03h 2 50.4 7 35.9 Converged

31 rsyn0815m04h 2 67.4 28 100.2 Converged

32 rsyn0820h 2 11.3 – – Iterations limit

33 rsyn0820m02h 2 32.2 8 15.9 Converged

34 rsyn0820m03h 2 48.8 5 26.9 Converged

35 rsyn0820m04h 2 83.8 10 44.1 Converged

36 rsyn0830h 2 16.9 5 5.7 Converged

37 rsyn0830m02h 2 43.5 – – Iterations limit

38 rsyn0830m03h 2 74.8 3 12.7 Converged

39 rsyn0830m04h 2 116.6 4 27.0 Converged

40 rsyn0840h 1 18.2 3 3.0 Converged
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Table 2 continued

Instance name DECOA OA

NMI P T(s) NMI P T (s) Status

41 rsyn0840m02h 2 51.3 4 12.4 Converged

42 rsyn0840m03h 2 101.8 4 21.3 Converged

43 rsyn0840m04h 2 160.3 15 100.6 Converged

44 syn05h 1 1.5 2 0.3 Converged

45 syn05m02h 1 3.5 2 0.5 Converged

46 syn05m03h 1 6.0 2 0.6 Converged

47 syn05m04h 1 7.7 2 0.7 Converged

48 syn10h 1 1.6 1 0.3 Converged

49 syn10m02h 1 6.8 2 0.7 Converged

50 syn10m03h 1 10.2 2 1.0 Converged

51 syn10m04h 1 14.0 2 1.3 Converged

52 syn15h 1 4.8 2 0.5 Converged

53 syn15m02h 1 11.0 2 1.0 Converged

54 syn15m03h 1 17.7 2 2.4 Converged

55 syn15m04h 1 23.5 2 2.0 Converged

56 syn20h 1 6.6 3 0.9 Converged

57 syn20m02h 1 12.9 3 1.8 Converged

58 syn20m03h 1 20.3 4 3.4 Converged

59 syn20m04h 1 32.3 2 3.4 Converged

60 syn30h 2 11.6 4 1.7 Converged

61 syn30m02h 2 27.4 4 3.4 Converged

62 syn30m03h 3 51.2 4 5.9 Converged

63 syn30m04h 2 68.0 4 8.0 Converged

64 syn40h 2 16.2 5 2.9 Converged

65 syn40m02h 2 37.6 3 4.2 Converged

66 syn40m04h 2 103.4 5 15.6 Converged

67 synthes2 3 1.6 4 0.4 Converged

68 synthes3 3 2.5 7 0.9 Converged

69 tls2 5 2.7 – – Exception

70 tls4 8 25.7 – – Exception

of OA, i.e. DECOA is more efficient than OA for these problems. This situation is illustrated
very well with instance clay0204h. For instances with a small number of MIP runs NMI P

for OA, i.e. NMI P < 10, the solution time T for OA is smaller than the solution time T for
DECOA.

7 Conclusions and future work

This paper introduces a new decomposition-based outer approximation (DECOA) algorithm
for solving convex block-separable MINLP problems described in (1). It iteratively solves
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and refines an outer approximation (OA) problem by generating new supporting hyperplanes.
Due to the block-separability of the problem (1), the sample points for supporting hyperplanes
are obtained by solving low-dimensional sub-problems. Moreover, the sub-problems can be
solved in parallel. The algorithm is designed such that the MIP-OA master problems are
solved as few times as possible, since solving them might be computationally demanding.

Four variants of DECOA have been tested on a set of convexMINLP instances. The exper-
iments have shown that for each case, the average number of MIP runs is small. Moreover,
the results show that the average number of MIP runs is independent of the problem size. In
addition to this, the time spent on solving sub-problems is bigger than time to solve LP and
MIP problems.

The performance of DECOA has been compared to the branch-and-bound MINLP solver
SCIP and to the OA method. Even though DECOA is based on a Python implementation,
it can even be faster for some (9%) of the instances than an advanced implementation like
SCIP. Probably this is due to the effect of the decomposition and the fact that it requires less
MIP runs. Comparison to OA shows that DECOA reduces the number of MIP runs and it
is more efficient in cases when the problem needs to be solved with a high number of MIP
runs.

Even though DECOA is clearly defined and proven to converge, there are possibilities
to improve its efficiency. It is possible to obtain a couple of solutions from the MIP solver
and project them onto the feasible set. This could increase the number of new supporting
hyperplanes in one iteration. Unfortunately, Pyomo does not facilitate working with a set of
MIP solution candidates. The numerical results show that the time for solving MIP master
problems is small, and reducing the time for solving LP master problems and sub-problems
would significantly improve the performance of DECOA. Therefore, it would be interesting
to work on reducing the number of iterations during the LP phase, and on faster solving
the projection sub-problems (9). Also the current implementation could be improved, i.e. by
implementing the parallelization, which could reduce the running time of DECOA signif-
icantly. The possible advantage of DECOA over branch-and-bound solvers would be with
large-scale problems, which cannot be solved in reasonable time by branch-and-bound. How-
ever, this has to be verified by systematic experiments. In the future, we aim to generalize
DECOA for solving nonconvex MINLP problems.
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