Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/288037 
Erscheinungsjahr: 
2023
Quellenangabe: 
[Journal:] Economic Notes [ISSN:] 1468-0300 [Volume:] 52 [Issue:] 2 [Publisher:] Wiley [Place:] Hoboken, NJ [Year:] 2023
Verlag: 
Wiley, Hoboken, NJ
Zusammenfassung: 
Based on monthly data covering the period from 1987 to 2021, we analyse whether cross‐sectional moments of stock market returns may provide information about the future position of the German business cycle. We apply in‐sample forecasting regressions with and without leading indicators as control variables, pseudo‐out‐of‐sample exercises, autoregressive distributed lag models, and impulse‐response functions estimated by local projections. We find in‐sample predictive power of the first and third cross‐section moments for the future growth of industrial production, even if one controls for well‐established leading indicators for the German business cycle. Out‐of‐sample tests show that these variables reduce the relative mean squared error compared with benchmark models. We do not find a long‐run relation between the moment series and industrial production. The dynamic response of industrial production to a shock on the cross‐section moments is in line with the other results.
Schlagwörter: 
business cycle
Germany
leading indicator
stock market cross‐sectional moments
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-nc-nd Logo
Dokumentart: 
Article
Dokumentversion: 
Published Version

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.