Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/286493 
Erscheinungsjahr: 
2019
Quellenangabe: 
[Journal:] SERIEs - Journal of the Spanish Economic Association [ISSN:] 1869-4195 [Volume:] 10 [Issue:] 1 [Year:] 2019 [Pages:] 65-92
Verlag: 
Springer, Heidelberg
Zusammenfassung: 
In this paper we introduce new Dynamic Conditional Score (DCS) models for the Skew-Gen-t (Skewed Generalized t) and NIG (Normal-Inverse Gaussian) distributions as alternatives to the recent DCS models for the Student's-t and EGB2 (Exponential Generalized Beta of the second kind) distributions, respectively. The DCS models we propose include stochastic local level, stochastic seasonality, and irregular components with DCS-EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) volatility dynamics. DCS models are robust to extreme observations, whereas standard financial time series models are not. We use data from the Guatemalan Quetzal (GTQ) to United States Dollar (USD) exchange rate for the period of 4th January 1994-30th June 2017. This dataset exhibits significant rises and falls in the GTQ/USD that lead to extreme observations, stochastic seasonality with dynamic amplitude, and volatility dynamics. These seasonality dynamics of the GTQ/USD are related to the Guatemalan trade-related currency movements, receipt and payment of foreign loans, and remittance payments of Guatemalans working abroad. We show that the in-sample statistical performance of the DCS-Skew-Gen-t and the DCS-NIG models is superior to that of the DCS-t and the DCS-EGB2 models, respectively. Furthermore, we show that the statistical performance of all DCS models is superior to that of the standard financial time series model.
Schlagwörter: 
Dynamic Conditional Score (DCS) models
Guatemalan Quetzal (GTQ) to United States Dollar (USD) exchange rate
Stochastic seasonality component
JEL: 
C22
C52
C58
F31
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe
981.92 kB





Publikationen in EconStor sind urheberrechtlich geschützt.