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Abstract

In this paper we introduce new Dynamic Conditional Score (DCS) models for the
Skew-Gen-t (Skewed Generalized t) and NIG (Normal-Inverse Gaussian) distributions
as alternatives to the recent DCS models for the Student’s-# and EGB2 (Exponential
Generalized Beta of the second kind) distributions, respectively. The DCS models
we propose include stochastic local level, stochastic seasonality, and irregular com-
ponents with DCS-EGARCH (Exponential Generalized Autoregressive Conditional
Heteroscedasticity) volatility dynamics. DCS models are robust to extreme obser-
vations, whereas standard financial time series models are not. We use data from the
Guatemalan Quetzal (GTQ) to United States Dollar (USD) exchange rate for the period
of 4th January 1994-30th June 2017. This dataset exhibits significant rises and falls in
the GTQ/USD that lead to extreme observations, stochastic seasonality with dynamic
amplitude, and volatility dynamics. These seasonality dynamics of the GTQ/USD are
related to the Guatemalan trade-related currency movements, receipt and payment of
foreign loans, and remittance payments of Guatemalans working abroad. We show
that the in-sample statistical performance of the DCS-Skew-Gen-¢ and the DCS-NIG
models is superior to that of the DCS-¢ and the DCS-EGB2 models, respectively. Fur-
thermore, we show that the statistical performance of all DCS models is superior to
that of the standard financial time series model.

Keywords Dynamic Conditional Score (DCS) models - Guatemalan Quetzal (GTQ)
to United States Dollar (USD) exchange rate - Stochastic seasonality component
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1 Introduction

Historically, Guatemala has ranked among the largest exporters of several agricul-
tural products worldwide. According to the United States Dollar (USD) value of
sugar exports, Guatemala is the fourth ranked country in the world, for example,
with a value of USD826.2 million during 2017 (that is 3% of total sugar exports
worldwide, following Brazil with 41.3%, Thailand with 9.4% and France with 4.9%).
Guatemala is the fourteenth ranked country for coffee exports worldwide, with a value
of USD748.6 million during 2017 (that is 2.3% of total coffee exports worldwide, fol-
lowing Ethiopia with 2.9%, United States with 2.7% and the Netherlands with 2.3%).
Moreover, Guatemala is the fifth ranked country for banana exports worldwide, with
a value of USD882.3 million during 2017 (that is 7.1% of total banana exports world-
wide, following Ecuador with 24.6%, Belgium with 8.5%, Costa Rica with 8.4% and
Colombia with 7.4%). We also highlight that Guatemala is the top cardamom pro-
ducing country worldwide, with a total value of exports of USD277.1 million during
2016 (that is 55.7% of total cardamom exports worldwide, followed by Nepal with
12.4%, India with 8.7% and the United Arab Emirates with 6.2%). The sugarcane,
coffee, banana and cardamom production in Guatemala has a seasonal component
related to weather conditions. Therefore, the export-related currency movements of
these products may lead to an exchange rate seasonality (i.e. annual seasonality) of
the Guatemalan Quetzal (GTQ) to USD (GTQ/USD) exchange rate.

During the last two decades, the relative importance of sugar, coffee, banana and car-
damom exports, out of Guatemala’s total exports, has decreased significantly (source:
Bank of Guatemala, http://www.banguat.gob.gt; see notes of Table 4). This suggests
that the impact of the export-related seasonality effects on the GTQ/USD exchange
rate may have decreased over time. During the same period, the relative importance
of the receipt and payment of foreign loans, and remittance payments to Guatemala
(as a fraction of total foreign currency movements of the country) has increased sig-
nificantly. As the receipt and payment of foreign loans and the remittance payments
to Guatemala do not involve significant exchange rate seasonality components (i.e.
annual seasonality), the increase in the relative importance of those currency move-
ments may indirectly lower the amplitude of GTQ/USD exchange rate seasonality.

The aforementioned issues motivated the present work and we focus on the in-
sample analysis of the GTQ/USD exchange rate p;. We evaluate the historical evolution
of stochastic seasonality effects in the GTQ/USD exchange rate for the sample period
of 4th January 1994-30th June 2017. We use information on (1) Guatemalan export-
related currency movements, (2) import-related currency movements, (3) receipt of
Guatemalan USD loans, (4) payment of Guatemalan USD loans, and (5) remittance
payments of Guatemalan citizens who are working abroad. To study the stochastic
seasonality component of the GTQ/USD exchange rate, we suggest using the new
Dynamic Conditional Score (DCS) models (Creal et al. 2013; Harvey 2013) that
include both stochastic local level u; and stochastic seasonality s; components. The
new DCS models are flexible and they allow stochastic dynamics in the local level u;
component, the seasonality s, component, and the irregular v; component, within the
decomposition of the GTQ/USD exchange rate: p; = u; + s + vs.
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The use of the DCS models for the time series sample in the present study is
motivated by the GTQ/USD time series that exhibits: (1) significant rises and falls that
lead to extreme observations, (2) a significant stochastic seasonality component (i.e.
annual seasonality) with dynamic amplitude, and (3) significant volatility dynamics.
DCS models are robust to extreme observations. Therefore, the new DCS models
for the GTQ/USD exchange rate may be more adequate for an effective in-sample
measurement of the stochastic seasonality component than the standard financial time
series models (i.e. the latter are less robust to extreme observations). Our paper makes
several contributions to the body of DCS literature.

Firstly, we introduce the new DCS-Skew-Gen-¢ (Skewed Generalized ¢ distribu-
tion) model with (1) stochastic local level u;, (2) stochastic seasonality s;, and (3)
DCS-EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedas-
ticity) (Harvey 2013) scale dynamics for the irregular component v;. The statistical
performance of the DCS-Skew-Gen-t model is superior to that of the DCS Student’s-¢
model (hereinafter, DCS-¢) (Harvey 2013; Harvey and Luati 2014), according to all
Log-Likelihood (LL)-based metrics of this paper.

Secondly, we introduce the new DCS-NIG (Normal-Inverse Gaussian distribution)
model (Barndorff-Nielsen and Halgreen 1977) with (1) stochastic local level u;, (2)
stochastic seasonality s;, and (3) DCS-EGARCH scale dynamics for the irregular
component v;. The statistical performance of the DCS-NIG model is superior to that
of the DCS-EGB2 (Exponential Generalized Beta distribution of the second kind)
model (Caivano et al. 2016), according to the LL-based parsimony metrics.

In this paper, we suggest two new DCS models because their terms, which do the
updating, transform extreme observations in a similar way to the benchmark DCS
models, as described in the literature: (1) For both the DCS-t and DCS-Skew-Gen-t
models, the most extreme observations are trimmed by local level and seasonality
(updating terms), and extreme observations in scale (updating term) are Winsorized;
(2) For both the DCS-EGB2 and DCS-NIG models, local level and seasonality (updat-
ing terms) perform Winsorizing of extreme observations, and scale (updating term)
transforms extreme observations according to a linear function. The type of trans-
formation of extreme observations that is more appropriate for local level, stochastic
seasonality and volatility, is an open question in the relevant body of DCS literature.

Thirdly, we compare the DCS models with a standard financial time series model
that de- composes the GTQ/USD exchange rate to the three components: stochastic
local level u;, stochastic seasonality s;, and irregular v;. We find that all of the DCS
models in this paper present a statistical performance that is superior to that of the
standard model.

The remainder of this paper is organized as follows. Section 2 reviews the literature
on DCS models. Section 3 presents the econometric framework. Section 4 describes
the dataset. Section 5 presents the empirical results. Section 6 concludes.

2 Review of the literature on DCS models

DCS models are observation-driven time series models (Cox et al. 1981), in which
each dynamic equation is updated by the conditional score of the LL (hereinafter,
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score function) with respect to a dynamic parameter. The score function discounts the
effects of previous observations when the dynamic equations of the DCS model are
updated. Thus, DCS models are robust to extreme values in the irregular component
(Creal et al. 2013; Harvey 2013). Those models can be applied to the study of 7(0)
(e.g. financial returns, real GDP growth) or /(1) (e.g. exchange rate level, real GDP
level) times series variables (see Hamilton 1994).

The first example of DCS models is Beta-.-EGARCH (Harvey and Chakravarty
2008), which is an outlier-robust alternative to the GARCH model (Engle 1982; Boller-
slev 1986). With respect to Beta---EGARCH, we refer to the recent applications of
Blazsek and Villatoro (2015), Blazsek and Mendoza (2016), and Blazsek and Monteros
(2017). Another example of DCS models is QAR (Harvey 2013), which is a nonlin-
ear and outlier-robust alternative to the AR Moving Average (ARMA) model (Box
and Jenkins 1970). An additional recent example of DCS models is QVAR (Blazsek
et al. 2017, 2018b), which is a nonlinear and outlier-robust alternative to the VARMA
model (see, for example, Liitkepohl 2005).

We also refer to the following recent models from the body of DCS literature:
Blazsek and Escribano (2016a) suggest a DCS count panel data model, which is
an alternative to the dynamic count panel data models of Blundell et al. (2002),
Wooldridge (2005), and Blazsek and Escribano (2010, 2016b). Ayalaetal. (2017) sug-
gest DCS-EGARCH models with score-driven shape parameters, which are extensions
of the DCS-EGARCH models with constant shape (see, for example, Harvey 2013).
Blazsek and Ho (2017) introduce the Markov regime-switching Beta---EGARCH
model. Blazsek et al. (2018c) compare single-regime and regime-switching Beta-
t-EGARCH, Skew-Gen-1-EGARCH, EGB2-EGARCH and NIG-EGARCH volatility
models. Ayala and Blazsek (2018a, b) use new DCS copula models for financial portfo-
lios, by considering score-driven Clayton, rotated Clayton, Frank, Gaussian, Gumbel,
rotated Gumbel, Plackett, and Student’s ¢ copulas.

Related to the new DCS models with stochastic local level and stochastic seasonality
components that are suggested in the present paper, we refer to the works of Harvey
(2013) and Harvey and Luati (2014), who introduce the dynamic Student’s-¢ location
model that includes stochastic local level and stochastic seasonality components. More
recently, Caivano et al. (2016) introduce the dynamic EGB2 location model, which
includes stochastic local level and stochastic seasonality components. Caivano et al.
(2016) compare the dynamic Student’s-¢ location and the dynamic EGB2 location
models, and demonstrate that extreme observations are discounted in different ways
in those models. For the Student’s-# location model, the score function converges to
zero as |v;| — oo, which is described as a soft form of trimming. For the EGB2
location model, the score function converges to a positive or negative non-zero value
as |v;| — oo, which is described as a soft form of Winsorizing.

We also refer to a related recent work of Blazsek and Herndndez (2018), who apply
DCS-t, DCS-Gen-t (Generalized ¢ distribution) and DCS-EGB2 models of stochastic
local level, stochastic seasonality and EGARCH-driven irregular components, to spot
electricity prices from El Salvador, Guatemala and Panama that exhibit significant
rises and falls.
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3 Econometric framework
3.1 DCS models with local level and seasonality

The DCS models of this paper are formulated as: p; = p;+s:+v; = e +5:+exp(rs)é;
fordayst = 1,..., T, where T is the number of observations. The model includes
three score-driven components: stochastic local level component 14, stochastic annual
seasonality component s;, and irregular component v,. The irregular component is the
product of a dynamic scale parameter exp(A,;) and a standardized error term ¢;.

For ¢;, we use the Student’s-¢, Skew-Gen-¢, EGB2 and NIG distributions (we present
the corresponding density functions in Sect. 3.3). For these probability distributions,
the updating terms of the DCS equations either trim or Winsorize the extreme observa-
tions, or transform them according to a linear function. Due to these transformations,
the DCS models for the GTQ/USD currency exchange rate of the present paper are
robust to extreme observations.

Firstly, the local level component pt; = p;—1 + duy 1 is updated by the scaled
score function u, ; with respect to pt; (1, is defined in Sect. 3.3). We initialize 1, by
using the first observation pj. As an alternative, we also consider the use of parameter
1o to initialize u,. We obtain very similar results for both cases, thus, in this paper we
only report results for i1 = pj. With respect to these alternatives of initialization, we
refer to the work of Harvey (2013, p. 76).

Secondly, the annual seasonality component is s; = D;0; = (Dyan.t» DFeb.ts - - - »
Dpec.t)' ps, where the monthly dummies D i+ with j € {Jan, ..., Dec} select an ele-
ment from the 12 x 1 vector of dynamic variables p,. The vector p; is formulated as
Pt = Pr—1 + ity —1. Vector p; is updated by the scaled score function u, ; with
respect to u; (Sect. 3.3), and u, ; is multiplied by the 12 x 1 vector of dynamic
parameters y;. Each element of the y; vector is given by y;, = y; for D;; = 1 and
vjr = —y;j/(2 = 1) for D;; = 0, where y; with j € {Jan, ..., Dec} are seasonality
parameters to be estimated. This specification ensures that the sum of the seasonality
parameters is zero, hence, s; has mean zero and it is effectively separated from p;.

We initialize p; by estimating the equation p; = a + bt + cjanDyans + -+ +
¢Dec Dpec,: + €, under the restriction cjan + - - - + cpec = 0. Due to this restriction
multicollinearity is avoided, thus, all parameters are identified in the equation. For
the estimation, we use data from the first year of the full data window (i.e. the first
259 observations of the GTQ/USD exchange rate sample from year 1994), and we
estimate the parameters by using the Non-linear Least Squares (NLS) method. The
initial values of p; are the NLS estimates of (cyan, ..., cpec)’. With respect to this
method of initialization, we refer to the work of Harvey (2013, p. 80).

In the DCS models of this paper, the same scaled score function updates both the
local level and the seasonality components. Therefore, the local level and seasonality
shocks are correlated. The DCS models with stochastic local level and stochastic
seasonality of this paper are alternatives to the recent Unobserved Components Model
(UCM) of Hindrayanto et al. (2018) that uses correlated shocks for the local level and
seasonality components.
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Thirdly, we model the time-varying scale of the irregular component v; by using
the DCS-EGARCH(1,1) model A; = w + BA;—1 + au; ;—1, which is updated by the
score function u; ; with respect to A; (uy ; is defined in Sect. 3.3). DCS-EGARCH
models for the Student’s-f, Skew-Gen-f, EGB2 and NIG distributions are named
Beta-t-EGARCH (Harvey and Chakravarty 2008), Skew-Gen--EGARCH (Harvey
and Lange 2017), EGB2-EGARCH (Caivano and Harvey 2014) and NIG-EGARCH
(Blazsek et al. 2018c), respectively. We initialize A, by using parameter 1o. As an
alternative, we also consider DCS-EGARCH with leverage effects (Harvey 2013).
However, we find that the parameter that measures leverage effects is not significantly
different from zero for the GTQ/USD dataset that is used in this paper.

Motivated by the works of Dacorogna et al. (1993) and Andersen and Bollerslev
(1998), we also consider a seasonality component in volatility. We add the seasonality
component §; into scale, as follows: p, = u; + s, + v, = ur + ¢ + exp(rAs + 5p)e;,
where we use the Student’s 7, Skew-Gen-t, EGB2 and NIG distributions for ¢;. The

seasonality component s specifiedas §; = D;p; = (Djan,t, DFeb.t, - - - » Dbec.t)’ fr and
Pr = Pr—1 +kyuy 1. Each element of the «; vector is given by «j; = «j for Dj; =1
andkj; = —kj/(12—1)for Dj; = 0,wherek; with j € {Jan, ..., Dec} are parameters

to be estimated. This specification ensures that the sum of the seasonality parameters
is zero, hence, §; has mean zero and it is effectively separated from X;. We do not report
results for these extended DCS specifications with seasonal volatility, because the ML
estimator does not converge to an optimum for the GTQ/USD currency exchange rate
dataset of the present paper. Nevertheless, this specification may be helpful in future
applications for currency exchange rates involving stochastic seasonality and extreme
observations.

3.2 Standard financial time series model with local level and seasonality

The standard financial time series model is formulated as: p;, = u; + s, + v, =
we + 8¢ + A,l/zet fordayst =1, ..., T. We use the same notation for the local level,
seasonality and irregular components as for the DCS models, and for the error term
we use €; ~ N (0, 1).

Firstly, the local level componentis i; = ps—1+8v;—1 (our motivation for using this
updating term is outlined in Sect. 3.3). We initialize u, by using the first observation
p1- As an alternative, we also consider the use of parameter 1 to initialize u;. We
obtain very similar results for both cases, thus, in this paper we only report results for
K1 = pi.

Secondly, the annual seasonality component is s, = D;p; = (Dyan,r, DFeb,t - - -
Dpec.t)' pt, where the monthly dummies D i+ with j € {Jan, ..., Dec} select an ele-
ment from the 12 x 1 vector of dynamic variables p,. The vector p, is formulated as
pr = pr—1+yrvi—1 (Sect. 3.3). We initialize p; in the same way as for the DCS models.
Each element of the y; vectoris givenby y;, = yjfor Dj, = landyj;, = —y;/(12—1)
for Dj; = 0, where y; with j € {Jan, ..., Dec} are seasonality parameters to be esti-
mated. This specification ensures that s; is centred at zero.

Thirdly, we model the conditional variance of v, by using the classic GARCH(1,1)
specification A, = w + BA;—1 + avtz_l. We initialize A; by using parameter A¢.
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3.3 Conditional densities, score functions and updating terms

We use four probability distributions for €; in the DCS models. In this section, for
each alternative, we present the log conditional density of p;, and the score functions
u,,; and u;, ;. Furthermore, in this section we also present the log conditional density
of p; and the properties of the updating terms of x; and X; for the standard financial
time series model.

Firstly, €, ~ ¢[0, 1, exp(v) + 2] is the Student’s z-distribution, where v € R
influences tail-thickness. The degrees of freedom exp(v) + 2 parameter specification
ensures finite conditional variance for p,. The log conditional density of p; is

n f(pelpi,-.s pr—1) = InT [%} ot [exp(vz) + 2]

_In(7) 4+ Infexp(v) +2]

At
2
2
_Sp) 3 {1 & } &)
2 exp(v) +2

where I"(x) is the gamma function. The score function with respect to i, is given by

aln f(pelp1s..., pr—1) _ [exp(v) + 2] exp(A;)e; exp(v) +3
oy €2 +exp(v) +2 [exp(v) + 2] exp(24,)
exp(v) +3

= Texp(v) + 2] exp(2y) @

where the scaled score function u,, , is defined according to the last equality. The
u, . term trims extreme observations, because u, ; —, 0 when |¢| — oo. The
discounting that is undertaken by u,, , is identical for the positive and negative sides
of the probability distribution (see Sect. 5 for empirical results). The updating term
vy that is used in the local level and stochastic seasonality equations of the standard
financial time series model is a limiting special case of the scaled score function u,, ;,
because:

_[exp(v) + 2] exp(A)er exp(A;)e; s expOu)e =y (3)
= = P t)€r = Ut

u
wt €2 +exp(v) +2 [exp(v) +2]-1e? + 1

as v — oo. Related to this, we also note that under the same limit [0, 1, exp(v) +
2] =4 N(O, 1), i.e. the standardized error term of the standard financial time series
model is obtained. The score function u; ; is

LA fpdprs P [exp(v) +3]¢/
ot oAy exp(v) + 2 + €2

“

The updating term u; , Winsorizes extreme observations, because u; ; —, ¢ (¢ > 0
is a real number) when |¢,| — oo. The discounting that is undertaken by u; , is
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identical for the positive and negative sides of the probability distribution (see Sect. 5
for empirical results). We also show the limiting case for u; ; when v — oo:

[exp(v) + 3]€; > >
Uy, = exp(n) 124 6,2 1 —, ¢ — 1 =exp(—=2A)v; — 1 %)
as v — oo. The last equality shows that u, ; performs a quadratic transformation of v;
for the limiting case, as per the conditional variance equation in the standard financial
time series model.

Secondly, €, ~ Skew-Gen-¢[0, 1, tanh(7), exp(v) + 2, exp(n)] (McDonald and
Michelfelder 2017), where tanh(x) is the hyperbolic tangent function, and t € R, v €
R and € R influence the asymmetry, tail-thickness and peakedness, respectively.
The Skew-Get-¢ distribution is a generalization of the Student’s ¢ distribution. By
setting tanh(r) = 0 and exp(n) = 2, Skew-Get-¢ coincides with Student’s 7. The
degrees of freedom exp(v) + 2 specification ensures finite conditional variance for p;,
as for the Student’s ¢ distribution. The log-density of p; is

In f(pilp1, .., pi—1) =n—kz—ln(2)—w—lnr[w}

exp(n) exp(n)
—InTfexp(—n)] +InT [M]
exp(n)
_epm+3 ] €| P ©
exp(n) [1 4 tanh()sgn(e;) ]P0V x [exp(v) + 2]

where sgn(x) is the signum function. The score function with respect to u, is given
by

oln f(pilp1,.-., pi—1) _ [exp(v) + 2] eXP(At)€z|€z|exP(n)72
dpts |€,|XP0D 4 [1 + tanh(z)sgn(€;) ]P0V [exp(v) + 2]
exp(v) +3 exp(v) +3

(N

=Up,z

[exp(v) 4+ 2] exp(2X;) x [exp(v) + 2] exp(2A;)

where the scaled score function u,; is defined according to the second equality.
The u,, , term trims extreme observations, because u,, ; — , 0 when |e;| — o0o. The
discounting thatis undertaken by u,, , is not identical for the positive and negative sides
of the probability distribution (see Sect. 5 for empirical results). The score function
Up,t 1S

_ alnf(Pl|P1, ~-'7Pt71)
OAs

_ |€:[**PUD [exp(v) + 3] .
T &P 4 [1 4 tanh(r)sgn(e;) 1P [exp(v) + 2]

Uyt

®)

The updating term u, , Winsorizes extreme observations, because u; ; —, ¢i when
¢ — —ooand u; ; —, ¢ when ¢, — +00 (¢ > 0 and ¢ > 0 are real numbers).
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The Winsorizing that is undertaken by u;_; is not identical for the positive and negative
sides of the probability distribution (see Sect. 5 for empirical results).

Thirdly, €; ~ EGB2[0, 1, exp(§), exp(¢)], where £ € R and ¢ € R influence both
asymmetry and tail-thickness. The log conditional density of p; is

In f(pilp1, ..., pi-1) = exp(§)e; — A — InT'[exp(§)] — InI'[exp(£)]
+InT'[exp(§) 4 exp(£)] — [exp(§) + exp(¢)]In[1 + exp(e;)] &)

The score function with respect to u; is given by

dln f(pilp1, ..o pi—1)

o e x (WP [exp€)] + W lexp(o)]} exp(2h,)  (10)
t

where the scaled score function u,, ; is defined as:

s = (WP exp@)] + ¥V exp(2)1} exp(rr)

{[exp@) +exp(0)]—E)_ exp(f)} (1
exp(er) + 1

where WD (x) is the trigamma function. The u,, ; term Winsorizes extreme observa-
tions, because u, ; —, ¢y whene¢, — —ooanduy, ; —, ¢ whene; — +00(c; <0
and ¢ > 0 are a real numbers). The discounting that is undertaken by u,, ; is not
identical for the positive and negative sides of the probability distribution (see Sect. 5
for empirical results). The score function u;, ; is

_dInf(pilp1, ... pi—1) €; exp(e;) _ _
= o = [exp(§) + eXp(g“)]—eXp(Et) T op@ea -1
(12)

The updating term u,_, transforms extreme observations according to a linear increas-
ing function, because u;; —, oo in a linear manner when |¢;| — oc. The linear
transformation that is undertaken by u; ; is not identical for the positive and negative
sides of the probability distribution (see Sect. 5 for empirical results).

Fourthly, €, ~ NIGJO, 1, exp(v), exp(v)tanh(n)], where v € R and n € R influ-
ence tail-thickness and asymmetry, respectively. The log conditional density of p;
is

Upt

In f(pelp1. ... prm1) = v — A — In(w) + exp()[1 — tanh® ()]'/?
1
+exp(v)tanh(n)e, + In KV |:exp(v) 1+ 6,2] — 51+ ) (13)

where KV (x) is the modified Bessel function of the second kind of order 1. The score
function with respect to u; is given by
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01l S e ey —
nf(pzlgl pi-1) _ —exp(v — A,)tanh(n) +
1223

€t

exp(ro) (1 + €?)

K© |:exp(v) 1+ 6,2i| + K@ |:exp(v) 1+ etz]

— A
+eXP(V 1)€r «

(14)
V1+ & 2KM |:exp(v) 1+ e,zi|
and the scaled score function u, , is defined as:
a1 R
s = n f(p:|p1 Pi—1) X exp(2Ay) (15)

oy

where K © (x) and K@ (x) are the modified Bessel functions of the second kind of
orders 0 and 2, respectively. The u,, , term Winsorizes extreme observations, because
uy; —>pcr whene, - —ooand uy, ; —p c; whene¢, — +oo(c; <0Oandcy >0
are real numbers). The discounting that is undertaken by u,, , is not identical for the
positive and negative sides of the probability distribution (see Sect. 5 for empirical
results). The score function u; ; is

8111 ?(pt“?],...,p[_]) 612
= =—1- tanh(n)e; +
Uyt a)\'t CXP(V) an (7])6; 1 6t2

X

J1+é€ 2KM [exp(v) 1+ etz:|

The updating term u;_, transforms extreme observations according to a linear increas-
ing function, because u; ; —, oo in a linear manner when |¢,| — Zoo. The linear
transformation that is undertaken by u;_; is not identical for the positive and negative
sides of the probability distribution (see Sect. 5 for empirical results).

Finally, we also present the log-density of p; for the standard financial time series
model:

(16)

1 1
I f(pilprs .oy piot) = =5 InQay) = Eef (17)

The updating terms of the equations p; = p;—1 +dv,—jand A = o+ Br—1 + avtz_l
perform linear and quadratic transformations of €,, respectively. For both i, and A;, the
updating terms go to infinity when |¢;| — oo. The linear and quadratic transformations
that are undertaken by the updating terms are identical for the positive and negative
sides of the probability distribution. Compared to the DCS specifications, the standard
financial time series model does not discount extreme observations. We highlight the
fact that extreme observations are accentuated in GARCH by the quadratic transfor-
mation of shocks, possibly leading to an overestimation of volatility after extreme
observations (Blazsek et al. 2018a).
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3.4 Statistical inference

The DCS specifications of this paper are estimated by using the Maximum Likelihood
(ML) method (see, for example, Davidson and MacKinnon 2003). The ML estimator
is given by

T
Oy = argmax LL ..., pr; ®) =argma In sy Di—1,©
ML g max (p1 pr; ®) g ®X§ f(pelp1 Pi—1; ©)

(18)

where ® denotes the vector of parameters. We estimate the components p,, s; and vy
jointly, under the initialization methods of u;, s; and A; that are presented in Sect. 3.1
(see also Harvey 2013). The standard errors of parameters are estimated by using the
inverse information matrix (Creal et al. 2013; Harvey 2013). For some parameters, we
estimate their transformed values. We use the delta method to estimate the standard
errors for those parameters (see, for example, Davidson and MacKinnon 2003).

For the DCS models of this paper, we use results from the work of Harvey (2013)
for the conditions of consistency and asymptotic normality of the ML estimates. For
the local level and stochastic seasonality equations, the dynamic parameters of the u;
and p; equations are set to one, instead of being estimated. Therefore, the asymptotic
properties of the ML estimator hold for those cases (Harvey 2013). With respect to the
dynamic log-scale equation, we define the statistic C) = ,62 +2BaE(Quy /o)) +
«2E[(Qu e/ ar)?] (Harvey 2013). We estimate C; numerically for each DCS speci-
fication of the present paper. Firstly, the partial derivatives of the score function with
respect to A; are computed numerically. Secondly, the Augmented Dickey and Fuller
(1979) (hereinafter, ADF) is performed for each du; ;/dX; time series, in order to
justify the use of the sample average estimator for the expectations. For all cases, the
ADF test indicates that du; ;/dA; forms a covariance stationary time series. Thus,
the sample average is a consistent estimator of the expected value (see, for example,
Hamilton 1994). Two conditions for DCS-EGARCH(1,1) are |8| < 1 and C;, < 1.

For the standard financial time series model: (1) we use the ML estimator, (2) we
estimate the standard errors of parameters by using the inverse information matrix, and
(3) we use the delta method for the transformed parameters. Even if the €, ~ N (0, 1)
assumption does not hold, we still get consistent and asymptotically normal estimates
of the parameters in accordance with the Quasi-ML (QML) results of Gouriéroux
et al. (1984). For the local level and stochastic seasonality equations, the dynamic
parameters of the i, and p; equations are not estimated but are set to one. Therefore, the
asymptotic properties of ML hold for those cases. For GARCH, a sufficient condition
for the asymptotic properties of ML is«a + 8 < 1.

4 Data

We use GTQ/USD exchange rate data that are obtained from the Bank of Guatemala
(see related details in the notes of Table 1). The GTQ/USD exchange rate p;, is available
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from 6th November 1989, when GTQ/USD started to float in the foreign currency
market. Until 1994, the Bank of Guatemala used a pegged float exchange rate regime,
for which the rate was allowed to fluctuate within a specific band. For the period of
6th November 1989 to 31st December 1993, the GTQ/USD time series shows constant
level periods with zero volatility, step function-like evolution in other periods, and
significant rises or falls on some days (Fig. 1a, b). Thus, the DCS models of this paper
are not adequate for the GTQ/USD time series of this period.

From 1994, a managed float exchange rate regime was introduced, and GTQ/USD
became more volatile. In 1997 and 1998, GTQ depreciated in relation to the effects
of the Asian Financial Crisis and the Russian Financial Crisis, respectively (Fig. lc,
d). In 1999, both demand and price of the goods exported from Guatemala decreased
significantly, and GTQ depreciated significantly again (Fig. 1c, d) due to a negative
current account and a negative capital account in the same year. As a consequence,
the Bank of Guatemala intervened in the GTQ/USD exchange rate market in August
1999. In May 2001, the Congress of the Republic of Guatemala approved the Law of
Free Foreign Currency Transactions (Act No: 94-2000), and created the Institutional
Foreign Currency Market (hereinafter, we use the Spanish language acronym of MID).
Those institutions that participate in the MID are obliged to report all foreign currency
transactions, on a daily basis, to the Bank of Guatemala. The current exchange rate
regime in Guatemala allows the participation of the Bank of Guatemala in the MID.
Since 2006, the rules of intervention by the Bank of Guatemala are officially published,
and are known by the participants of the MID.

In this paper, we use data for the period of 4th January 1994-30th June 2017 (Fig. 1c,
d). The Bank of Guatemala reports bid and ask prices for GTQ/USD for seven days of
the week (Guatemalan banks are open seven days in every week). We use the average
of bid and ask prices for each day. We use data for every Monday to Friday from the
data window. We do not include bank holidays and weekends in the dataset, since
the MID undertakes foreign currency transactions only from Monday to Friday (thus,
GTQ/USD does not change during the weekend). As an extension of our models, we
also consider a weekly stochastic seasonality component for the GTQ/USD currency
exchange rate time series data of this paper. We do not report those results, because
weekly seasonality is not significantly different from zero.

We present descriptive statistics for the GTQ/USD level p; and the GTQ/USD
log-return In(p;/p;—1) time series in Table 1. We also present results for the ADF
test in Table 1, which suggest that p; is a (1) process, and thus motivate the use of
the local level component with unit root in the DCS model. Further, in Table 1, we
present the mean p, for each month of the year. Those mean p, estimates indicate the
following annual seasonality effects: (1) strengthening GTQ from December to May;
(2) relatively stable GTQ from June to August; (3) weakening GTQ from September
to November. These results motivate the use of the annual seasonality component
s; in the DCS model. Significant rises and falls in GTQ/USD are also observed in
Fig. lc, which motivate the use of different DCS specifications that discount extreme
observations in a different manner. Finally, significant volatility clustering is observed
in Fig. 1d, which motivates the use of DCS-EGARCH.
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5 Empirical results
5.1 Statistical performance

The ML parameter estimates and model diagnostics are presented in Table 2. For
all DCS specifications, the ML conditions for local level and stochastic seasonality
are satisfied since the dynamic parameters are set to one. Moreover, the EGARCH
estimates support the consistency and asymptotic normality of ML (i.e. |8] < 1 and
C) < 1) (Table 2). With respect to the standard financial time series model, we
find statistically significant parameters for the local level, stochastic seasonality and
irregular components (Table 2). For the standard model, the ML conditions for local
level and stochastic seasonality are satisfied and the estimate of « + f is less than one,
which supports the asymptotic properties of ML (Table 2).

We use the following metrics to compare statistical performance: LL, Akaike Infor-
mation Criterion (AIC), Bayesian Information Criterion (BIC) and Hannan-Quinn
Criterion (HQC). According to AIC, BIC and HQC, the in-sample statistical perfor-
mance of the DCS-Skew-Gen-t model is superior to that of all the alternatives of this
paper (Table 2). We also perform a Likelihood-Ratio (LR) test for non-nested models
(Vuong 1989). In the LR test, we estimate the linear regression d; = ¢ + ¢€;, where
d; is the difference between the log-densities of two models for day . We estimate
this equation by using the OLS-HAC (Ordinary Least Squares - Heteroscedasticity
and Autocorrelation Consistent) estimator (Newey and West 1987). In Table 2, we
report three different LR test results: (1) LR1 compares the LLs of all alternatives
with that of the DCS-Skew-Gen-¢ model (i.e. the model with the highest LL estimate).
According to the results, the LL of the DCS-Skew-Gen-f model is significantly higher
than the LLs of the alternative models. (2) LR2 compares the LLs of all alternatives
with that of the standard financial time series model (i.e. the model with the lowest LL
estimate). According to the results, the LLs of all DCS models are significantly higher
than the LL of the standard financial time series model. (3) LR3 compares the LLs
of those DCS models that undertake trimming in the location equation (i.e. the recent
DCS-t model and the new DCS-Skew-Gen-t model), and also compares the LLs of
those DCS models that undertake Winsorizing in the location equation (i.e. the recent
DCS-EGB2 model and the new DCS-NIG model). According to the results, the LL
of the DCS-Skew-Gen-t model is significantly higher than the LL of DCS-t model,
while the LLs of DCS-EGB2 and DCS-NIG models do not differ significantly.

The properties of the scaled score functions and score functions that update the
local level and log-scale of p; are important with respect to the likelihood-based per-
formance of alternative DCS models. In the following, we present those properties in
the empirical analysis that can be related to the mathematical details of those updating
terms (Sect. 3.3). The updating terms u,, ; and u; ; of the DCS-z, DCS-Skew-Gen-t,
DCS-EGB2 and DCS-NIG models are presented in Fig. 2a—d, respectively, as functions
of ¢;. We evaluate u, ; and u, ; by using the ML estimates of the shape parameters, and
for A; we use its unconditional mean estimate /(1 — 3). We also present in Fig. 2e, f
the updating terms of the local level w, and the conditional variance A; equations for
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Fig.2 Updating terms for DCS and standard financial time series models; estimated for the GTQ/USD time
series. Notes Each updating term is presented as a function of the error term ¢;

the standard financial time series model. For the evaluation of the updating term of A;,
we use the ML estimate of its unconditional mean: @/(1 — & — 3).

For the DCS-t and DCS-Skew-Gen-t models, u, ; undertakes a smooth form of
trimming (Fig. 2a). For the greater part of the support of the probability distribution, the
DCS-Skew-Gen-f model discounts more observations than the DCS-7 model (the only
exception is for a small negative interval in the central part of the distribution) (Fig. 2a).
Furthermore, for the DCS-¢ and DCS-Skew-Gen-t models, u; ; undertakes a smooth
form of Winsorizing (Fig. 2b). In the central part of the distribution, observations are
discounted in similar ways for the DCS-# and DCS-Skew-Gen-¢# models (Fig. 2b).
In the extreme parts of the distribution, observations are discounted more for the
DCS-Skew-Gen-t model than for the DCS-¢# model (Fig. 2b). All LL-based metrics
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of Table 2 suggest that the discounting of extreme values for the DCS-Skew-Gen-¢
model is more effective than the discounting of extreme values for the DCS-¢ model.

For the DCS-EGB2 and DCS-NIG models, u,, ; undertakes a smooth form of Win-
sorizing (Fig. 2c), and u; ; increases linearly as |¢;| — oo (Fig. 2d). We find that,
for both u,, ; and u; ;, observations are discounted more for the DCS-EGB2 model
than for the DCS-NIG model (Fig. 2¢, d). Moreover, for both the DCS-EGB2 and
DCS-NIG models, observations are discounted differently with respect to the left and
right tails of the distribution (i.e. observations in the right tail are discounted more
than observations in the left tail by both u, ; and u, ;) (Fig. 2c, d). The AIC, BIC and
HQC metrics presented in Table 2 suggest that the discounting of extreme values for
the DCS-NIG model is more effective than the discounting of extreme values for the
DCS-EGB2 model.

With respect to the updating terms of conditional mean u; and conditional variance
X for the standard financial time series model, in Fig. 2e, f we present that extreme
values in the noise ¢; are transformed according to linear and quadratic functions,
respectively, for the empirical GTQ/USD exchange rate dataset. All LL-based metrics
of Table 2 suggest that the discounting of extreme values for the DCS models is more
effective than the transformation of extreme values for the standard financial time
series model.

5.2 Stochastic seasonality component

For the GTQ/USD exchange rate, significant stochastic annual seasonality s; estimates
are shown in Fig. 3a—d for the DCS-¢, DCS-Skew-Gen-¢, DCS-EGB2 and DCS-NIG
models, respectively. We also present those seasonality s, estimates for the standard
financial time series model in Fig. 3e. With respect to the economic significance of
seasonality effects, for the highest local maximum and lowest local minimum points of
s;, we estimate approximately +2% and —1.5%, respectively, for s; / p;. The amplitude
of seasonality is time-varying. However, for the greater part of the sample period, with
respect to the local maximum and local minimum values of s;, we estimate at least
+0.8% and — 0.8%, respectively, for s;/p;.

The presence of the annual seasonality component is against the efficiency of
the GTQ/USD exchange rate market. The currency market does not eliminate the
GTQ/USD seasonality, because the bid and ask exchange rates for clients, that are
offered by financial institutions in Guatemala, are such that it is impossible to obtain
profits based on the seasonal movements. As an example, we refer to the bid and ask
exchange rates offered by Banco Industrial for 12 November 2018. With respect to
total assets in 31 December 2017, Banco Industrial is the largest bank in Guatemala
(source: Superintendency of Banks, Guatemala). The corresponding bid and ask prices
are 7.60 GTQ/USD and 7.80 GTQ/USD, respectively. According to those prices, the
bid-ask spread to the mean GTQ/USD ratio is 2.6%, which is higher than the sea-
sonality amplitude that is estimated for any year of the sample period. This example
for the relative bid-ask spread is also representative for other Guatemalan financial
institutions, for any year of the sample period.
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Fig.3 GTQ/USD stochastic annual seasonality component s; for the period of 4th January 1994-30th June
2017

The annual seasonality component can be explained by the evolution of agricultural
product exports within each year. During the period of December to May, the amount
of USD entering Guatemala increases due to coffee, sugar, banana and cardamom
exports. Therefore, during the period of December to May, GTQ becomes stronger
with respect to USD (Fig. 3). For the period of June to August, the GTQ/USD exchange
rate is relatively stable. For the period of September to November, the amount of USD
entering Guatemala reduces due to the finish of agricultural product harvests. As a
consequence, during the period of September to November, GTQ becomes weaker
with respect to USD (Fig. 3).

According to Fig. 3a, b, the seasonality components are very similar for the DCS-¢
and DCS-Skew-Gen-¢ models. Moreover, the seasonality components are also very

@ Springer



85

SERIEs (2019) 10:65-92

60€L"L [ 06°09S 6T V1 L't 01" 19%°0%9°9 €d ¥10¢
GoS8°L 0 01'808°16L €1 S e 00'868 99 € €10T
I1€8°L ¥'C 0L'80L LIL €T 00— 01°120°195°9 €l 41174
TE8L'L ¥'0C 01°L9T 1Sy €l 8’61 0I'ST1°9LS 9 €l 11oc
96608 €6l 7S°688°691°11 Syl Y vL06v'S €l 010C
0v91°8 661 — 08'20T°79¢°6 8y — 01°S0E°S6L Y €l 600T
¥8SS°L I'LT:Td 6'vC 00 TTES69°TT 8'L:Cd gol 0€°¢SSve0’S 2! 800T
9€LY"L 9'8¢C 0L PPS €9€°6 901 0T'96€°61C°Y [2:! L00T
$209°L 1'1¢ 0€°€9S°6LT"L 9y 0S°9S9°€18°¢ [2:| 900¢
8€€9°L 0'1¢ 0%"80T°010°9 981 08'1€8'179°¢ [2: | €00T
1876°L 99 0L'€LS 88S Y [SEY1 0T617'7L0‘E 4 00T
80¥6'L 0l 07'620°S0¢ Y 00T 0L'0¥L199°C [a: £00C
91C8'L 69 L6°SS0'SY8°E [ 7' 190°81¢C°C [a: 00T
9868°L Y 0€°€LS S6S E (SN 0" TLO'96¥°C [a: 100C
TEIL'L C11:1d €1 SP9LS 90V ‘€ I'ST 1y 601 10°LT1°¥S6°T ! 000C
€68¢°L 91— €6°L86°19¢°€ 6'¢C— 01°S¥6°€99°C i 6661
P¥6£9 8'0¢ 1L°06T°88C ¥ (! 9S 1Y T0S € i 8661
L£909 9'LE €T TLOTSS € gee CIOTT LYT'E | L661
1609 96— 02°00S°18S°C 81 SP'EV6°9SET Rt 9661
9018°S T8l 81°C19°6S8°C 9'v¢ 9€°029'v1€‘C R S661
S6SL'S e 0S'190°91¥%°C L'Le 08'197°61L°1 I 7661
¥S€9°S 08'9¢€°ST8°1 00°SEL'6VC'T €661
Id ueoq (9) ueaw syrodwy (9) syroduwy syrodw (9) ueaw sprodxyg (9) syodxg syrodxg Qwisoy h2) ¢

916TEI=Puny

1 199/3814/9q/099e3s9/=p1; dse 104 /our15-qoS yenSueq -mma //:dny ‘B[ewalens) jo yueq vivp fo 224n0g “efewdlens) o) sypodwr [e10) pue eewsiens) woiy siiodxo [e10], € 3jqel

pringer

as


http://www.banguat.gob.gt/inc/ver.asp?id=/estaeco/bc/hist/bc11.htm&e=132516
http://www.banguat.gob.gt/inc/ver.asp?id=/estaeco/bc/hist/bc11.htm&e=132516

SERIEs (2019) 10:65-92

s Jo spuesnoy) ur painseawr a1 syrodwi 2103 pue syrodxa [e10],

G86S°'L 6C:¢d 01— 08°€69°vT6°C1 ¥'eed 0 00'816°12¥°9 €l 910T
ws9'L €1 — 00'¥2€8S0 V1 ge— 0t"'6€9°60%°9 [ S10C
1d uean (9) ueaw sproduy (9) syroduwy syoduy (9) ueaw surodxyg (9) syodxg suodxyg QwIdoy Teo)

86

panunuod ¢ 3jqe]

pringer

As



SERIEs (2019) 10:65-92 87

(a) Total exports from Guatemala (b) Total imports to Guatemala

020

015016 017 018 019 020 021 022 025 024

024

012

012 014 016 018 020 022 024 026 028

002 003 004 005 006 007 008 009 010 011

den  Feb  Mor  Apr Moy  Jun it Avg Sep 0ot Nev  Dec

Fig. 4 Relative importance of specific foreign currency movements. Notes R1 is 1994-2000 (solid thin);
R2 is 2001-2008 (dashed thin); R3 is 2009-2016 (solid thick). Source of data Bank of Guatemala

similar for the DCS-EGB2, DCS-NIG and standard models. For the DCS-f and DCS-
Skew-Gen-¢ models, which have superior statistical performance to the competing
alternatives, the estimated seasonality component has a relatively high amplitude for
the period of 2001-2017. The amplitude of the annual seasonality component of
GTQ/USD is dynamic (Fig. 3). We identify three regimes with different amplitudes:
(R1) 1994-2000; (R2) 2001-2008; (R3) 2009-2017 (Fig. 3). In the remainder of this
section, we present several economic reasons for those regimes.

Firstly, in Table 3, we present the evolution of total exports from Guatemala and total
imports to Guatemala, for the period of 1993-2016. The growth rate of total exports
from Guatemala decreases over time: the mean growth rates of total exports for (R1),
(R2) and (R3) are 15.1%, 7.8% and 3.4%, respectively (Table 3). This reduction in the
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growth rate of total exports suggests a decreasing amplitude of the annual seasonality
for periods (R1)-(R3).

Secondly, the relative importance of total exports, with respect to total currency
inflows and outflows, decreases for the data window. In Fig. 4, we present the relative
importance of the following foreign currency movements for (R1), (R2) and (R3):
(1) total exports from Guatemala (Fig. 4a); (2) total imports to Guatemala (Fig. 4b);
(3) receipt of loans to Guatemala (Fig. 4c); (4) payment of loans from Guatemala
(Fig. 4d); (5) remittance payments to Guatemala (Fig. 4e). For all cases, we compute
relative importance with respect to the sum of total inflows and total outflows of
foreign currency, and we estimate average relative importance separately for each
month. We find that the relative importance of total exports, on average, significantly
decreases from (R1) to (R2) and (R3) (Fig. 4a). Furthermore, we also find that the
relative importance of loans and remittance payments that do not have a significant
seasonality component, on average, significantly increases from (R1) to (R3) (Fig. 4c—
e). These results also support the reducing amplitude of GTQ/USD seasonality for the
data window.

Thirdly, a further explanation for the decreasing amplitude of the annual seasonality
component is the reduction of the relative importance of agricultural product exports
within total exports. In Table 4, we present the export income from coffee, sugar,
banana and cardamom, which, as aforementioned, are the main agricultural export
products of Guatemala. The relative importance of these products reduces significantly
during the period of 1994-2016.

These results suggest that the stochastic seasonality component of the GTQ/USD
currency exchange rate is significant, both from the statistical and economic points of
view, for the period of 1994-2008. The results also suggest that the amplitude of this
stochastic seasonality component has decreased for the period of 2009-2017, due to
the reduced relative importance of agricultural exports of Guatemala.

6 Conclusions

We have studied the stochastic seasonality of the GTQ/USD currency exchange rate,
by using daily exchange rate data for the period of January 1994—June 2017. For
this period, when a managed float currency exchange rate regime has been used in
Guatemala, reliable GTQ/USD exchange rate data are available from the Bank of
Guatemala.

The seasonality analysis of this paper is motivated by the significant agricultural
exports of Guatemala, which lead to significant foreign currency inflows after the har-
vest periods in every year. The seasonality analysis is also motivated by: (1) the relative
importance of agricultural exports in Guatemala has decreased during the past decade,
while (2) the relative importance of the non-seasonal receipt of loans, payment of loans
and remittance payments to Guatemala have increased during the same period. We
have found that the stochastic seasonality of the GTQ/USD exchange rate is signifi-
cant, both statistically and economically. We have explained the changing amplitude
for the period of January 1994—June 2017 by the following points: (1) reducing growth
rate of total exports; (2) reducing relative importance of total exports, and increasing
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relative importance of non-seasonal foreign currency movements (i.e. loans and remit-
tance payments); (3) reducing relative importance of agricultural product exports to
total exports.

In the in-sample statistical analysis of this paper, we have introduced the DCS-Skew-
Gen-t and DCS-NIG models that include stochastic local level, stochastic seasonality,
and irregular components with DCS-EGARCH scale dynamics. Those models are
alternatives to the DCS-r and DCS-EGB2 models, respectively. We have also compared
the statistical performance of the DCS models with the performance of a standard
financial time series model that includes GARCH volatility dynamics. We have focused
on the in-sample analysis of the GTQ/USD exchange rate and we have not performed
out-of-sample analyses, because the models used in the present paper aim to examine
particular empirical features of the historical time series of GTQ/USD exchange rates,
such as seasonality and different volatility regimes.

The statistical performance of DCS models is related to the score functions that
update the local level and log-scale equations. We have presented the properties of
the updating terms of all DCS models. We have shown the trimming, Winsorizing
or linear transformation of extreme observations for each DCS updating term. As a
consequence, DCS models are robust to extreme observations. We have compared
the DCS updating terms with the linear and quadratic updating terms of the standard
financial time series model. We have shown that the standard model is not robust to
extreme observations. We have found that (1) the DCS-Skew-Gen-t model is superior
to all alternatives, (2) all DCS models are superior to the standard financial time series
model, (3) the DCS-Skew-Gen-t model is superior to the DCS-t model, (4) the DCS-
NIG model is superior to the DCS-EGB2 model according to AIC, BIC and HQC,
and (5) the LLs of the DCS-NIG and DCS-EGB2 models do not differ significantly.

The new methodologies of the present work involve the stochastic analyses of the
level and seasonality components of currency exchange rate, and we also propose the
use of a new stochastic seasonality model in currency exchange rate volatility. Those
outlier-robust new methods may be applied in future analyses of currency exchange
rates by, for example, central bankers, policy makers, international organizations,
private firms and financial investors.
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