Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/266303 
Erscheinungsjahr: 
2022
Quellenangabe: 
[Journal:] Statistics in Transition new series (SiTns) [ISSN:] 2450-0291 [Volume:] 23 [Issue:] 1 [Publisher:] Sciendo [Place:] Warsaw [Year:] 2022 [Pages:] 201-212
Verlag: 
Sciendo, Warsaw
Zusammenfassung: 
Estimates from confidence intervals are more powerful than point estimates, because there are intervals for parameter values used to estimate populations. In relation to global conditions, involving issues such as type 2 diabetes mellitus, it is very difficult to make estimations limited to one point only. Therefore, in this article, we estimate confidence intervals in a truncated spline model for type 2 diabetes data. We use a non-parametric regression model through a multi-variable spline linear estimator. The use of the model results from the irregularity of the data, so it does not form a parametric pattern. Subsequently, we obtained the interval from beta parameter values for each predictor. Body mass index, HDL cholesterol, LDL cholesterol and triglycerides all have two regression coefficients at different intervals as the number of the found optimal knot points is one. This value is the interval for multivariable spline regression coefficients that can occur in a population of type 2 diabetes patients.
Schlagwörter: 
confidence interval
diabetes
known variance
spline
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by-sa Logo
Dokumentart: 
Article

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.