Bitte verwenden Sie diesen Link, um diese Publikation zu zitieren, oder auf sie als Internetquelle zu verweisen: https://hdl.handle.net/10419/258150 
Autor:innen: 
Erscheinungsjahr: 
2021
Quellenangabe: 
[Journal:] Risks [ISSN:] 2227-9091 [Volume:] 9 [Issue:] 4 [Article No.:] 61 [Publisher:] MDPI [Place:] Basel [Year:] 2021 [Pages:] 1-21
Verlag: 
MDPI, Basel
Zusammenfassung: 
This paper considers a mean-variance portfolio selection problem when the stock price has a 3/2 stochastic volatility in a complete market. Specifically, we assume that the stock price and the volatility are perfectly negative correlated. By applying a backward stochastic differential equation (BSDE) approach, closed-form expressions for the statically optimal (time-inconsistent) strategy and the value function are derived. Due to time-inconsistency of mean variance criterion, a dynamic formulation of the problem is presented. We obtain the dynamically optimal (time-consistent) strategy explicitly, which is shown to keep the wealth process strictly below the target (expected terminal wealth) before the terminal time. Finally, we provide numerical studies to show the impact of main model parameters on the efficient frontier and illustrate the differences between the two optimal wealth processes.
Schlagwörter: 
3/2 stochastic volatility
backward stochastic differential equation
complete market
dynamic optimality
mean-variance portfolio selection
Persistent Identifier der Erstveröffentlichung: 
Creative-Commons-Lizenz: 
cc-by Logo
Dokumentart: 
Article
Erscheint in der Sammlung:

Datei(en):
Datei
Größe





Publikationen in EconStor sind urheberrechtlich geschützt.